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abstract: We discuss iterated function systems generated by finitely many con-
tinuous self-maps on a compact metric space, with a focus on transitivity and min-
imality properties. More specifically, we are interested in topological transitivity,
fiberwise transitivity, minimality and total minimality. A number of results that
clarify the relations between topological transitivity and fiberwise transitivity are
included. Furthermore, we generalize the notion of regular periodic decomposition
for topologically transitive maps, introduced by John Banks [1], to iterated function
systems. We will focus on the existence of periodic decompositions for topologically
transitive iterated function systems. Finally, we show that each minimal abelian
iterated function system consisting of homeomorphisms on a connected compact
metric space is totally minimal.
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1. Introduction

Transitivity and minimality have recently been the subject of considerable in-
terest in topological dynamics [1,5,6,10,11,13,14]. The concept of transitivity could
trace back to Birkhoff [2,3]. After that many articles dealt with such a topic. We
continue this investigation in a context of iterated function systems. Iterated func-
tion systems are given by a (finite) collection of continuous maps on a metric space,
that are composed for iterations. They have been studied extensively because of
their role in the study of fractals [7,8]. This paper studies two non equivalent no-
tions of dynamical transitivity and discusses the relations between these notions,
in the context of iterated function systems on compact metric spaces.
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The other interesting issue we will be addressed to is the existence of a periodic
decomposition. Regular periodic decompositions for topologically transitive maps
introduced in [1]. In fact, in a regular periodic decomposition, one can decom-
pose the domain of a topologically transitive map into finitely many regular closed
pieces with nowhere dense overlap in such a way that these pieces map into one
another in a periodic fashion. Here, we generalize this concept to iterated function
systems (IFSs) and provide some relevant results. Then we deal with minimal iter-
ated function systems and minimal sets of IFSs. In particular, we show that each
minimal abelian IFS on a compact connected metric space is totally minimal.

In order to state the main results, first we recall some standard definitions about
iterated function systems. Next a brief description of the results will be given.

1.1. Preliminaries

We start collecting some basic concepts on iterated function systems. Let X

be a compact metric space and F be a finite family of maps on X . Write 〈F〉+

for the semigroup generated by the collection F. Following [4,9], the action of the
semigroup 〈F〉+ is called the iterated function system (or IFS) associated to F. In
the rest of this paper, IFS(X ;F) or IFS(F) will stand for an iterated function system
generated by F. An iterated function system can be thought of as a finite collection
of maps which can be applied successively in any order. Moreover, iterated function
systems (IFSs) are a method of constructing fractals.

Throughout this paper, we assume that (X ; d) is a compact metric space with
at least two distinct points and without any isolated point. Also, we assume that
IFS(F) is an iterated function system generated by a finite family F = {f1, . . . , fk}
of continuous self-maps on a compact metric space X .

For the semigroup 〈F〉+ and x ∈ M the total forward orbit of x is defined by

O
+
F
(x) = {h(x) : h ∈ 〈F〉+}.

In a similar way, if the generators fi, i = 1, . . . , k, are injective then one can define
the total backward orbit of x by

O
−
F
(x) = {h−1(x) : h ∈ 〈F〉+}.

Symbolic dynamic is a way to represent the elements of 〈F〉+. We take Σ+
k =

{1, . . . , k}N endowed with the product topology.
For any sequence ω = (ω1ω2 . . . ωn . . . ) ∈ Σ+

k , take f0
ω := Id and

fn
ω := fωn

◦ fn−1
ω = fωn

◦ . . . ◦ fω1
.

If ω = (ω1ω2 . . . ωn . . . ) is a sequence in Σ+
k , then the corresponding ω-fiberwise

orbit of a point x is a sequence O+
ω (x) = {fn

ω (x) : n ∈ N}.
A subset B is called a forward invariant (or backward invariant) set if f(B) ⊂ B

(or f−1(B) ⊂ B ) for all f ∈ 〈F〉+. We say that

(1) IFS(F) is topologically transitive whenever U and V are two open subsets of
X , there exists h ∈ 〈F〉+ such that h(U) ∩ V 6= ∅;
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(2) IFS(F) is fiberwisely transitive if it admits an fiberwise dense orbit;

(3) IFS(F) is forward minimal (or backward minimal) if any point has a dense
total forward orbit (or total backward orbit).

Theorem 1.1. Let IFS(F) be an iterated function system generated by finitely
many homeomorphisms {f1, . . . , fk} defined on a compact metric space X. Then
the following statements hold:

1) If IFS(F) has a ω-fiberwise dense orbit, for some sequence ω ∈ Σ+
k , then the

subset

{x ∈ X : Cl(O−
F
(ω, x)) = Cl(O+

F
(ω, x)) = X}

is residual in X. In particular, fiberwise transitivity implies topological tran-
sitivity; the converse is not true, in general.

2) If there exists h ∈ 〈F〉+ so that h admits a unique attracting fixed point x

with dense total backward and total forward orbits then IFS(F) is fiberwisely
transitive.

In [12], the authors proved that if the mappings fi, i = 1, . . . , k, preserve a finite
measure with total support, then these two different notions of transitivity, topo-
logical transitivity and fiberwise transitivity, are equivalent. While we see that, in
the non-conservative case, in general, the two properties are different. Theorem
1.1 above investigates their relationship.

Let h ∈ 〈F〉+. We say that the length of h is equal to j and denote it by
|h| = j if h is a composition of j elements of the generating set F of IFS(F). For
each iterated function system IFS(F) with generating set F we denote IFS(Fn) an
iterated function system generated by Fn = {fn

i : fi ∈ F}.

Definition 1.1. We say that an iterated function IFS(F) is totally transitive (or
totally minimal) if IFS(Fn) is transitive (or minimal) for all n ∈ N.

Let K(X) denote the set of non-empty closed subsets of X endowed with the
Hausdorff metric topology. Then K(X) is also a complete metric space and it is
compact whenever X is compact.
For an iterated function system IFS(F) we define the associated Hutchinson oper-
ator by

L : K(X) → K(X), K 7→ L(K) =

k
⋃

i=1

fi(K). (1.1)

Following [4], we say that a compact set A is a self-similar set whenever L(A) = A.
For each n ≥ 1, take Ln = L ◦ Ln−1. Then a compact subset A is called n-self-
similar set if Ln(A) = A.

In the following, we generalize the notion of a regular periodic decomposition for
a topologically transitive map, introduced by John Banks [1], to iterated function
systems.
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Definition 1.2. A collection D = {X0, X1, · · · , Xn−1} of closed subsets of X such
that L(Xi) ⊆ Xi+1 (mod n) for 0 ≤ i < n− 1 is called a periodic orbit of sets for
the Hutchinson operator L. Clearly, the union of the Xi is a self-similar set.

Definition 1.3. We call a periodic orbit D = {X0, X1, · · · , Xn−1} of closed subsets
of X is a periodic decomposition of IFS(F) if int(Xi) ∩ int(Xj) = ∅ whenever
i 6= j , and the union of the Xi is X. The number of sets in a decomposition
will be called the length of the decomposition. A periodic decomposition is regular
if all of its elements are regular closed. This means that for each 0 ≤ i ≤ n − 1,
Cl(intXi) = Xi. In particular, Xi ∩Xj is nowhere dense whenever i 6= j.

Definition 1.4. Let IFS(F) be an iterated function system on a compact metric
space X with generators F = {f1, . . . , fk}. We say that IFS(F) is an abelian IFS
if fi ◦ fj = fj ◦ fi, for each i, j ∈ {1, . . . , k}.

The next theorem provides a necessary and sufficient condition for topological
transitivity.

Theorem 1.2. Let D = {X0, X1, · · · , Xn−1} be a regular periodic decomposition
for the iterated function system IFS(F) generated by a finite family F of open and
continuous maps on a compact metric space X. Then IFS(F) is transitive if and
only if IFS(Fn) is transitive on each Xi.

Theorem 1.3. A minimal abelian iterated function system IFS(F) generated by
finitely many homeomorphisms F = {f1, . . . , fk} defined on a connected compact
metric space X is totally minimal and hence it is totally transitive.

The present paper is organized as follows. In Section 2, we discuss topo-
logical transitivity and fiberwise transitivity and clarify the relations between these
two distinct notions. Moreover, the proof of Theorem 1.1 is also given in Section
2. In Section 3, we deal with the existence of regular periodic decompositions for
topologically transitive iterated function systems, then we prove Theorem 1.2. In
Section 4, we deal with minimal iterated function systems and minimal sets of
IFSs and finally we prove Theorem 1.3. Finally, Section 5 of this paper outlines
motivations and provides a discussion of the paper.

2. Transitivity of IFSs

Topological transitivity is a global characteristic of a dynamical system. This
section will concentrate on transitivity properties of iterated function systems.

Throughout this section let F = {f1, . . . , fk} be a finite family of homeomor-
phisms defined on a compact metric space X and take IFS(F) the iterated function
system generated by F. Assume that X has no any isolated point and write 〈F〉+

for the semigroup generated by F.
Here, we restrict ourselves to topological transitivity and fiberwise transitivity

of IFSs. The first problem is, broadly speaking, a question about the relation
between these two concepts of transitivity in the context of IFSs.
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In what follows, we will prove that fiberwise transitivity implies topological
transitivity. However, the next example shows that these two properties are not
equivalent.

Example 2.1. Let X be a a second countable Baire space and V = {Vj : j ∈ N} a
countable basis of X. Let us take a countable collection F = {fj : j ∈ N} consisting
of self continuous maps defined on X, 〈F〉+ the semigroup generated by F and a
point x ∈ X for which the following properties hold:

(1) for each j, fj(x) ∈ Vj ;

(2) fj has an attracting fixed point xj in Vj , moreover, Vj is contained in the
basin of attraction of xj;

(3) for all j 6= 1, fj has an attracting fixed point in V1.

Obviously, the total forward orbit of x is dense in X but x has not a fiberwise dense
orbit.

Notice that if IFS(F) is a topologically transitive IFS on a second countable
Baire space X , then the set of points with a dense total forward orbit is a resid-
ual set, for instance see [5, Prop. 1]. In the next two results we generalize this
observation to the fiberwisely transitive IFSs.

Lemma 2.1. If IFS(F) has any point x such that for some ω ∈ Σ+
k , x has ω-

fiberwise dense orbit, then the set of points with ω-fiberwise dense orbit is a residual
subset of X.

Proof: Suppose that there exist a point x ∈ X and a sequence ω ∈ Σ+
k such that

the ω-fiberwise orbit of x, O+
F
(ω, x) = {f j

ω(x) : j ∈ N}, is dense in X . Let us take
a countable basis V = {Vj : j ∈ N} of X and we set

An = {z ∈ X : O+
F
(z) is

1

n
-dense}.

Since the fiberwise-orbit O+
F
(ω, x) of x is dense in X , hence there exist sequences

{xjl} ⊂ O
+
F
(ω, x) and {kn,l} ⊂ N, for which the following property holds: xjl =

f jl
ω (x) ∈ Vl and the segment orbit {f jl

ω (x), f jl+1
ω (x), . . . f

jl+kn,l
ω (x)} is 1

2n -dense. By
continuity, there exist rn,l > 0 such that f i

σjl−1ω
(Brn,l

(xjl )) ⊂ B 1
2n
(f i

σjl−1ω
(xjl ))

for all 0 ≤ i ≤ kn,l. This means that for each y ∈ Brn,l
(xjl), the segment orbit

{y, fσjl−1ω(y), . . . , f
kn,l

σjl−1ω
(y)}

is 1
n
-dense. Therefore, ∪l∈NBrn,l

(xjl ) is an open and dense subset. In particular,
this proves that ∩n∈N∪l∈NBrn,l

(xjl) is a residual subset contained in ∩∞
n=1An which

consists of the points with ω-fiberwise dense orbit. ✷

The next result relates forward and backward total orbits.
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Proposition 2.2. If there exists a point x ∈ X with ω-fiberwise dense orbit, for
some ω ∈ Σ+

k , then {y ∈ X : Cl(O−
F
(ω, y)) = Cl(O+

F
(ω, y)) = X} is a residual

subset of X.

Proof: From the previous lemma, {y ∈ X : Cl(O+
F
(ω, y)) = X} is a residual subset

of X . By assumption, the set {x, fω0
(x), . . . , f j

ω(x), . . . } is dense in X . Let us take
xl = f l

ω(x) and An = {x ∈ X : O−
F
(x) is 1

n
-dense}. Since O

+
F
(x, ω) is dense,

there exists a sequence {kn} of positive integers such that {x, . . . , fkn
ω (x)} is 1

2n -
dense. As {x, . . . , fkn

ω (x)} ⊂ O−(ω, xj) for all j ≥ kn, we get that xj ∈ An for each
j ≥ kn.
By continuity, one can find rj > 0 such that f l

ω(Brj (x)) ⊂ B 1
2n
(f l

ω(x)), for all

0 ≤ l ≤ kj . This proves that O
−
F
(ω, y) is 1

n
-dense for all y ∈ f j

ω(Brj (x)) and
j ≥ kn. As f j

ω(Brj (x)) is an open neighborhood of xj and {xj : j ≥ kn} is
dense, then ∪j≥kn

f j
ω(Brj (x)) ⊂ An is an open and dense subset of X . Therefore

∩n≥1∪j≥kn
f j
ω(Brj (x)) ⊂ ∩n≥1An is a residual subset of X . Since ∩n≥1An consists

of points with dense ω-backward orbit, then

{y ∈ X : Cl(O−
F
(ω, y)) = X} ∩ {y ∈ X : Cl(O+

F
(ω, y)) = X}

is also residual. ✷

In particular, the next result can be followed immediately.

Corollary 2.3. If IFS(F) is fiberwisely transitive, then it is topologically transitive.

Lemma 2.4. If IFS(F) is minimal, then it is fiberwisely transitive.

Proof: Suppose that V = {Vj : j ∈ N} is a countable basis of X and IFS(F) acts
minimally on X . It is not hard to see that for each x ∈ X and every open subset
V ⊂ X , there exists h ∈ 〈F〉+ so that h(x) ∈ V . Let α = (α1, . . . , αℓ) be a finite
word so that h = fα = fαℓ

◦ . . . ◦ fα1
. If we apply this conclusion for the countable

basis V, we will provide a sequence hi ∈ 〈F〉+ so that h1(x) = x1, hi(xi) = xi+1 and
xi ∈ Vi, for each i ∈ N. Assume α(i) is the finite word which satisfies hi = fα(i) .
Then for sequence ω, that is the concatenation of α(i)s, ω-fiberwise orbit of x is
dense in X . This fact ensures that every point x has a dense fiberwise orbit and
hence IFS(F) is fiberwisely transitive. ✷

As a consequence of the above observations we get the next result.

Corollary 2.5. We have the following implications:

minimality ⇒ fiberwise transitivity ⇒ topological transitivity.

The next result provides a sufficient condition for fiberwise transitivity.

Proposition 2.6. If there exists h ∈ 〈F〉+ with a unique attracting fixed point
x so that the total backward and total forward orbits of x are dense in X, then
there exists a sequence ω ∈ Σ+

k so that the ω-fiberwise orbit of x is dense in X. In
particular, IFS(F) is fiberwisely transitive.
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Proof: Suppose that U and V are two open subsets of X . Since the total forward
orbit of x is dense in X , there exist two mappings k1, g1 ∈ 〈F〉+ such that g1(x) ∈ U

and k1(x) ∈ V .
By density of O−

F
(x), we can choose two sequences {zi} ⊂ U and {hi} ⊂ 〈F〉+ so

that hi(zi) = x and zi converges to g1(x) whenever i tends to infinity. On the other
hand, by continuity of k1, one can find a small real r > 0 so that k1(Br(x)) ⊂ V ,
where Br(x) is the ball with radius r and center x. Let B be an open neighborhood
of x so that hi(g1(x)) is contained in B for some large enough i. Since x is an
attracting fixed point of h, one can find n ∈ N such that x ∈ hn(B) ⊂ Br(x), and
hence k1(h

n(hi(g1(x)))) ∈ V . Let us take g1(x) := x1 and g2 := k1 ◦ h
n ◦ hi, then

g1(x) ∈ U and g2(x1) ∈ V . We apply the above argument for a countable basis
V = {Vi : i ∈ N} of X . Then we will provide a sequence of mappings gi ∈ 〈F〉+

enjoying the following properties: g1(x) = x1, gi(xi) = xi+1 and xi ∈ Vi, for each
i ∈ N. Let αi = (α1,i, . . . , αni,i) be a finite word of the alphabets {1, . . . , k} so that
gi = fαi

= fαni,i
◦ . . . ◦ fα1,i . If we take ω = (α1, α2, . . .) ∈ Σ+

k the concatenation
of αis then clearly the ω-fiberwise orbit of x is dense in X . ✷

Now, Theorem 1.1 is a consequence of Propositions 2.2 and 2.6.

3. Periodic decompositions of IFSs

This section will concentrate on dynamical properties relative to a regular peri-
odic decomposition in the context of iterated function systems. We follow the ap-
proach introduced by Banks in [1] to our setting. We will prove that each iterated
function system IFS(F) with a regular periodic decompositionD = {X0, . . . , Xn−1}
of length n is transitive if and only if IFS(Fn) is transitive on each Xi which es-
tablishes Theorem 1.2.

Throughout this section take F = {f1, . . . , fk} a finite family of continuous and
open self maps defined on a compact metric space X and let IFS(F) be the iterated
function system generated by F. Assume that X has no any isolated point and
write 〈F〉+ for the semigroup generated by F.

Lemma 3.1. For the iterated function system IFS(F) let D = {X0, X1, · · · , Xn−1}
be a periodic orbit of subsets of X for the Hutchinson operator L. Then for each
i = 0, . . . , n− 1, and each h ∈ 〈F〉+ with |h| = j, one has h(Xi) ⊆ Xi+j (mod n)
for all j ≥ 0. In particular, Xi is an Fn-invariant.

Proof: By induction for each j ≥ 0, Lj(Xi) ⊆ Xi+j , where Lj = L ◦ Lj−1. Let
h ∈ 〈F〉+ with |h| = j. Then h(Xi) ⊆ Lj(Xi) ⊆ Xi+j (mod n). In particular,
Ln(Xi) ⊆ Xi. This finishes the proof of the lemma. ✷

Remark 3.2. Let L be the Hutchinson operator of an iterated function system
IFS(F). Inductively, for each n ∈ N take Ln = L ◦ Ln−1. Then it is not hard to
see that for each compact subset A ⊆ X one has

L
n(A) =

⋃

h∈〈F〉+,|h|=n

h(A).
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In particular, a subset A ⊂ X is Fn-invariant iff it is Ln-invariant.

Lemma 3.3. Let IFS(F) be a transitive iterated function system generated by
finitely many continuous and open self-maps F = {f1, . . . , fk} on a compact met-
ric space X. If D = {X0, X1, · · · , Xn−1} is a regular periodic decomposition for
IFS(F), then the following properties hold:

1. Lj(Xi) = Xi+j (mod n) for all 0 ≤ i ≤ n− 1 and j ≥ 1, in particular, Xi is
n-self-similar set;

2. for each h ∈ 〈F〉+ with |h| = j, h(Xi) ⊆ Xi if and only if j = 0 (mod n);

3. h−1(int(Xi)) ⊆ int(Xi−j) (mod n) for all 0 ≤ i ≤ n − 1, h ∈ 〈F〉+ with
|h| = j and j ≥ 0;

4. Y =
⋃

i6=j Xi ∩Xj is F-invariant and nowhere dense in X.

Proof: (i) Since Xi+j (mod n) is a closed set and by the previous lemma, one
has that Cl(Lj(Xi)) ⊆ Xi+j (mod n). Suppose U = Xi+j (mod n) \ Cl(Lj(Xi))
is non-empty. Then U is open in the regular closed set Xi+j (mod n) and hence
V = U ∩ int(Xi+j (mod n)) is open and non-empty in X . Let us take W = int(Xi).
Since Xi is a regular set so W is non-empty and open in X . By transitivity of
IFS(F), there is a mapping g ∈ 〈F〉+ so that g(int(Xi)) ∩ V = g(W ) ∩ V 6= ∅.

By definition, int(Xi) ∩ int(Xj) = ∅ whenever i 6= j. Also by Lemma 3.1, for
each h ∈ 〈F〉+ with |h| = j, one has h(int(Xi)) ⊆ h(Xi) ⊆ Xi+j (mod n) for all
j ≥ 0. Now, these observations ensure that |g| = j (mod n). Therefore,

g(W ) = g(int(Xi)) ⊆ g(Xi) ⊆ L
j(Xi) ⊆ Cl(Lj(Xi).

Since U ∩ Cl(Lj(Xi) = ∅, hence g(W ) ∩ U = ∅ and therefore g(W ) ∩ V = ∅
contracting the fact that IFS(F) is transitive.

(ii) Let h ∈ 〈F〉+ with |h| = j. Since the generators fi, i = 1, . . . , k, are open
mappings hence h is also open. If h(Xi) ⊆ Xi but m = i + j (mod n) 6= i, then
since h(Xi) ⊆ Xi+j (mod n) = Xm, we have h(Xi) ⊆ Xi ∩ Xm. But this implies
that h(Xi) is nowhere dense contracting the facts that Xi is a regular set and h

is an open mapping. The other implication follows from the definition and the
previous lemma.

(iii) We assume that i ≥ j. The proof for i < j is similar. Let h ∈ 〈F〉+

with |h| = j. If h−1(int(Xi)) ∩ Xm 6= ∅ for some m 6= i − j, we would have a
point of Xm that maps into int(Xi) under h. But h(Xm) ∩ int(Xi) = ∅ because
h(Xm) 6= Xi. This contradiction establishes that h−1(int(Xi)) ∩ Xm = ∅ for
m 6= i − j and hence h−1(int(Xi)) ⊆ Xi−j . Since h−1(int(Xi)) is open we have
h−1(int(Xi)) ⊆ int(Xi−j).

(iv) It suffices to show that Y is F-invariant. If i 6= j(mod n), then i + 1 6=
j + 1(mod n), hence fℓ(Y ) ⊆

⋃

i6=j fℓ(Xi) ∩ fℓ(Xj) ⊆
⋃

i6=j(Xi+1 (mod n)) ∩
(Xj+1 (mod n)) which ensures that Y is F-invariant. ✷



Iterated Function Systems: Transitivity and Minimality 105

Now, we will complete the proof of Theorem 1.2.
Proof of Theorem 1.2. Assume IFS(F) is transitive and let U and V be open sets
intersecting Xi. Since Xi is regular closed, hence int(Xi) ∩ U and int(Xi) ∩ V

are non-empty open subsets of X . By transitivity of IFS(F), there exists h ∈
〈F〉+ such that h(int(Xi) ∩ U) ∩ int(Xi) ∩ V 6= ∅, hence h(int(Xi)) ∩ int(Xi) 6= ∅
and so h−1(int(Xi)) ∩ int(Xi) 6= ∅. Let |h| = j. By part (iii) of Lemma 3.3,
h−1(int(Xi)) ⊆ Xi−j (mod n). Since the interiors of Xi, i = 0, . . . , n − 1, are
disjoint, i = i − j (mod n), hence j is a multiple of n. This establishes the
transitivity of IFS(Fn) on Xi.

Conversely, assume IFS(Fn) is transitive on each Xi. Let U and V be open sets
intersecting int(Xi) and int(Xj), respectively. Clearly, there exists h ∈ 〈F〉+ with
|h| = m, for some 0 ≤ m ≤ n − 1, so that W = h−1(V ∩ int(Xj)) is a non-empty
open subset of Xi and hence there is g ∈ 〈Fn〉+ so that g(U)∩W 6= ∅ by transitivity
of IFS(Fn) on Xi. Therefore, h ◦ g(U) ∩ V 6= ∅. Thus, the proof of Theorem 2 is
completed.

The next result is a consequence of Theorem 1.2.

Corollary 3.4. If an iterated function system IFS(F) is totally transitive, then it
has no regular periodic decompositions.

The following result is evident.

Lemma 3.5. Let IFS(F) be an iterated function system generated by finitely many
open and continuous self maps F = {f1, . . . , fk} on a compact metric space X.
Then, the followings are equivalent:

1. IFS(F) is topologically transitive;

2. any F-invariant subset of X is either dense or nowhere dense;

3. every proper closed invariant subset of X is nowhere dense;

4. every backward invariant subset of X with non-empty interior is dense.

The next result provides sufficient conditions for the existence of a regular
periodic decompositions for transitive IFSs.

Proposition 3.6. Let IFS(F) be an iterated function system generated by a finite
family F = {f1, . . . , fk} of continuous and open self maps on a compact metric
space X. Assume IFS(F) is a transitive IFS and G a non-empty, non-dense, open
subset in X and forward Fn-invariant. If G0 = G, L(Gi) = Gi+1, 0 ≤ i ≤ n− 1,
and {Gi : 0 ≤ i ≤ n−1} are pairwise disjoint, then {Cl(G0),Cl(G1), . . . ,Cl(Gn−1)}
is a regular periodic decomposition for IFS(F).

Proof: Consider an open set G ⊆ X satisfies the hypothesis of the proposition.
Take G0 = G, L(Gi) = Gi+1, 0 ≤ i ≤ n−1, hence {G0, G1, . . . , Gn−1} are pairwise
disjoint. Let us take X0 = Cl(G) and Xi = L

i(X0) for 1 ≤ i ≤ n. Clearly, X0 is
a closed regular set. Moreover, it is not hard to see that if f is a continuous open
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map on a compact metric space X and A ⊂ X a closed regular set, then f(A) is
also a closed regular set. Also finite unions of regular closed sets are regular closed.
These observations ensure that Xi, 0 ≤ i ≤ n, are closed regular sets. Also, by
hypothesis for each h ∈ 〈F〉+ with |h| = n, one has h(G0) ⊆ G0 which implies
that Xn ⊆ X0. It is enough to show that X = X0 ∪ X1 ∪ . . . ∪ Xn−1. Clearly
X0 ∪X1 ∪ . . . ∪Xn−1 is a closed regular F-invariant set with non-empty interior.
Hence by part (ii) of Lemma 3.5 the subset X0 ∪ X1 ∪ . . . ∪ Xn−1 is dense in X

and so it is equal to X . ✷

In the following we give an example of a transitive iterated function system
which admits a regular periodic decomposition. However, it is neither total transi-
tive nor minimal.

Example 3.1. Following [1], consider the piecewise linear map f1 : [0, 1] → [0, 1]
defined by

f1(x) :=











2x+ 1
2 if x ∈ [0, 14 ],

3
2 − 2x if x ∈ [ 14 ,

3
4 ],

2x− 3
2 if x ∈ [ 34 , 1]

(3.1)

and let f2 : [0, 1] → [0, 1] be a linear map defined by f2(x) = 1−x. Clearly, f1 and f2
are continuous and open mappings. Take F = {f1, f2} and let IFS(F) be the iterated
function system generated by F. It is easy to see that D = {[0, 12 ], [

1
2 , 1]} forms a

regular periodic decomposition for IFS(F), and hence, by Theorem 1.2, IFS(F2)
cannot be transitive on [0, 1]. It is not hard to check that f1 is topologically mixing
[1] and hence, totally transitive on each element of D. In particular, it is transitive
on [0, 1]. Notice that each iterated function system containing a transitive map is
also transitive, thus IFS(F) is transitive. By these facts and Theorem 2, IFS(F2)
is transitive on each element of D. Furthermore, since x = 1

2 is a common fixed
point for f1 and f2, hence IFS(F) is not minimal.

The next example shows that total transitivity does not imply minimality.

Example 3.2. Take the doubling map f1 : S1 → S1, f1(x) = 2x (mod 1), with the
fixed point p. Clearly, f1 is an expanding map, therefore it is topologically mixing
and hence it is totally transitive. Also, take a map f2 : S1 → S1 with a fixed point
at p. Consider the iterated function system IFS(F) generated by F = {f1, f2}.
Total transitivity of the mapping f1 implies the total transitivity of IFS(F). Since
f1 and f2 have a common fixed point p hence IFS(F) is not minimal.

4. Minimal properties of IFSs

In this section, we deal with minimal iterated function systems and minimal
sets of IFSs. The following lemma is evident.

Lemma 4.1. For an iterated function system IFS(F) on a compact metric space
X the following conditions are equivalent.

1. IFS(F) is forward minimal.
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2. If A is a closed forward invariant set, then either A = ∅ ; or A = X.

3. If U 6= ∅ is an open set, then X =
⋃

h∈〈F〉+ h−1(U).

Usually a dynamical system is not minimal. However, the basic and well-known
fact due to Birkhoff is that any compact dynamical system has minimal subsystems.
The next lemma establishes the same result for iterated function systems. The
proof is straightforward. It is enough to apply Zorn’s lemma to every totally
ordered subset (or chain) of forward F-invariant sets of X . Now the result can be
followed by part (ii) of Lemma 4.1.

Lemma 4.2. Let IFS(F) be an iterated function system on a compact metric space
X. There exists a non-empty closed forward invariant set Y ⊂ X so that 〈F〉+ acts
minimally on Y .

Notice that the problem of finding all minimal sets of the system is central in
topological dynamics.

Theorem 4.3. Let IFS(F) be an abelian iterated function system on a compact
metric space X with generators F = {f1, . . . , fk}. If IFS(F) is forward minimal
but IFS(Fn) is not, then there are pairwise disjoint compact subsets Xi ⊂ X,
i = 0, 1, . . . , ℓ− 1, with X = X0 ∪X1 ∪ . . .∪Xℓ−1 such that ℓ ≥ 2 is a divisor of n,
L(Xi) = Xi+1 (mod ℓ), and 〈Fn〉+ acts forward minimally on Xi for each i, where
L is the Hutchinson operator of IFS(F).

Proof: Since IFS(F) is abelian hence fi ◦fj = fj ◦fi, for each i, j ∈ {1, . . . , k}. By
Lemma 4.2 IFS(Fn) admits a forward minimal set X0 ⊂ X and since IFS(Fn) is not
minimal so X0 is a proper subset of X . For each i ∈ N we set Li(X0) = Xi, where
Li(X0) is defined inductively by L0(X0) = X0, L

i(X0) = L(Li−1(X0)) and L(A) =
∪k
j=1fj(A) for each compact set A ⊂ X . Clearly, all the sets Xi are closed and

non-empty. We prove by induction fn
ℓ (Xi) ⊂ Xi, for each i ∈ N and ℓ = 1, . . . , k.

First, since X0 is forward minimal for IFS(Fn) so it is forward F
n-invariant and

hence fn
ℓ (X0) ⊂ X0 for each ℓ = 1, . . . , k. Indeed, let fn

ℓ (Xi−1) ⊂ Xi−1. Then,

fn
ℓ (Xi) = fn

ℓ (L(Xi−1)) = fn
ℓ (

k
⋃

j=1

fj(Xi−1)) ⊂
k
⋃

j=1

fn
ℓ ◦ fj(Xi−1)

=
k
⋃

j=1

fj ◦ f
n
ℓ (Xi−1) ⊂

k
⋃

j=1

fj(Xi−1) = L(Xi−1) = Xi.

Hence, the subsets Xi, i = 0, . . . , n − 1, are forward Fn-invariant. We claim that
they are also forward minimal subsets of IFS(Fn).

Suppose that for some i, the subset Xi is not a minimal set of IFS(Fn). Since
every closed forward Fn-invariant non-empty subset of X contains a minimal set
of IFS(Fn), hence there exists a subset Y of Xi, not equal to Xi, such that it is a
forward minimal set of IFS(Fn). For some j ∈ N, the number i+j is divisible by n.
We claim that Lj(Y ) ⊂ X0 is non-empty, closed and forward Fn-invariant. Indeed,
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by the above argument, Y is forward Fn-invariant. Also, Y ⊂ Xi which implies that
L

j(Y ) ⊂ L
j(Xi) = Xi+j = X0. Now, since X0 is a forward minimal set of IFS(Fn),

hence Lj(Y ) = X0. Since n divides i + j, we get Xi = Li(X0) = Li+j(Y ) ⊂ Y ,
which is a contradiction and the claim holds.

Notice that any two distinct forward minimal sets of an IFS are disjoint. Since
Xn is not disjoint from X0, we get that there exists ℓ ∈ N such that Xℓ = X0 and
Xi ∩ X0 = ∅ for all 0 < i < ℓ. This ℓ has to divide n, since otherwise, we would
have Xℓ ⊂ Xi for some 0 < i < ℓ, hence Xn would be disjoint from X0.

Now, the set Z = X0 ∪ X1 ∪ . . . ∪ Xℓ−1 is a closed non-empty subset of X .
We claim the it is forward F-invariant. In fact, for each i = 0, . . . , ℓ − 1, and
m = 1, . . . , k, fm(Xi) ⊂ ∪k

j=1fj(Xi) = Xi+1 which implies that fm(Z) ⊂ Z. Thus,
by minimality of IFS(F), the set Z is equal to X . This completes the proof. ✷

Since distinct minimal sets are pairwise disjoint, we get the next result by the
previous theorem.

Corollary 4.4. Let IFS(F) be an abelian iterated function system on a compact
metric space X. If X is connected and IFS(F) is forward minimal then it is totally
minimal.

Now, the proof of Theorem 1.3 is established.

5. Conclusion and discussion

Transitivity forms part of a popular definition of chaos in discrete dynamical
systems. Two different transitivity properties, topological transitivity and fiberwise
transitivity, for iterated function systems are investigated. The relation between
these transitivities is studied. Summing up the main results obtained in Section 2,
we have the following implifications:

minimality ⇒ fiberwise transitivity ⇒ topological transitivity.

In general, topological transitivity is a weaker condition than fiberwise transitiv-
ity. Several conditions on spaces for topological transitivity to imply fiberwise
transitivity are given.

It is known that the transitive systems are dynamically indecomposable. But
they often admit a particular kind of decomposability in which their domains de-
compose into finitely many topologically non-trivial closed pieces which map into
each other in a periodic fashion. The results of Section 3 give some information
about regular periodic decompositions for transitive IFSs. As a consequence, it
is shown that totally transitive iterated function systems do not have any regular
periodic decomposition. Moreover, sufficient conditions for existence of a regular
periodic decompositions for transitive IFSs are given.

In Section 4, minimal IFSs are studied. It is investigated that every minimal
IFS on a compact and connected metric space is totally minimal. In this context,
a natural question arises: Under which conditions a non-abelian minimal IFS on a
compact and connected metric space is totaly minimal?
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