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abstract: Motivated by the idea which has been introduced by M. Haiour and
S.Boulaaras (Proc. Indian Acad. Sci. (Math. Sci.) Vol. 121,No. 4, November
2011,pp.481–493), we provide a maximum norm analysis of Euler combined with
finite element Schwarz alternating method for a class of parabolic equation on with
nolinear source terms two overlapping subdomains with nonmatching grids. We
consider a domain which is the union of two overlapping subdomains where each
subdomain has its own independently generated grid. The two meshes being mu-
tually independent on the overlap region, a triangle belonging to one triangulation
does not necessarily belong to the other one. Under a stability analysis on Euler
scheme which given by our work in (App. Math. Comp., 217, 6443–6450 (2011)), we
establish, on each subdomain, an optimal asymptotic behavior between the discrete
Schwarz sequence and the asymptotic solution of parabolic differential equations.
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1. Introduction

This paper deals with the error analysis in the maximum norm, in the context
of the nonmatching grids method, of the following evolutionary equation: find
u ∈ L2

(
0, T ;H1

0 (Ω)
)
∩ C2

(
0, T,H−1 (Ω)

)
solution of






∂u

∂t
−∆u + αu = f (u) , in Σ,

u = 0 in Γ/Γ0,

∂u

∂η
= ϕ in Γ0, u(., 0) = u0, in Ω,

(1.1)

where Σ is a set in R
2 × R defined as Σ = Ω × [0, T ] with T̈ < +∞, where Ω is a

smooth bounded domain of R2 with boundary Γ.
The function α ∈ L∞ (Ω) is assumed to be non-negative satisfies

α ≤ β, β > 0. (1.2)

The function f (·) is a nonlinear and Lipschitz functions with Lipschitz constant
c and satisfying the following condition





f ∈ L2
(
0, T, L2 (Ω)

)
∩C1

(
0, T,H−1 (Ω)

)

c < β.
. (1.3)

Let (., .)Ω be the scalar product in L2 (Ω) and (., .)Γ0
be the scalar product in

L2 (Γ0) , where Γ0 is the part of the boundary defined in [25] as impulse control
problem:

Γ0 =
{
x ∈ ∂Ω = Γ such that ∀ξ > 0, x+ ξ /∈ Ω̄

}
.

Schwarz method has been invented by Herman Amandus Schwarz in 1890. This
method has been used to solve the stationary or evolutionary boundary value prob-
lems on domains which consists of two or more overlapping sub-domains (see [1],
[9], [24], [26]). We refer to ( [1], [9]- [11]), and the references therein for the analysis
of the Schwarz alternating method for elliptic obstacle problems and to the pro-
ceedings of the annual domain decomposition conference beginning with [17]. For
results on maximum norm error analysis of overlapping nonmatching grids methods
for elliptic problems we refer, for example, to [6].

In [9], we studied the overlapping domain decomposition method combined with
a finite element approximation for elliptic equation related for Laplace operator
∆, where on uniform norm of an overlapping Schwarz method on nonmatching
grids has been used, where we proved that the discretization on every subdomain
converges on uniform norm norm. Furthermore, a result of asymptotic behavior
in uniform norm has been given. In this paper, similar to that in [9], we extend
the last work for evolutionary equation with mixed boundary conditions, where we
provide a maximum norm analysis of a theta scheme combined with finite element



Maximum Norm Analysis of NGM for Parabolic Equation 159

Schwarz alternating method for a linear parabolic equations on two overlapping
subdomains with nonmatching grids. We consider a domain which is the union
of two overlapping subdomains where each subdomain has its own independently
generated grid. The two meshes being mutually independent on the overlap region,
a triangle belonging to one triangulation does not necessarily belong to the other
one. Under a stability analysis on the theta scheme which given by our work in
[3], we establish, on each subdomain, an optimal asymptotic behavior between
the discrete Schwarz sequence and the asymptotic solution of parabolic differential
equations with respect the nonlinearity of the right hand side.

The outline of the paper is as follows: In section 2, we introduce some necessary
notations, then we prove a full-discrete weak formulation of the presented problem
using Euler time scheme combined with a finite element method. In section 3 we
state a continuous alternating Schwarz sequences and define their respective finite
element counterparts in the context of nonmatching overlapping grids. Section 4
is devoted to the asymptotic behavior of the method.

2. The discrete parabolic equation

The problem (1.1) can be reformulated into the following continuous parabolic
variational equation: find u ∈ L2

(
0, T,H1

0 (Ω)
)
solution of























































(

∂u

∂t
, v

)

Ω

+ a (u, v) = (f (u) , v)
Ω
+ (ϕ, v)

Γ0
,

u = 0 in Γ/Γ0,

∂u

∂η
= ϕ in Γ0,

u (x, 0) = u0 in Ω,

(2.1)

where a (., .) is the bilinear form defined as:

a (u, u) = (∇u,∇u)Ω − (αu, u)Ω (2.2)

2.1. The spatial discretization

We discretize the problem (2.1) with respect to time by using Euler scheme.
Therefore, we search a sequence of elements uk ∈ H1

0 (Ω) which approaches u (tk) ,
tk = k∆t, with initial data u0 = u0.

Thus, we have for k = 1, ..., n






















































(

uk
− uk−1

∆t
, v

)

+ a
(

uk, v
)

=
(

f
(

uk
)

, v
)

+ (ϕ, v)
Γ0

,

u = 0 in Γ/Γ0,

∂u

∂η
= ϕ in Γ0,

u (x, 0) = u0 in Ω.

(2.3)



160 S. Boulaaras, M.C. Bahi, M. Haiour and A. Zarai

2.2. The spatial discretization

Let Ω be decomposed into triangles and τh denote the set of all those elements
h > 0 is the mesh size. We assume that the family τh is regular and quasi-uniform.
We consider the usual basis of affine functions ϕl, l = {1, ...,m (h)} defined by
ϕl (Ms) = δls where Ms is a vertex of the considered triangulation. We introduce
the following discrete spaces V h of finite element

V h =






v ∈ L2
(
0, T,H1

0 (Ω)
)
∩ C

(
0, T,H1

0

(
Ω̄
))

, such that

v |K∈ P1, K ∈ τh, and u (., 0) = u0 in Ω,

u = 0 in Γ/Γ0, u (x, 0) = u0 in Ω.






(2.4)

where rh is the usual interpolation operator defined by

v ∈ L2
(
0, T,H1

0 (Ω)
)
∩ C

(
0, T,H1

0

(
Ω̄
))

, rhv =

m(h)∑

i=1

v (Mi)ϕi (x) (2.5)

and P1 denotes the space of polynomials with degree at most 1.
In the sequel of the paper, we shall make use of the discrete maximum principle

assumption (dmp). In other words, we shall assume that the matrices (A)ps =

a
(
ϕp, ϕs

)
is M -matrices (cf. [13]).

We discretize in space the problem (2.3), i.e. that we approach the space H1
0 by

a space discretization of finite dimensional Vh ⊂ H1
0 , we get the following discrete

PQVIs.




(
uk
h − uk−1

h

∆t
, vh

)
+ a

(
uk
h, vh

)
≥
(
f
(
uk
h

)
, vh
)
+ (ϕ, v)Γ0

,

uh = 0 in Γ/Γ0,

∂uh

∂η
= ϕ in Γ0,

u0
h (x) = uh0 in Ω,

(2.6)

which implies





(
uk
h

∆t
, vh

)
+ a

(
uk
h, vh

)
≥

(
f
(
uk
h

)
+

uk−1
h

∆t
, vh

)
+ (ϕ, v)Γ0

,

uh = 0 in Γ/Γ0,

∂uh

∂η
= ϕ in Γ0,

u0
h (x) = uh0 in Ω.

(2.7)
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Then, the problem (2.7) can be reformulated into the following coercive discrete
system of elliptic quasi-variational inequalities (EQVIs)





b
(
uk
h, vh

)
=
(
f
(
uk
h

)
+ λuk−1

h , vh
)
+ (ϕ, v)Γ0

, uk
h ∈ V h,

uh = 0 in Γ/Γ0,

∂uh

∂η
= ϕ in Γ0,

u0
h (x) = uh0 in Ω,

(2.8)

such that






b
(
uk
h, vh

)
= λ

(
uk
h, vh

)
+ a

(
uk
h, vh

)
, uk

h ∈ V h,

λ =
1

∆t
=

1

k
=

T

n
, k = 1, ..., n.

(2.9)

2.3. An iterative discrete algorithm

As we have chosen before in the iterative semi-discrete algorithm u0
h = uh0 the

solution of the following full-discrete equation

b
(
u0
h, vh

)
=
(
g0, vh

)
, vh ∈ V h, (2.10)

where g0 is a linear and a regular function.
Now we give the full following discrete algorithm

uk
h = Thu

k−1, k = 1, .., n, (2.11)

where uk
h is the solution of the problem (2.8).

Let F k−1 (w) = f
(
uk
h

)
+ λw, F̃ k−1 (w̃) = f

(
ũ k

h

)
+ λw̃ ∈ L∞ (Ω) be the

corresponding right-hand sides to the EQVIs.

Lemma 2.1. [cf. 4,6] Under the previous assumption and the dmp we have, if

F k−1 (w) ≧ F k−1 (w̃) ,

then

uk
h = ∂

(
F k−1 (w)

)
≧ ũk

h = ∂
(
F k−1 (w̃)

)
.

We shall first recall some results related to coercive quasi variational inequalities
that are necessarily in proving some useful qualitative properties.

Proof. The proof of the Lemma is very similar to that in ( [7] and [10]) for free
boundary problem. ✷
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Definition 2.2. ζkh is said to be a subsolution for the system of EQVIs (2.8) if





b
(
ζkh, ϕs

)
≤
(
f
(
ζkh

)
+ λζk−1

h , ϕs

)
+ (ϕ, ϕs)Γ0

, ∀ϕs, s = 1, ...,m (h) ,

uh = 0 in Γ/Γ0,

∂uh

∂η
= ϕ in Γ0,

u0
h (x) = uh0 in Ω,

Notation 1. Let Xh be the set of discrete subsolutions. Then, we have the following
theorem.

Theorem 2.3. Under the discrete maximum principle, the solution of the system
of EQVI (2.8) is the maximum element of Xh.

Proof. We denote by ϕ+ = max(ϕ, 0), ϕ− = max(−ϕ, 0).
Let wh ∈ Vh be a solution of the following of the full discrete system of parabolic

quai variational inequalities using Euler time scheme combined with a finite element
spatial approximation (cf. [3,4])






b (wh, v̆h) = (f (wh) + λwh, ṽh) + (ϕ, ṽh)Γ0
, ∀ṽh ∈ Vh,

uh = 0 in Γ/Γ0,

∂uh

∂η
= ϕ in Γ0,

u0
h (x) = uh0 in Ω,

(2.12)

where v̆h =
m(h)∑
s=1

ṽsϕs.

Since ṽ is a trial function, we choose ṽh = wh − vh and vh > 0. Thus

b (wh, ϕs) ≤ (f (zh) + λwh, ϕs) , (2.13)

that is to say wh ∈ Xh.
On the other hand; let zh be a subsolution, such that

wh ≤ zh. (2.14)

Then we have
b (zh, ϕs) ≤ (f (wh) + λwh, ϕs) .

Setting vh = (zh − wh)
+
≥ 0 as a trial function. Yields

b
(
zh, (zh − wh)

+
)
≤
(
f (zh) + λwh, (zh − wh)

+
)
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and since wh is a subsolution too, we have

b
(
wh, (zh − wh)

+
)
≤
(
f (zh) + λwh, (zh − wh)

+
)
.

Thus, we deduce

−b
(
(zh − wh)

+
, (zh − wh)

+
)
≥ 0.

Under the coerciveness of the bilinear, we can get

(zh − wh)
+
= 0.

Therefore
zh ≤ wh. (2.15)

Thus, from (2.14) and (2.15) we obtain zh = wh. ✷

Theorem 2.4. see [9] . Under suitable regularity of the solution of problem (1.1),
there exists a constant C independent of h such that

‖ζ∞h − ζ‖ ≤ Ch2 |log h| . (2.16)

Lemma 2.5. (see [20]) Let w ∈ H1 (Ω) ∩ C
(
Ω̄
)
satisfies a (w, φ) + λ (w, φ) ≥ 0

or all nonnegative φ ∈ H1 (Ω) and w ≥ 0 on Γ, then w ≥ 0 on Ω̄.

Notation 2. (F k−1, ϕ); (F̃ k−1, ϕ̃) be a pair of data and ζ = ∂(F k−1, ϕ); ζ̃ =

∂(F̃ k−1, ϕ̃) the corresponding solutions to (2.3) .

Proposition 2.6. Under the previous notation, we have

‖ζh − ζ‖L∞(Ω) ≤ max{c
∥∥uk − ũk

∥∥
L∞(Ω)

+ λ
∥∥uk−1 − ũk−1

∥∥
L∞(Ω)

, ‖ϕ− ϕ̃‖
L∞(Γ)

}.

(2.17)

Proof. First, putting

µk = max{c
∥∥uk − ũk

∥∥
L∞(Ω)

+ λ
∥∥uk−1 − ũk−1

∥∥
L∞(Ω)

, ‖ϕ− ϕ̃‖
L∞(Γ)

}, (2.18)

then

F̃ k ≤ F k +
∥∥∥F k − F̃ k

∥∥∥
L∞(Ω)

≤ F k +max{c
∥∥uk − ũk

∥∥
L∞(Ω)

+ λ
∥∥uk−1 − ũk−1

∥∥
L∞(Ω)

, ‖ϕ− ϕ̃‖
L∞(Γ)

}

≤ F k + λµk.

So

b
(
ζ̃
k
, φ
)
≤ b

(
ζk, φ

)
+ λ

(
µk, φ

)
, for all φ ≥ 0, φ ∈ H1

0 (Ω) (2.19)
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and thus

b
(
ζ̃
k
, φ
)
≤ b

(
ζk + µk, φ

)
=
(
F k + λµk, φ

)
.

On the other hand, we have

ζk + φ− ζ̃
k
≥ 0 on Γ0. (2.20)

So

b(ζk + φ− ζ̃
k
≥ 0. (2.21)

By using the result of lemma 2.1, we get

ζ̃
k
+ φ− ζk ≥ 0 on Ω (2.22)

Similarly, interchanging the roles of the couples (F k, ϕ) and (F̃ k, ϕ̃k), we get

ζ̃
k
+ φ− ζk ≥ 0 on Ω, (2.23)

which completes the proof. ✷

Remark 2.7. Proposition 2.6 stays true for the discrete case.

Lemma 2.8. ( [20]) Let w ∈ Vh satisfy b(wk, φs) > 0 for s = 1, 2...,m(h)and
wθ,k ≥ 0 on Γ0.then wθ,k ≥ 0 on (Ω).

Notation 3. (F k, ϕ); (F̃ k, ϕ̃k) be a pair of data and ζkh = ∂(F k, ϕ); ζ̃
k

h = ∂(F̃ k, ϕ̃)
the corresponding solutions to (2.3) .

Proposition 2.9. Let DMP hold, we have

∥∥∥ζkh − ζ̃
k

h

∥∥∥
L∞(Ω)

≤ max{c
∥∥uk

h − ũk
h

∥∥
L∞(Ω)

+λ
∥∥uk−1

h − ũk−1
h

∥∥
L∞(Ω)

, ‖ϕ− ϕ̃‖
L∞(Γ)

}.

(2.24)

Proof. The proof is similar to that of the continuous case. ✷

3. Schwarz Alternating Methods for parabolic equation

We decompose (Ω) in two overlapping smooth subdomain Ω1 and Ω2 such that
Ω = Ω1 ∪Ω2, we denote by ∂Ωi the boundary of Ωi and Γi = ∂Ωi ∩Ωj and assume
that the intersection of Γi and Γj ;i 6= j is empty. Let

V
(wk

j )

i =






v ∈
(
L2
(
0, T,H1

0 (Ω)
)
∩ C

(
0, T,H1

0

(
Ω̄
)))

such that v = wj on Γi.
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We associate with problem (2.8) the following system: find (uk
1 , u

k
2) ∈ V k

1 × V k
2

solution to 



b1(u
k
1 , v) = (F

θ,k

, v)Ω1 + (ϕk, v)Γ01 ,

b2(u
k
2 , v) = (F

θ,k

, v)Ω2 + (ϕk, v)Γ02 ,

(3.1)

where

bi(u
k
i , v) =

∫

Ωi

(▽uk.▽vk + αuk.vk)dx (3.2)

and

uk
i = uk/Ωi; i = 1, 2

3.1. The Continuous Schwartz Sequences

Let u0 be an initialization in C0

(
Ω
)
,i.e., continuous functions vanishing on ∂Ω

such that

b(u0, v) = (F k, v). (3.3)

Starting from u0 = u0/Ω2, we respectively define the alternating Schwarz
sequences

(
un+1
1

)
on Ω1 such that

uk,n+1
1 ∈ V

(uk,n
2 )

1 solves of

b1(u
k,n+1
1 , v) = (F k

1 , v), (3.4)

where

F k
1 = fk

(
uk,n+1
1

)
+ λuk−1,n+1

1

and (uk,n+1
2 )on Ω2 such that uk,n+1

2 ∈ V
(k,uθ,k,n+1

1 )
2 solves

b2(u
k,n+1
2 , v) = (F k

1 , v), (3.5)

where

F k
2 = fk

(
uk,n+1
2

)
+ λuk−1,n+1

2

Theorem 3.1. [4] The sequences (un+1
h ); (un+1

h ), n ≥ 0 produced by the Schwarz
alternating method converge geometrically to a solution u of the elliptic obstacle
problem. More precisely, there exist k1, k2 ∈ (0, 1) which depend on (Ω1, γ2) and
(Ω2, γ1) such that for all n ≥ 0,

sup
Ω1

∣∣uh − u2n+1
∣∣ ≤ δn1 δ

n
2 sup

γ1

∣∣uh − u0
h

∣∣ (3.6)

and

sup
Ω2

∣∣uh − u2n
∣∣ ≤ δn1 δ

n−1
2 sup

γ2

∣∣uh − u0
h

∣∣ . (3.7)
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3.2. The discrete Schwartz sequences

As we have defined before, for i = 1, 2, let τhi be a standard regular and quasi-
uniform finite element triangulation in Ωi;hi, being the mesh size. The two meshes
being mutually independent Ω1∩Ω2, a triangle belonging to one triangulation does
not necessarily belong to the other and for every w ∈ C (Ωi), we set

V
(wθ,k

j
)

hi =





v ∈
(
L2
(
0, T,H1

0 (Ω)
)
∩ C

(
0, T,H1

0

(
Ω̄
)))

such that v = φ on Γ01 ∩ Γ02; v = πhi
(w) on Γ0i,





where πhi
denote an interpolation operator on Γ0i.

Now, we define the discrete counterparts of the continuous Schwarz sequences
defined in (3.4) and (3.5) .

Indeed, let u0h be the discrete analog of u0, defined in (3.3), we respectively,

define by uk,n+1
1h ∈ V

(uk,n

2h )
h1 such that

b1(u
k,n+1
1h , v) = (F k

1 , v), ∀v ∈ V
(ϕ)
h ; n ≥ 0 (3.8)

and uk,n+1
2h ∈ V

(uk,n+1
1h )

h2 such that

b2(u
k,n+1
2h , v) = (F k

2 , v), ∀v ∈ V
(ϕ)
h ; n ≥ 0. (3.9)

4. Maximum norm analysis of asymptotic behavior

4.1. Error analysis for the stationary case

We begin by introducing two discrete auxiliary sequences and prove a funda-
mental lemma.

4.1.1. Two auxiliary Schwarz sequences. For w0
2h = u0

2h, we define the sequences

w∞,n+1
1h and w∞,n+1

2h such that u∞,n+1
1h ∈ V

(u,∞,n
2 )

h1 solves

b1(w
∞,n+1
1h , v) = (F k

1 , v), ∀v ∈ V
(ϕ)
h1 ;n ≥ 0, (4.1)

and w∞,n+1
2h ∈ V

(u∞,n+1
1h )

2h solves

b2(w
∞,n+1
2h , v) = (F k

2 , v), ∀v ∈ V
(ϕ)
h2 ;n ≥ 0, (4.2)

respectively. It is then clear that w∞,n+1
1h and w∞,n+1

2h are the finite element approx-

imation of u∞,n+1
1 and u∞,n+1

2 defined in (4.1), (4.2), respectively. Then, as F k (.)

is continuous,
∥∥∥F k

(
uk,n+1
i

)∥∥∥
∞

≤ λ
∥∥∥uk,n+1

i

∥∥∥
∞
, (independent i of n). Therefore,

making use of standard maximum norm estimates for linear parabolic problems,
we have

∥∥∥uk,n
i − uk,n

ih

∥∥∥
L∞(Ωi)

≤ Ch2 |log h| , (4.3)
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where C is a constant independent of both h and n.

Notation 4. From now on, we shall adopt the following notations: |.|1 = |.|L∞(Γ1),

|.|2 = |.|L∞(Γ2),
‖.‖1 = ‖.‖L∞(Γ1)

, ‖.‖2 = ‖.‖L∞(Γ2),
and we set πh1 = πh2 = πh.

4.2. Iterative discrete algorithm

We give our following discrete algorithm

uk,n+1
ih = Thu

k−1,n+1
ih , k = 1, ..., p, uk,n+1

ih ∈ V
(uk,n

2 )
hi (4.4)

where uk
h is the solution of the problem (2.8) and the first iteration u0

h is solution
of (3.3).

Proposition 4.1. [5]Under the previous hypotheses and notations, we have the
following estimate of convergence

∥∥∥uk,n+1
h − u∞

h

∥∥∥
∞

≤

(
λ+ c

β + λ

)k

‖u∞
h − uh0‖∞ . (4.5)

Lemma 4.2. Let ρ =
λ+ c

β + λ
. Then, under assumption (1.2), there exists a con-

stant C independent of both h and n such that

∥∥∥u∞,n+1
i − u∞,n+1

ih

∥∥∥
i
≤

Ch2 |log h|

1− ρ
, i = 1, 2. (4.6)

Proof. We know from standard error estimate on uniform norm for linear problem
[19] that there exists a constant C independent of h such that

∥∥u0 − u0
h

∥∥
L=(Ω)

≤ Ch2 |log h| . (4.7)

Since
1

2
< ρ < 1, then 1 < ρ/ (1− ρ) and

∥∥u0
2 − u0

2h

∥∥
2
≤ Ch2 |log h| ≤

ρCh2 |log h|

1− ρ
. (4.8)

Let us now prove (4.6) by induction. Indeed for n = 1, using the result of Propo-
sition 1, we have in Ω1

∥∥∥uk,1
1 − uk,1

1h

∥∥∥
1

≤
∥∥∥uk,1

1 − wk,1
1h

∥∥∥
1
+
∥∥∥wk,1

1 − uk,1
1h

∥∥∥
1

≤ Ch2 |log h|+
∥∥∥wk,1

1 − uk,1
1h

∥∥∥
1

≤ Ch2 |log h|+max{ρ
∥∥∥uk,1

1 − uk,1
1h

∥∥∥
1

,
∥∥u0

2 − u0
2h

∥∥
2
}.
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We then have to distinguish between two cases

max{ρ
∥∥∥uk,1

1 − uk,1
1h

∥∥∥
1

,
∥∥u0

2 − u0
2h

∥∥
2
} = ρ

∥∥∥uk,1
1 − uk,1

1h

∥∥∥
1

(4.9)

or
max{ρ

∥∥∥uk,1
1 − uk,1

1h

∥∥∥
1

,
∥∥u0

2 − u0
2h

∥∥
2
} =

∥∥u0
2 − u0

2h

∥∥
2
. (4.10)

(4.9) implies





∥∥∥uk,1
1 − uθ,k1

1h

∥∥∥
1

≤ Ch2 |log h|+ ρ
∥∥∥uk,1

1 − uk,1
1h

∥∥∥
1
,

∥∥u0
2 − u0

2h

∥∥
2
≤ ρ

∥∥∥uk,1
1 − uk,1

1h

∥∥∥
1

,

then 



∥∥∥uk,1
1 − uk,1

1h

∥∥∥
1
≤

Ch2 |log h|

1− ρ
.

∥∥u0
2 − u0

2h

∥∥
2
≤ ρ

∥∥∥uk,1
1 − uk,1

1h

∥∥∥
1

≤
ρCh2 |log h|

1− ρ
.

(4.10) implies





∥∥∥uk,1
1 − uk,1

1h

∥∥∥
1
≤ Ch2 |log h|+

∥∥u0
2 − u0

2h

∥∥
2

≤
∥∥u0

2 − u0
2h

∥∥
2
,

so, by multiplying (4.10) by ρ we get

ρ
∥∥∥uk,1

1 − uk,1
1h

∥∥∥
1

≤ ρCh2 |log h|+ ρ
∥∥u0

2 − u0
2h

∥∥
2
. (4.11)

So, ρ
∥∥∥uk,1

1 − uk,1
1h

∥∥∥
1

is bounded by both

ρCh2| log h|+ ρ
∥∥u0

2 − u0
2h

∥∥
2

and ∥∥u0
2 − u0

2h

∥∥
2
,

this implies that

ρ
∥∥u0

2 − u0
2h

∥∥
2
≤ ρCh2 |log h|+ ρ

∥∥u0
2 − u0

2h

∥∥
2
, (4.12)

or
ρCh2 |log h|+ ρ

∥∥u0
2 − u0

2h

∥∥
2
≤
∥∥u0

2 − u0
2h

∥∥
2
, (4.13)

that is (4.12) implies
∥∥u0

2 − u0
2h

∥∥
2
≤

ρCh2 |log h|

1− ρ
(4.14)
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and (4.13) implies

∥∥u0
2 − u0

2h

∥∥
2
≥

ρCh2 |log h|

1− ρ
. (4.15)

It follows that only the case (4.12) is true, that is,

∥∥u0
2 − u0

2h

∥∥
2
≤

ρCh2 |log h|

1− ρ
, (4.16)

then

ρ
∥∥∥uk,1

1 − uk,1
1h

∥∥∥
1

≤ Ch2 |log h|+
∥∥u0

2 − u0
2h

∥∥
2

≤ Ch2 |log h|+
ρCh2 |log h|

1− ρ

≤
Ch2 |log h|

1− ρ
.

So, in both cases (4.9) and (4.10), we have

∥∥∥uk,1
1 − uk,1

1h

∥∥∥
1
≤

Ch2 |log h|

1− ρ
. (4.17)

Similarly, we have in Ω2

∥∥∥uk,1
2 − uk,1

2h

∥∥∥
2

≤ Ch2 |log h|+
∥∥∥wk,1

2 − uk,1
2h

∥∥∥
2

≤ Ch2 |log h|+max{ρ
∥∥∥uk,1

2 − uk,1
2h

∥∥∥
2
,
∥∥∥uk,1

1 − uk,1
1h

∥∥∥
1
}.

So

max{ρ
∥∥∥uk,1

2 − uk,1
2h

∥∥∥
2
,
∥∥∥uk,1

1 − uk,1
1h

∥∥∥
1
} = ρ

∥∥∥uθ,k,1
2 − uk,1

2h

∥∥∥
2

(4.18)

or

max{ρ
∥∥∥uk,1

2 − uk,1
2h

∥∥∥
2
,
∥∥∥uk,1

1 − uk,1
1h

∥∥∥
1
} =

∥∥∥uk,1
1 − uk,1

1h

∥∥∥
1
. (4.19)

cases (4.18) implies

∥∥∥uk,1
2 − uk,1

2h

∥∥∥
2

≤ Ch2 |log h|+ ρ
∥∥∥uk,1

2 − uk,1
2h

∥∥∥
2
,

∥∥∥uk,1
1 − uk,1

1h

∥∥∥
1

≤ ρ
∥∥∥uk,1

2 − uk,1
2h

∥∥∥
2
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so 




∥∥∥uk,1
2 − uk,1

2h

∥∥∥
2
≤

Ch2 |log h|

1− ρ
,
∥∥∥uk,1

1 − uk,1
1h

∥∥∥
1

≤ ρ
∥∥∥uk,1

2 − uk,1
2h

∥∥∥
2

≤
ρCh2 |log h|

1− ρ
≤

Ch2 |log h|

1− ρ
,

while case (4.19) implies




∥∥∥uk,1
2 − uk,1

2h

∥∥∥
2
≤ Ch2 |log h|+

∥∥∥uk,1
1 − uk,1

1h

∥∥∥
1
,

ρ
∥∥∥uk,1

2 − uk,1
2h

∥∥∥
2
≤
∥∥∥uk,1

1 − uk,1
1h

∥∥∥
1
.

(4.20)

So, by multiplying (4.20) by ρ we get

ρ
∥∥∥uk,1

2 − uk,1
2h

∥∥∥
2
≤ ρCh2 |log h|+ ρ

∥∥∥uk,1
1 − uk,1

1h

∥∥∥
1
. (4.21)

Hence ρ
∥∥∥uk,1

2 − uk,1
2h

∥∥∥
2
is bounded by both

ρCh2|logh|+ ρ
∥∥∥uk,1

1 − uk,1
1h

∥∥∥
1

and ∥∥∥uk,1
1 − uk1

1h

∥∥∥
1
,

then ∥∥∥uk,1
1 − uk,1

1h

∥∥∥
1
≤ ρCh2 |log h|+ ρ

∥∥∥uk,1
1 − uk,1

1h

∥∥∥
1

(4.22)

or

Ch2 |log h|+ ρ
∥∥∥uk,1

1 − uk,1
1h

∥∥∥
1
≤
∥∥∥uk,1

1 − uk,1
1h

∥∥∥
1
, (4.23)

which (4.22) implies

∥∥∥uk,1
1 − uk,1

1h

∥∥∥
1
≤

ρCh2 |log h|

1− ρ
<

Ch2 |log h|

1− ρ
(4.24)

or (4.23) implies

ρCh2 |log h|

1− ρ
≤
∥∥∥uk,1

1 − uk,1
1h

∥∥∥
1
<

Ch2 |log h|

1− ρ
. (4.25)

Hence, (4.22) and (4.23) are true because they both coincide with (4.17). So, there
is either a contradiction and thus case (4.18) is impossible or case (4.19) is possible
only if ∥∥∥uk,1

1 − uk,1
1h

∥∥∥
1
= ρCh2 |log h|+ ρ

∥∥∥uk,1
1 − uk,1

1h

∥∥∥
1
, (4.26)
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that is ∥∥∥uk,1
1 − uk,1

1h

∥∥∥
1
=

ρCh2 |log h|

1− ρ
, (4.27)

thus
∥∥∥uk,1

2 − uk,1
2h

∥∥∥
2

≤ Ch2 |log h|+
∥∥∥uk,1

1 − uk,1
1h

∥∥∥
1

≤ Ch2 |log h|+
ρCh2 |log h|

1− ρ

≤
Ch2 |log h|

1− ρ
,

that is, both cases (4.18) and (4.19) imply

∥∥∥uk,1
2 − uk,1

2h

∥∥∥
2
≤

Ch2 |log h|

1− ρ
. (4.28)

Now, let us assume that

∥∥∥uk,n
2 − uk,n

2h

∥∥∥
2
≤

Ch2 |log h|

1− ρ
(4.29)

and prove that 




∥∥∥uk,n+1
1 − uk,n+1

1h

∥∥∥
1
≤

Ch2 |log h|

1− ρ

∥∥∥uk,n+1
2 − uk,n+1

2h

∥∥∥
2
≤

Ch2 |log h|

1− ρ
✷

Theorem 4.3. Let h = max (h1, h2). Then, for n large enough, there exists a
constant C independent of both h and n such that

∥∥∥uk,n+1
i − uk,n+1

ih

∥∥∥
1
≤

ch2 |log h|

1− ρ
, ∀i = 1, 2. (4.30)

Proof. Let us give the proof for i = 1. The one for i = 2 is similar and so will be
omitted. Indeed, Let δ = δ1δ2, then making use of Theorem 2 and Lemma 3, we
get

∥∥∥uk
1 − uk,n+1

1h

∥∥∥
1

≤
∥∥∥uk

1 − uk,n+1
1

∥∥∥
1
+
∥∥∥uk,n+1

1 − uk,n+1
1h

∥∥∥
1

≤ δn1 δ
n
2

∣∣u0 − u
∣∣
1
+

ch2 |log h|

1− ρ

≤ δ2n
∣∣u0 − u

∣∣
1
+

ch2 |log h|

1− ρ
.
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So, for n large enough, we have
δ2n ≤ h2 (4.31)

and thus
∥∥∥uk

1 − uk,n+1
1h

∥∥∥
1

≤ ch2 + ch2 |log h|

≤ ch2 |log h| ,

which is the desired result. ✷

4.3. Asymptotic behavior

This section is devoted to the proof of main result of the present paper, where we
prove the theorem of the asymptotic behavior in L∞-norm for parabolic variational
inequalities, where we evaluate the variation in L∞ between uh (T ) , the discrete
solution calculated at the moment T = p∆t and u∞, the asymptotic continuous
solution of (2.1)

Theorem 4.4. According to the results of the Proposition 3 and the Theorem 3,
we have ∥∥∥up,n+1

1h − u∞
∥∥∥
∞

≤ C

[
h2 |log h|+

(
λ+ c

β + λ

)p]
(4.32)

and ∥∥∥uθ,p,n+1
2h − u∞

∥∥∥
∞

≤ C

[
h2 |log h|+

(
λ+ c

β + λ

)p]
, (4.33)

where C is a constant independent of h and k.

Proof. We have
∥∥∥up,2n+1

h − u∞
∥∥∥
∞

≤
∥∥∥up,2n+1

h − u∞
h

∥∥∥
∞

+ ‖u∞
h − u∞‖∞ .

Using the Proposition 4.1 and the Theorem 4.3, we have for θ ≥
1

2
∥∥∥up,2n+1

h − u∞
∥∥∥
∞

≤ C

[
h2 |log h|+

(
λ+ c

β + λ

)p]
.

✷

Remark 4.5. It can be seen in the previous estimates (4.32) and (4.33),

(
λ+ c

β + λ

)p

goes to 0 when p tend to infinity. Therefore, the estimation order for both the
coercive and noncoercive problems is

∥∥∥u∞ − u∞,n+1
1h

∥∥∥
L∞(Ω̄1)

≤ Ch2 |log h|

and ∥∥∥u∞ − u∞,n+1
2h

∥∥∥
L∞(Ω̄2)

≤ Ch2 |log h| .
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