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Error Analysis of the Numerical Solution of the

Benjamin-Bona-Mahony-Burgers Equation

M. Zarebnia and R. Parvaz

abstract: In this paper, the B-spline collocation scheme is implemented to find
numerical solution of the nonlinear Benjamin-Bona-Mahony-Burgers equation. The
method is based on collocation of quintic B-spline. We show that the method is
unconditionally stable. Also the convergence of the method is proved. The method
is applied on some test examples, and the numerical results have been compared
with the analytical solutions. The L∞ and L2 in the solutions show the efficiency
of the method computationally.
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1. Introduction

In [1], a generalized Benjamin-Bona-Mahony-Burgers equation has been con-
sider as follows equation

ut − uxxt − αuxx + βux +
(

g(u)
)

x
= 0, (1.1)

where α is a positive constant, β ∈ R and g(u) is a C
2-smooth nonlinear function.

Benjamin, Bona and Mahony proposed equation (1.1) as an alternative regularized

long-wave equation with the same parameters. In this paper we consider g(u) = u2

2
and we find the Benjamin- Bona- Mahony- Burgers (BBMB) equation as

ut − uxxt − αuxx + βux + uux = 0, x ∈ [a, b], t ∈ [0, T ], (1.2)
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with the initial condition and boundary conditions

u(x, 0) = f(x), x ∈ [a, b], (1.3)

u(a, t) = g0(t), u(b, t) = g1(t), (1.4)

ux(a, t) = ux(b, t) = 0, (1.5)

uxx(a, t) = uxx(b, t) = 0. (1.6)

For α = 0, (1.2) is called the Benjamin-Bona-Mahony (BBM) equation. BBMB
equations play a dominant role in many branches of science and engineering [2].
In recent years, many different methods have been used to estimate the solution
of the BBMB equation, for example, we note, Galerkin methods [3], The jacobi
elliptic function solutions [4], Approximate wave solutions [5] and see [6,7]. Also
a class of Benjamin-Bona-Mahony-initial value problems are studied in [8].
The layout of this article is as follows. In Section 2, we present a finite difference
approximation to discretize the (1.2) in time variable and we applied quintic B-
spline collocation method to solve the problem. In Section 3, the stability analysis
of the method is given. In Section 4 we derive convergence of the B-spline colloca-
tion method. In Section 5, some examples have been conducted in order to validate
the theoretical results. A summary is given at the end of the paper in Section 6.

2. Solution of BBMB equations via Quintic B-spline

The region a ≤ x ≤ b partitioned into a mesh of uniform length h = b−a
N

, by the
knots xi = a+ ih where i = 0, 1, 2, ...,N and a = x0 < x1 < . . . < xN−1 < xN = b.
We use the following finite difference approximation to discretize the time variable

δt

∆t(1 + 1
2δt)

(un − un
xx)− αun

xx + βun
x + unun

x = 0, (2.1)

where ∆t is the time setp, un(x) := u(x, n∆t) and δtun := un+1 − un. This finite
difference scheme is used in [9]. Rearranging the term and simplifying we get

un+1 +
β∆t

2
un+1
x + (−1−

α∆t

2
)un+1

xx +
∆t

2
(uux)

n+1 = Φn, (2.2)

where

Φn(x) := un(x)−
β∆t

2
un
x(x) +

(

− 1 +
α∆t

2

)

un
xx(x)−

∆t

2

(

uux

)n
(x). (2.3)

To linearized the non-linear term (uux)
n+1 in (2.2) we can use the Taylor expan-

sions. We can get

(uux)
n+1 = (uux)

n +∆t(uux)
n
t +∆t2(uux)

n
tt + O(∆t3)

= (uux)
n +∆t

(un+1 − un

∆t
un
x +

un+1
x − un

x

∆t
un

)

+∆t2
(un+1 − 2un + un−1

∆t2
un
x + 2

un+1 − un

∆t

un+1
x − un

x

∆t

+
un+1
x − 2un

x + un−1
x

∆t2
un

)

+ O(∆t2),
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thus we have

(uux)
n+1 = 3(uux)

n − un−1un
x − unun−1

x + O(∆t2). (2.4)

So (2.2) can be rewritten as

un+1 +
β∆t

2
un+1
x +

(

− 1−
α∆t

2

)

un+1
xx = Λn, (2.5)

where

Λn(x) :=un(x) +
∆t

2

(

un(x)un−1
x (x) + un−1(x)un

x(x)
)

− 2∆t
(

uux

)n
(x)

−
β∆t

2
un
x(x) +

(

− 1 +
α∆t

2

)

un
xx(x). (2.6)

We define the quintic B-spline basis functions at knots, by the following relation-
ships [10,11]

Bi(x) =
1

h5































(x− xi−3)
5, x ∈ [xi−3, xi−2),

(x− xi−3)
5 − 6(x− xi−2)

5, x ∈ [xi−2, xi−1),
(x− xi−3)

5 − 6(x− xi−2)
5 + 15(x− xi−1)

5, x ∈ [xi−1, xi),
(xi+3 − x)5 − 6(xi+2 − x)5 + 15(xi+1 − x)5, x ∈ [xi, xi+1),
(xi+3 − x)5 − 6(xi+2 − x)5, x ∈ [xi+1, xi+2),
(xi+3 − x)5, x ∈ [xi+2, xi+3).

(2.7)
To continue we define the approximation for u(x,t) as

U(x, t) =

n+2
∑

i=−2

ci(t)Bi(x), (2.8)

where Bi(x) are the quintic B-spline basis functions, and ci(t) are time-dependent
quantities. We can determine ci(t) from boundary conditions and collocation form
of the differential equations. We calculate U , U

′

and U
′′

at node points as

u(xi, tn) ≈ Un
i := U(xi, tn) = cni+2 + 26cni+1 + 66cni + 26cni−1 + cni−2, (2.9)

ux(xi, tn) ≈ (U ′
i)

n := Ux(xi, tn) =
5

h
(cni+2 + 10cni+1 − 10cni−1 − cni−2), (2.10)

uxx(xi, tn) ≈ (U ′′
i )

n := Uxx(xi, tn) =
20

h2
(cni+2+2cni+1− 6cni +2cni−1+ cni−2), (2.11)

where cni := ci(tn). Substituting the approximate solution U for u and using (2.5)
and (2.9)-(2.11) at the knots we get

ȧcn+1
i+2 + ḃcn+1

i+1 + ċcn+1
i + ḋcn+1

i−1 + ėcn+1
i−2 = Ψn

i , i = 0, 1, . . . , N, (2.12)

where

Ψn
i := Un

i +
∆t

2

(

Un
i (U

′
i)

n−1 + Un−1
i (U ′

i)
n
)

− 2∆t(UiU
′
i)

n

−
β∆t

2
(U ′

i)
n + (−1 +

α∆t

2
)(U ′′

i )
n,
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and
ȧ = 1 + 5β∆t

2h + 20
h2 (−1− α∆t

2 ), ḃ = 26 + 25β∆t
h

+ 40
h2 (−1− α∆t

2 ),

ċ = 66− 120
h2 (−1− α∆t

2 ), ḋ = 26− 25β∆t
h

+ 40
h2 (−1− α∆t

2 ),

ė = 1− 5β∆t
2h + 20

h2 (−1− α∆t
2 ).

The system (2.12) consists of N +1 linear equations in N +5 unknowns {cn+1
−2 ,

. . . , cn+1
N+2}. To obtain a unique solution for {cn+1

−2 , . . . , cn+1
N+2}, we must use the

boundary conditions. From (1.4)-(1.5) and (2.8), we can write

cn+1
−1 =

g0
16

−
1

8
cn+1
2 −

9

4
cn+1
1 −

33

8
cn+1
0 ,

cn+1
−2 =

−5g0
8

+
9

4
cn+1
2 +

65

2
cn+1
1 +

165

4
cn+1
0 ,

cn+1
N+1 =

g1
16

−
1

8
cn+1
N−2 −

9

4
cn+1
N−1 −

33

8
cn+1
N ,

cn+1
N+2 =

−5g1
8

+
9

4
cn+1
N−2 +

65

2
cn+1
N−1 +

165

4
cn+1
N .

Then we write the last system in the matrix form

AC = D, (2.13)

where

A = (A1 A2) (2.14)

where,

A1 =























ȧ− 33ḋ
8 + 165ė

4 ḃ− 9ḋ
4 + 65ė

2 ȧ− ḋ
8 + 9ė

4

ḋ− 33ė
8 ċ− 9ė

4 ḃ− ė
8

ė ḋ ċ
. . .

. . .

0 . . . ė
0 . . . 0
0 . . . 0























and

A2 =

























0 0 . . . 0
ȧ 0 . . . 0

ḃ ȧ . . . 0
. . .

. . .
...

ḋ ċ ḃ ȧ

ė ḋ− ȧ
8 ċ− 9ȧ

4 ḃ− 33ȧ
8

0 ė− ḃ
8 + 9ȧ

4 ḋ− 9ḃ
4 + 65ȧ

2 ċ− 33ḃ
8 + 165ȧ

4

























.



Error Analysis of the Numerical Solution of the BBMB Equation 181

C =
(

cn+1
0 , cn+1

1 , . . . , cn+1
N−1, c

n+1
N

)T

, (2.15)

D =
(

Ψn
0 + (−

ḋ

16
+

5ė

8
)g0,Ψ

n
1 −

ė

16
g0,Ψ

n
2 , . . . ,

Ψn
N−3,Ψ

n
N−1 −

ȧ

16
g1,Ψ

n
N + (

5ȧ

8
−

ḃ

16
)g1

)T

. (2.16)

The above system of equations given in (2.13) has been solved using the computer
algebra system Mathematica-9.

To start any calculate, we must know U1(x). We assume that

U1(x) =

N+2
∑

i=−2

c1iBi(x).

By using (2.2) and (2.9)-(2.11) we can write

ȧc1i+2 + ḃc1i+1 + ċc1i + dc1i−1 + ėc1i−2 +
5∆t

2h

(

c1i+2 + 26c1i+1 + 66c1i + 26c1i−1

+ c1i−2

)(

c1i+2 + 10c1i+1 − 10c1i−1 − c1i−2

)

= Φ0(xi), i = 0, . . . , N. (2.17)

The nonlinear system (2.17) consists of N + 1 equations in N + 5 unknowns
C1 = {c1−2, . . . , c

1
N+2}. To obtain a unique solution for C1, similar to the above

discussion, we use the boundary conditions. From (1.4)-(1.5), we can write

c12 + 26c11 + 66c10 + 26c1−1 + c1−2 = g0(∆t), (2.18)

c12 + 10c11 − 10c1−1 − c1−2 = 0, (2.19)

c1N+2 + 26c1N+1 + 66c1N + 26c1N−1 + c1N−2 = g1(∆t), (2.20)

c1N+2 + 10c1N+1 − 10c1N−1 − c1N−2 = 0. (2.21)

Then we obtain the nonlinear system consists of N + 5 equations in N + 5
unknowns. This system is solved by the computer algebra system Mathematica-9.

3. Stability analysis

In this section, we discuss the stability of the quintic B-spline approximation
(2.1) using the Von Numann method [12,13]. According to the Von-Neumann
method, we have

cni = ξnexp(λkhi), λ2 = −1, (3.1)

where k is the mode number and h is the element size. To apply this method, we
have linearized the nonlinear term uux by consider u as a constant ̟ in equation
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(2.1). We obtain the equation:

ă1c
n+1
i+2 +b̆1c

n+1
i+1 +c̆1c

n+1
i +d̆1c

n+1
i−1 +ĕ1c

n+1
i−2 = ă2c

n
i+2+b̆2c

n
i+1+c̆2c

n
i +d̆2c

n
i−1+ĕ2c

n
i−2,
(3.2)

where
ă1 = 1 + 5∆t

2h (β +̟) + 20
h2 (−1− α∆t

2 ), ă2 = 1− 5∆t
2h (β +̟) + 20

h2 (−1 + α∆t
2 ),

b̆1 = 26 + 25∆t
h

(β +̟) + 40
h2 (−1− α∆t

2 ), b̆2 = 26− 25∆t
h

(β +̟) + 40
h2 (−1 + α∆t

2 ),

c̆1 = 66− 120
h2 (−1− α∆t

2 ), c̆2 = 66− 120
h2 (−1 + α∆t

2 ),

d̆1 = 26− 25∆t
h

(β +̟) + 40
h2 (−1− α∆t

2 ), d̆2 = 26 + 25∆t
h

(β +̟) + 40
h2 (−1 + α∆t

2 ),

ĕ1 = 1− 5∆t
2h (β +̟) + 20

h2 (−1− α∆t
2 ), ĕ2 = 1 + 5∆t

2h (β +̟) + 20
h2 (−1 + α∆t

2 ).

With substituting cni = ξnexp(λkhi) into linearized form (3.2) and simplifying
, we obtain

ξ =
X1 + iY

X2 − iY
, (3.3)

where

X1 =
(

2−
40

h2

)

cos(2φ) +
(

52−
80

h2

)

cos(φ) + 66

+
120

h2
−
(20α∆t

h2
cos(2φ) +

40α∆t

h2
cos(2φ)−

60α∆t

h2

)

,

X2 =
(

2−
40

h2

)

cos(2φ) +
(

52−
80

h2

)

cos(φ) + 66

+
120

h2
+
(20α∆t

h2
cos(2φ) +

40α∆t

h2
cos(2φ)−

60α∆t

h2

)

,

Y =
(5∆t

h
(β +̟)

)

sin(2φ) +
(50∆t

h
(β +̟)

)

sin(φ).

From (3.3), we can write

|ξ|2 = ξξ̄ =
X2

1 + Y 2

X2
2 + Y 2

. (3.4)

We note that X1 ≤ X2, so |ξ| ≤ 1. This implies | ξ |≤ 1. Therefore the linearized
numerical scheme for BBMB equation is unconditionally stable.

4. Convergence analysis

In this section we study the convergence of the quintic B-spline collocation
method has been given in Section 2.
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Theorem 4.1. Suppose that f(x) ∈ C
5[a, b]. Then for the unique quintic spline

S(x) associated with f , we have

‖ f (j) − S(j) ‖∞≤ Kjω5(h)h
4−j , j = 0, 1, 2, 3, (4.1)

where ω5(h) denotes the modulus of continuity of f (5) and the coefficients λj are
independent of f and h.

Proof: For the proof see [14]. ✷

Remark 4.2. By using Theorem 4.1 and definition of the modulus of continuity,
we can say that if |f (5)(x)| ≤ L, we can write (4.1) as

‖ f (j) − S(j) ‖∞≤ λjLh
4−j , j = 0, 1, 2, 3. (4.2)

Lemma 4.3. For the B-splines {B−2, · · · , BN+2} we have the following inequality:

∣

∣

∣

N+2
∑

i=−2

Bi(x)
∣

∣

∣ ≤ 186, (a ≤ x ≤ b). (4.3)

Proof: From the real analysis we have

∣

∣

∣

N+2
∑

i=−2

Bi(x)
∣

∣

∣ ≤

N+2
∑

i=−2

∣

∣

∣Bi(x)
∣

∣

∣,

if x = xi, i = 1, . . . , N, then, we have

∣

∣

∣

N+2
∑

i=−2

Bi(x)
∣

∣

∣ = 120 ≤ 186,

and if xi−1 ≤ x ≤ xi, then, we can write

∣

∣

∣

N+2
∑

i=−2

Bi(x)
∣

∣

∣
≤ | Bi−3(x) | + | Bi−2(x) | + | Bi−1(x) |

+ | Bi(x) | + | Bi+1(x) | + | Bi+2(x) |

≤ 1 + 26 + 66 + 66 + 26 + 1 ≤ 186.

✷

Theorem 4.4. Suppose that u(x, t) be the exact solution of (1.2) and u(x, t) ∈

C
5[a, b] also |∂

5u(x,t)
∂x5 | ≤ L and U(x, t) be the numerical approximation by our meth-

ods, then we can write

‖ u(x, t)− U(x, t) ‖∞= O(h2 +∆t2). (4.4)



184 M. Zarebnia and R. Parvaz

Proof: At the (n+ 1)th time step, we assume that S∗ be the unique spline inter-
polate to the exact solution u of (1.2)-(1.6) given by

S∗(x) =

N+2
∑

i=−2

c∗Bi(x). (4.5)

We note that matrix A is strictly diagonally dominant matrix. Let ηi, (1 ≤ i ≤
N + 1) be the summation of the ith row of the matrix A. From the theory of
matrices we know that

N+1
∑

i=1

a−1
ki ηi = 1, (4.6)

where a−1
ki are the elements of A−1. As a result we can write

‖A−1‖∞ =
N+1
∑

i=1

|a−1
ki | ≤

1

min1≤i≤N+1 ηi
≤

1

G
, (4.7)

where G is is constant. We substituting S∗(x) in (2.5), we get

AC∗ = D∗. (4.8)

Subtracting (2.13), (4.8) and taking the infinity norm, we can write

‖C∗ − C‖∞ ≤ ‖A−1‖∞‖D∗ −D‖∞. (4.9)

By using (4.2), we get the result as

|Ψ∗
i −Ψi| ≤ | S∗(xi)− U(xi) | + |

β∆t

2

(

S∗ ′(xi)− U ′(xi)
)

|

+ | (−1−
α∆t2

2
)
(

S∗ ′′(xi)− U ′′(xi)
)

|

≤ λ0Lh
4+ |

β∆t

2
|λ1Lh

3+ | −1−
α∆t2

2
| λ2Lh

2. (4.10)

From (4.10), we get
‖ D∗ −D ‖∞≤ M1h

2, (4.11)

where M1 = λ0Lh
2 + |β∆t

2 |λ1Lh+ |1 + α∆t
2 |λ2L. Thus by taking norm and using

Lemma 4.3, (4.7), (4.9), (4.11) we obtain

‖ S∗(x)−U(x) ‖∞=‖

N+2
∑

i=−2

(c∗i−ci)Bi(x) ‖∞≤
∣

∣

∣

N+2
∑

i=−2

Bi(x)
∣

∣

∣ ‖ C∗−C ‖∞≤ 186M2h
2,

(4.12)
where M2 = M1

G
is constant. Also from Theorem 4.1 we can write

| u(x)− S∗(x) |≤ λ0Lh
4, (4.13)



Error Analysis of the Numerical Solution of the BBMB Equation 185

and therefore with helping (4.12) and (4.13), we get

‖ u(x)− U(x) ‖∞ ≤ ‖ u(x)− S∗(x) ‖∞ + ‖ S∗(x)− U(x) ‖∞

≤ λ0Lh
4 + 186M2h

2

= γh2, (4.14)

where γ = λ0Lh
2 + 186M2.

In the next step, suppose that εi = u(x, ti)−U(ti) be the local truncation error
for (2.1) at the ith level of time. By using the truncation error, we get

| εi |≤ ̺i∆t3 , i ≥ 1. (4.15)

We assume that En+1 be the global error in time discretizing process and
̺ = max{̺1, ..., ̺n}. We can write the following global error estimate at n + 1
level
En+1 =

∑n
i=1 εi, (∆t ≤ T/n),

with the help of (4.15) we can write

| En+1 |=|

n
∑

i=1

εi |≤ n̺∆t3 ≤ n̺
T

n
∆t2 = ρ∆t2, (4.16)

where ρ = ̺T . Which completes the proof. ✷

5. Numerical examples

In this section to illustrate the performance of the B-spline collocation method
in solving BBMB equation and the efficiency of the method, the following examples
are considered. We defined L2 and L∞ as

L2 =

√

√

√

√h

N
∑

i=0

|Ui − ui|, L∞ =
N

max
i=0

|Ui − ui|.

Note that we have computed the numerical results by Mathematica-9 program-
ming.

Example 1. Consider the BBMB equation with α = 0 and β = 1 in the interval
[−40, 60], with the analytical solution u(x, t) = 3c sech2(k(x−vt−x0)) with c = 0.1,
v = 1 + c, x0 = 0, k =

√

c
4v . For comparison, we consider the our results with

methods [15,16,17]. We assume that ∆t = 0.1 and N = 1000. Table 1 exhibits the
compared results. Also Table 2 and Table 3 give a comparison between numerical
and analytical solutions for different partitions. From Table 2, we see that the L2

and error decrease as ∆t decreases or N increases. Also numerical results in Table
3, are in accordance with the order of convergence of our presented scheme. From
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Figure 1 we can see that numerical solutions show the same behavior as analytical
solution. Also Figure 2 shows that the solution obtained by our method is close to
the analytical solution. Figure 3 shows absolute errors.

Table 1: Comparison of errors for Example 1 with N = 1000,∆t = 0.1 and c = 0.1.

Method Error \ Time 4 8 12 16 20

Present method L2 × 103 0.0203045 0.0382871 0.0524730 0.0630462 0.0709222
L∞ × 103 0.0084461 0.0160410 0.0210382 0.0241158 0.0259986

Method in [15] L2 × 103 0.12 0.23 0.34 0.45 0.55
L∞ × 103 0.05 0.09 0.14 0.18 0.21

Method in [16] L2 × 103 0.046 0.090 0.135 0.179 0.220
L∞ × 103 0.017 0.036 0.054 0.071 0.086

Method in [17] L2 × 103 39.82 79.46 118.8 157.7 196.1
L∞ × 103 13.74 27.66 41.35 54.60 67.35

Table 2: L2 errors for Example 1 at different times.

Partition Error \ Time 1 5 10 15

∆t = 0.5, N = 500 L2 × 103 0.12098300 0.51809700 1.07851000 1.49870000
∆t = 0.1, N = 500 L2 × 103 0.00655321 0.02512740 0.04587060 0.06070200
∆t = 0.01, N = 500 L2 × 103 0.00519310 0.00579594 0.00628573 0.00643410
∆t = 0.01, N = 100 L2 × 103 0.00755186 0.01044510 0.01407850 0.01638590
∆t = 0.01, N = 200 L2 × 103 0.00594902 0.00637034 0.00692952 0.00715433
∆t = 0.01, N = 300 L2 × 103 0.00552811 0.00601056 0.00652286 0.00670635

Table 3: L∞ errors for Example 1 at different partitions.

Time 5 15
Partition Error Order Error Order

∆t = 0.5, N = 500 2.20791 × 10−4 ——– 5.57623 × 10−4 ——–
∆t = 0.1, N = 500 1.05724 × 10−5 1.88822 2.34437 × 10−5 1.96906
∆t = 0.05, N = 500 2.87871 × 10−6 1.87681 5.93276 × 10−6 1.98242
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Figure 1: Analytical solution (right) and numerical solution (left) using ∆t = 0.1
and N = 100 of Example 1.
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Figure 2: Numerical solution of Example 1 with ∆t = 0.1 and N = 100.
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Figure 3: Absolute errors for Example 1 with ∆t = 0.1 and N = 100.

Example 2. In this example we consider α = 0 and β = 1 in the interval
[−10, 30], with the initial condition u(x, 0) =sech2(x/4). The analytical solution
is u(x, t) =sech2(x/4 − t/3) [18]. Table 4 and Table 5 show L2 error in different
partitions. We can say that the numerical solution graph shows the same behavior
as the analytical solution in the Figure 4. In addition Figure 5 shows absolute
errors in different times. Also numerical results in Table 6 are in accordance with
the order of convergence of our presented scheme.

Table 4: L2 errors for Example 2 at different times.

Partition Error \ Time 0.5 1 1.5 2

∆t = 0.1, N = 900 L2 × 103 0.1844620 0.39313900 0.6125150 0.8297940
∆t = 0.01, N = 900 L2 × 103 0.0985166 0.08748880 0.0814472 0.0788639
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Table 5: L2 errors for Example 2 at different times.

Partition Error \ Time 0.5 1 1.5 2

∆t = 0.01, N = 100 L2 × 103 1.103180 1.071410 1.075280 1.103980
∆t = 0.01, N = 200 L2 × 103 0.490962 0.453793 0.437590 0.435878

Table 6: L∞ errors for Example 2 at different partitions.

Time 3 20
Partition Error Order Error Order

∆t = 0.1, N = 10 1.00500 × 10−1 ——– 2.59682 × 10−1 ——–
∆t = 0.1, N = 40 3.95893 × 10−3 2.33297 1.97882 × 10−2 1.85702
∆t = 0.1, N = 100 8.03935 × 10−4 1.73985 3.27004 × 10−3 1.96475
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Figure 4: Analytical solution analytical solution (left) and numerical solution
(right) using ∆t = 0.01 and N = 300 of Example 2.
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Figure 5: Absolute errors for Example 2 with ∆t = 0.01 and N = 300.
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Example 3. We consider here a numerical solution of the BBMB equation with
α = 1 and β = 1 in the interval [−10, 10], with the initial condition u(x, 0) =
exp(−x2). The behavior of the approximated solution with ∆t = 0.01 and N = 300
is presented in Figure 4. The graph shows the same behavior as in [19]. Also the
numerical results are tabulated in Table 7 for ∆t = 0.01 and N = 300.
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Figure 6: Numerical solution of the BBMB with α = 1 and β = 1.

Table 7: Numerical results for Example 3 with ∆t = 0.01 and N = 300.

x \ t 1 2 3 4 5

-5 -0.0010923500 -0.0010473800 -0.0007791350 -0.0005281950 -0.0003420730
0 0.5727480000 0.2869880000 0.1320010000 0.0555430000 0.0201706000
5 0.0396689000 0.1099050000 0.1805440000 0.2252390000 0.2345600000

x \ t 6 7 8 9 10

-5 -0.0002157390 -0.0001337230 -0.0000818514 -0.0000496067 -0.0000298137
0 0.0049344100 -0.0009074750 -0.0026172200 -0.0026737500 -0.0021879900
5 0.2149750000 0.1795830000 0.1400860000 0.1037240000 0.0736685000

Example 4. As a last study, we consider the non homogenous BBMB equation
as follows

ut − uxxt − αuxx + βux + uux = G, x ∈ [0, π], t ∈ [0, T ], (5.1)

where G(x, t) = exp(−t)[cos(x) − sin(x) + 12 exp(−t) sin(2x)]. The exact solution
for this problem is given as u(x, t) = exp(−t) sin(x). The boundary and initial
conditions can be found from exact solution. In Table 8, present method has been
compared with method in [19]. In this table we consider T = 10, N = N ′ + 1 and
∆t = T/M .
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Table 8: Numerical results for Example 4 with different partitions in t = 10.

N ′ M Present method Method in [19]

10 10 2.97032 × 10−4 0.0218
20 20 1.14462 × 10−4 0.0053
40 40 4.96031 × 10−5 0.0013
80 80 2.32273 × 10−5 3.3291× 10−4

160 160 1.12752 × 10−5 8.3133× 10−5

320 320 5.5619× 10−6 2.0766× 10−5

640 640 2.76323 × 10−6 5.1898× 10−6

6. Conclusion

In this work, the Quintic B-spline collocation method is used to solve the
Benjamin-Bona-Mahony-Burgers(BBMB) equation. The stability analysis and con-
vergence analysis of the method are shown. In addition, approximate numerical
results given in the previous section. Also, obtained results showed that this ap-
proach can solve the problem effectively.
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