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Spectral Mapping Theorem for C0-Semigroups of Drazin Spectrum

Abdelaziz Tajmouati and Hamid Boua

abstract: Let (T (t))t≥0 be a C0 semigroup of bounded linear operators on a
Banach space X and denote its generator by A. A fundamental problem to decide
whether the Drazin spectrum of each operator T (t) can be obtained from the Drazin
spectrum of A. In particular, one hopes that the Drazin Spectral Mapping Theorem
holds, i.e., etσD(A) = σD(T (t))\{0} for all t ≥ 0.
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1. Introduction

Throughout this work, X denotes a complex Banach space and B(X) denotes
the Banach algebra of all bounded linear operators onX . Let A be a closed operator
with domain D(A), we denote by R(A), N(A), ρ(A), σ(A), σr(T ) and σp(A)
respectively the range, the kernel, the resolvent set, the spectrum, the residual
spectrum and the point spectrum of A. The ascent of A is defined by a(A) =
min{p : N(Ap) = N(Ap+1)}, if no such p exists, we let a(A) = ∞ . Similarly,
the descent of A is d(A) = min{q : R(Aq) = R(Aq+1)}, if no such q exists, we let
d(A) = ∞ (see [7] and [8]). It is well known that if A is bounded, and if both a(A)
and d(A) are finite then a(A) = d(A) and therefore we have the decomposition
X = R(Ap) ⊕ N(Ap) where p = a(A) = d(A). The descend and ascent spectrum
are defined by σdesc(A) = {λ ∈ C : d(λ − A) = ∞} and σasc(A) = {λ ∈ C :
a(λ − A) = ∞}. Recall that A is a Drazin invertible if p = a(A) = d(A) < ∞
and R(Ap) is closed. The Drazin spectrum is defined by σD(A) = {λ ∈ C :
λ−A not Drazin inversible }.

A strongly continuous semigroup (T (t))t≥0 is called eventually norm continuous,
if there exists t0 ≥ 0 such that the function t 7→ T (t) is norm continuous from
(t0,∞) into B(X). Let ∆ = {z ∈ C : α1 < arg z < α2} and for z ∈ ∆ let T (z) be
a bounded linear operator. The family (T (z))z∈∆ is an analytic semigroup in ∆ if

(i) z 7→ T (z) is analytic in ∆.

(ii) T (0) = I and limT (z)x = x for every x ∈ X .
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(iii) T (z1 + z2) = T (z1)T (z2) for z1, z2 ∈ ∆.

A semigroup (T (t))t≥0 will be called analytic if it is analytic in some sector ∆
containing the nonnegative real axis.

A strongly continuous semigroup (T (t))t≥0 on a Banach space X is called even-
tually differentiable if there exists t0 ≥ 0 such that the orbit maps ξx : t 7→ T (t)x
are differentiable on (t0,∞) for every x ∈ X . The semigroup is called eventually
compact, if there exists t0 > 0 such that T (t0) is compact.

Let (T (t))t≥0 be a C0-semigroup on X with infinitesimal generator A. We in-
troduce the following operator acting on X and depending on the parameters λ ∈ C

and t ≥ 0, Bλ(t)x =
∫ t

0 e
λ(t−s)T (s)xds, x ∈ X . It is well known (see [5] and [10] )

that Bλ(t) is a bounded linear operator on X . Furthermore, for all n ∈ N, we have
(eλt−T (t))nx = (λ−A)nBn

λ(t)x, for all x ∈ X and (eλt−T (t))nx = Bn
λ (t)(λ−A)nx,

for all x ∈ D(An). (See [4]).
In [9], Rainer Nagel and Jan Poland showed that, for an eventually norm continuous
semigroup (T (t))t≥0 with generator A one has etσ(A) = σ(T (t))\{0} for all t ≥ 0.
Rainer Nagel in [5] proved for the generator A of a strongly continuous semigroup
(T (t))t≥0 on a Banach space X , we have the identities: etσp(A) = σp(T (t))\{0}
and etσr(A) = σr(T (t))\{0} for all t ≥ 0. These works push to ask the following
question: Does this spectral inclusion hold for the other parts of spectrum?
In this work, we show that this spectral mapping theorem of C0-semigroups even-
tually norm continuous holds for Drazin spectrum.

2. Main results

We start by the following lemmas.

Lemma 2.1. Let (T (t))t≥0 a C0-semigroup on X with infinitesimal generator A.
For all λ ∈ C and t ≥ 0, there exists Fλ(t), Gλ(t) ∈ B(X) such that

1. ∀x ∈ X, Fλ(t)x ∈ D(A) and (λ −A)Fλ(t) +Gλ(t)Bλ(t) = tI,

2. The operators λ−A, Fλ(t), Gλ(t) and Bλ(t) are are mutually commuting.

Proof:

1. For every λ ∈ C and t ≥ 0, let Fλ(t)x =
∫ t

0
e−λsBλ(s)xds. Fλ(t) is a bounded
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linear operator on X . Moreover for every x ∈ X , we have

T (h)− I

h
Fλ(t)x =

T (h)− I

h

∫ t

0

e−λsBλ(s)xds

=
1

h

∫ t

0

∫ s

0

e−λuT (u+ h)xduds

−
1

h

∫ t

0

∫ s

0

e−λuT (u)xduds

=
1

h

∫ t

0

(
∫ s

0

e−λuT (u+ h)xdu

−

∫ s

0

e−λuT (u)xdu

)

ds

=

∫ t

0

(

eλh

h

∫ h+s

h

e−λuT (u)xdu

−
1

h

∫ s

0

e−λuT (u)xdu

)

ds

=

∫ t

0

(

eλh − 1

h

∫ s

h

e−λuT (u)xdu

+
eλh

h

∫ h+s

s

e−λuT (u)xdu

−
1

h

∫ h

0

e−λuT (u)xdu

)

ds.

Therefore

lim
h→0

T (h)− I

h
Fλ(t)x = λ

∫ t

0

e−λsBλ(s)xds+ e−λt

∫ t

0

e−λsT (s)xds− tx

Consequently Fλ(t)x ∈ D(A) and AFλ(t)x = λFλ(t)x + e−λtBλ(t)x − tx.
Then (λ −A)Fλ(t) +Gλ(t)Bλ(t) = tI with Gλ(t) = e−λtI.

2. For all t ≥ 0, Fλ(t) and Bλ(t) commuting. Indeed, for t, s ≥ 0 we have

Bλ(t)Bλ(s)x =

∫ t

0

eλ(t−u)T (u)Bλ(s)xdu

=

∫ t

0

eλ(t−u)T (u)

∫ s

0

eλ(s−v)T (v)xdvdu

=

∫ t

0

∫ s

0

eλ(t−u)eλ(s−v)T (u)T (v)xdvdu

=

∫ s

0

eλ(s−v)T (v)

∫ t

0

eλ(t−u)T (u)xdudv

= Bλ(s)Bλ(t)x
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Therefore

Fλ(t)Bλ(t)x =

∫ t

0

e−λuBλ(u)Bλ(t)xdu

=

∫ t

0

e−λuBλ(t)Bλ(u)xdu

= Bλ(t)

∫ t

0

e−λuBλ(u)xdu

= Bλ(t)Fλ(t)x

For all x ∈ D(A) we have

Fλ(t)(λ −A)x =

∫ t

0

e−λsBλ(s)(λ −A)xds

=

∫ t

0

e−λs(eλs − T (s))xds

= tx−

∫ t

0

e−λsT (s)xds

= tx−Gλ(t)Bλ(t)x

= (λ−A)Fλ(t)x

✷

Lemma 2.2. Let (T (t))t≥0 a C0-semigroup on X with infinitesimal generator A.
For all λ ∈ C, t > 0 and n ∈ N, there exists Hn(t), Ln(t) ∈ B(X) such that

1. ∀x ∈ X, Hn(t)x ∈ D(An) and (λ−A)nHn(t) + Ln(t)B
n
λ (t) = I,

2. The operators (λ−A)n, Hn(t), Ln(t) and Bn
λ (t) are mutually commuting.

Proof: According to lemma 1 there exists tow bounded operators Fλ(t) and Gλ(t)
such that (λ−A)Fλ(t)+Gλ(t)Bλ(t) = I. For i ∈ {1, ..., n−1} and x ∈ X , we have

(λ−A)iFn
λ (t)x = [(λ−A)Fλ(t)]

iFn−i
λ (t)x

= [Fλ(t)(λ −A)]iFn−i
λ (t)x ∈ D(A).

Hence ∀n ∈ N∗, Fn
λ (t)x ∈ D(An). Therefore

(λ−A)nFn
λ (t) = [(λ−A)Fλ(t)]

n

= [I −Gλ(t)Bλ(t)]
n

= I − L1,n(t)Bλ(t)

with L1,n(t) =

n
∑

k=1

(−1)k−1

(

n

k

)

Gk
λ(t)B

k−1
λ (t). Hence (λ−A)nFn

λ (t)+L1,n(t)Bλ(t) =

I
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Similarly

Ln
1,n(t)B

n
λ (t) = [I − (λ−A)nFn

λ (t)]
n

= I − (λ−A)n
n
∑

k=1

(−1)k−1

(

n

k

)

(λ−A)n(k−1)Fnk
λ (t)

Let Hn(t) =

n
∑

k=1

(−1)k−1

(

n

k

)

(λ − A)n(k−1)Fnk
λ (t) and Ln(t) = Ln

1,n(t), then (λ −

A)nHn(t) + Ln(t)B
n
λ (t) = I, moreover (λ − A)n, Hn(t), Ln(t) and Bn

λ(t) are mu-
tually commuting.

✷

Lemma 2.3. Let (T (t))t≥0 a C0-semigroup on X with infinitesimal generator A.
If R(eλt − T (t))p is closed, then R(λ−A)p is closed.

Proof: Suppose that R(eλt−T (t))p is closed. Let yn = (λ−A)pxn be a convergent
sequence with limit y ∈ X . From lemma 2, there exists Hp(t), Lp(t) ∈ B(X) such
that (λ−A)pHp(t) +Lp(t)B

p
λ(t) = I, then xn = (λ−A)pHp(t)xn +Lp(t)Bλ(t)

pxn

and yn = (λ−A)pHp(t)yn + (eλt − T (t))pLp(t)xn. Since (λ−A)pHp(t) is a linear
bounded operator and R(eλt−T (t))p is closed, then (eλt−T (t))pLp(t)xn = yn−(λ−
A)pHp(t)yn tends to y−(λ−A)pHp(t)y ∈ R(eλt−T (t))p, therefore there exists z ∈
X such that y−(λ−A)pHp(t)y = (eλt−T (t))pz, then y = (λ−A)p[Hp(t)y+Bp

λ(t)z],
hence y ∈ R(λ−A)p. ✷

We have the following theorem.

Theorem 2.4. Let (T (t))t≥0 a C0-semigroup on X with infinitesimal generator
A. Then

For all t ≥ 0, etσdesc(A) ⊆ σdesc(T (t))\{0} and etσasc(A) ⊆ σasc(T (t))\{0}

Proof: If eλt − T (t) has finite descent, then there exists n ∈ N such that R(eλt −
T (t))n = R(eλt − T (t))n+1, from lemma 3, there exist two operators Hn(t) and
Ln(t) such that (λ − A)nHn(t) + Ln(t)B

n
λ (t) = I and Hn(t), Ln(t), Bλ(t) and

λ − A are mutually commuting. Let y ∈ R(λ − A)n and x ∈ D(An) such that
y = (λ −A)nx. Therefore

(λ−A)nx = (λ−A)nHn(t)(λ−A)nx+ Ln(t)B
n
λ (t)(λ−A)nx

= (λ−A)n+1Hn(t)(λ−A)n−1x+ Ln(t)(e
λt − T (t))nx

Moreover, R(λ−A)n = R(λ−A)n+1, hence λ−A has finite descent.
If eλt − T (t) has finite ascent, there exist n ∈ N such that N(eλt − T (t))n =
N(eλt − T (t))n+1. Let x ∈ D(A)n+1, we have

(λ−A)nx = (λ−A)nHn(t)(λ−A)nx+ Ln(t)(e
λt − T (t))nx

= (λ−A)n−1Hn(t)(λ−A)n+1x+ Ln(t)(e
λt − T (t))nx

Moreover, N(λ−A)n = N(λ−A)n+1, hence λ−A has finite ascent. ✷
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Remark 2.5. Consider the translation group on the space C2π(R) of all 2π periodic
continuous functions on R and denote its generator by A (see [5, Paragraph I.4.15]).
From [5, Examples 2.6.iv] we have, σ(A) = iZ, then etσ(A) is at most countable,
therefore etσasc(A) and etσdesc(A) are also. The spectra of the operators T (t) are
always contained in Γ = {z ∈ C : |z| = 1} and contain the eigenvalues eikt for
k ∈ Z. Since σ(T (t)) is closed, it follows from [5, Theorem IV.3.16] below, that
σ(T (t)) = Γ whenever t/2π /∈ Q, then σ(T (t)) is not countable, from [2, Corollary
2.10] and [3, Corollary 1.8], σasc(T (t)) and σdesc(T (t)) are also. Therefore the
inclusions of the preceding theorem are strict.

Corollary 2.6. Let (T (t))t≥0 a C0-semigroup on X with infinitesimal generator
A. Then

For all t ≥ 0, etσD(A) ⊆ σD(T (t))\{0}

Proof: If eλt − T (t) is invertible Drazin, then eλt − T (t) has finite ascent and
descnt p, therefore R(eλt − T (t))p is closed. By lemma 3 and theorem 1, λ − A is
invertible Drazin.

✷

Remark 2.7. The inclusion of the preceding corollary is strict. Indeed, from re-
mark 1, etσD(A) is at most countable, on the other hand σD(T (t)) is not countable.

Theorem 2.8. Let (T (t))t≥0 be an eventually norm-continuous semigroup with
generator A on the Banach space X. The spectral mapping theorem

etσD(A) = σD(T (t))\{0} for all t ≥ 0

holds.

Proof: Let λ be a complex number such that λ−A has finite ascent and descent
p such that R(λ−A)p is closed. According to [8, Lemma 3.4] and [8, Lemma 3.5],
there is δ > 0 such that, for every µ ∈ C with 0 < |λ− µ| < δ, the operator µ−A
is bijective, by [9, Corollary 3.3], for every µ ∈ C with 0 < |µ−λ| < δ, eµt−T (t) is
bijective, from open mapping theorem eλt is isolated in σ(T (t)). By [1, Theorem
3.81], we have eλt is a pole of the resolvent of T (t). Using [7, Theorem V.10.1],
we obtain eλt − T (t) has a finite ascent and descent, moreover eλt − T (t) is Drazin
inversible. ✷

Example 2.9. On X := C0(Ω) take the multiplication operator Mqf(λ) = q(λ)f(λ)

for λ ∈ Ω, f ∈ X. From [5, Proposition I.4.2] we obtain that σ(M) = q(Ω) and
σp(M) = {λ ∈ C : λ is isolated in Ω}. On for some continuous function q : Ω → C,
if sups∈ΩRe(q(s)) < ∞, then Tq(t)f := etqf defines a strongly continuous semi-
group (see [5, Proposition I.4.5]). Suppose that Ω = {λ ∈ C : Re(λ) ≤ 1 and −1 ≤
Im(λ) ≤ 1} and for all λ ∈ Ω, q(λ) = λ. Then σ(M) = Ω and σp(M) = ∅,
by [7, Theorem 5.41-C], we have σ(M) = σdesc(M) ∪ σp(M) = σdesc(M), then

σD(M) = Ω. Furthermore q(Ω) ∩ {λ ∈ C : Re(λ) ≥ b} is bounded for every b ∈ R,
from [5, Theorem II.4.32], (Tq(t))t≥0 is eventually norm-continuous. By theorem
2, for t > 0, we have σD(T (t)) = {etλ : λ ∈ Ω} ∪ {0}.
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Corollary 2.10. The spectral mapping theorem

etσD(A) = σD(T (t))\{0} for all t ≥ 0

hold for the following classes of strongly continuous semigroups:

1. eventually compact semigroups,

2. eventually differentiable semigroups,

3. analytic semigroups.

Proof: If a strongly continuous semigroup (T (t))t≥0 satisfies one of the following
conditions:

1. eventually compact semigroups,

2. eventually differentiable semigroups,

3. analytic semigroups.

Then it is an eventually norm-continuous semigroup, from Teorem 2 we have
etσD(A) = σD(T (t))\{0} for all t ≥ 0. ✷

References

1. P.Aiena. Fredholm and Local Spectral Theory with Applications to Multipliers,
Kluwer.Acad.Press, 2004.

2. O. Bel Hadj Fredj, M. Burgos and M. Oudghiri Ascent spectrum and essential ascent
spectrum, Studia Math 187 (1) (2008).

3. M. Burgos, A. Kaidi, M. Mbekhta and M. Oudghiri, The descent spectrum and pertur-
bations, Journal of Operator Theory 56 (2006), 259-271.

4. A. Elkoutri and M. A. Taoudi, Spectre singulier pour les générateurs des semigroupes
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