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abstract: The aim of this paper is to classify invariant flows on Lie group G whose
Lie algebra g is associative or semisimple. Specifically, we present this classification
from the hyperbolicity of the lift flows on G × g. Then we apply this construction
to some special cases as Gl(n,R) and affine Lie group.
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1. Introduction

Let G be a Lie group with Lie algebra g and take A ∈ g. Consider the dynamical
system

ġ = Ag = Rg∗(A), g ∈ G. (1.1)

We are interested in establishing a condition to classify systems of type (1.1) via
topological conjugacy, i.e., to find a homeomorphism between the state spaces that
maps trajectories of one system to trajectories of the other system, preserving the
parametrization by time. We restrict to the cases where g is an associative or
semisimple Lie algebra. First, we study the associative case and then we apply it
in the semisimple case. To develop our results we adopt the idea, due to Ayala,
Colonious and Kliemann in [1], of we work with vector bundles.

In the classical case, ẋ = Aix , x ∈ Rn, Ai ∈ gl(n,R) for i = 1, 2, a fundamental
hypothesis to obtain the above homeomorphism is the hyperbolicity of the systems,
that is, ‖eAitx‖ ≤ Cie

−ait‖x‖ for some ai > 0, Ci > 1 and for all t > 0 (see e.g.
Robinson [5, ch.IV]). As in Lie groups there is not a normed space structure we lift
the flows to G× g, which inherits a normed vector structure from the Lie algebra
g.
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In the following section, from the study of the lift flows on G × g, we present
a topological classification of flows on Lie group G. To be specific, we lift two
systems of type (1.1) in two systems (on G× g) of type

(

ġ

v̇

)

=

(

Rg∗A

Av

)

, (1.2)

whose solution is (eAtg, eAtv). Supposing that these two systems on G × g are
hyperbolic we have that they are topologically conjugate, and, as a consequence,
we show that eAtg and eBtg are topologically conjugate on G (see Theorem 2.3).
As application in the third section, we take G as the linear group GL(n,R), that
is, we consider dynamical systems of kind Ẋ = AX where X ∈ GL(n,R) and from
Theorem 2.3 we recover the classical result of dynamical system: if the real parts of
generalized eigenvalues of A and B are negative, then eAt and eBt are topologically
conjugate. To finish this section, we give a partial classification in case of GL(2,R).
In the last section, we consider (1.1) on a semisimple Lie group and the purpose
is to study the dynamical system (1.1) in the adjoint group Ad(G). In fact, we
show that if the real parts of the generalized eigenvalues of ad(A) and ad(B) are
negative, then eAt and eBt are topologically conjugate. From this, we can classify
dynamical systems on affine groups H⋊V , where H is a semisimple Lie group and
V a n-dimensional vector space, or rather, we establish a condition to topological
conjugacy of flows on H ⋊ V .

2. Hyperbolic condition for topological conjugacy on Lie groups

Let G be a Lie group such that its Lie algebra g is an associative algebra. This
structure is natural in matrix groups. We adopt in the trivial vector bundle G× g

the direct product

(g, v) · (h, u) = (g · h, v · u).
Our intention is to present a hyperbolic sufficient condition on g to obtain topo-
logical conjugacy between flows on G. Take the following dynamical system

ġ = Rg∗A, A ∈ g

on the Lie group G. Consider, on the trivial bundle G× g, the system

(

ġ

v̇

)

=

(

Rg∗A

Av

)

. (2.1)

A direct account shows that (eAtg, eAtv) is a solution of (2.1) with g ∈ G and v ∈ g

(see for instance [6]).

Remark 2.1. Being g an associative algebra it is true that G × g is a Lie group
and projections of flows on G × g are natural on G and g. However, for our
work, the importance of associativity property is that solution of v̇ = Av is eAtv =
∑∞

i=1
(tA)i

i! (v), which allow us to work with hyperbolic property in a easy way.
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Before we introduce the hyperbolic property of dynamical system of form (2.1),
we say what means topological conjugacy of dynamical systems in our context.
Take A,B ∈ g. Two dynamical systems ġ = Rg∗A and ġ = Rg∗B on G are
topologically conjugate if there exist a homeomorphism ψ : G → G such that
ψ(eAtg) = eBtψ(g) for g ∈ G. On G × g, two dynamical system of form (2.1) are
topological conjugate if there is a homeomorphism Ψ : G × g → G × g such that
Ψ((eAt, eAt)(g, v)) = (eBt, eBt)Ψ(g, v) for (g, v) ∈ G× g.

Since hyperbolic property needs a norm, we begin by adopting a norm ‖ · ‖g in
g. Then, in the trivial vector bundle G× g, we consider the following norm

‖(g, v)‖ = ‖v‖g.

For this reason,
‖(eAtg, eAtv)‖ = ‖eAtv‖g.

Hence, the behavior of the flow eAtv drives the behavior of the flow (eAtg, eAtv) on
G× g. As a direct consequence, if eAtv has the hyperbolic property, that is, there
exists a > 0 and C > 1 such that for every t ≥ 0 we have ‖eAtv‖g ≤ Ce−at‖v‖g,
then (eAtg, eAtv) has the same property. Since g is a vector space, it follows that
there exists a norm ‖ · ‖A on g such that ‖eAtv‖A ≤ e−at‖v‖A (see for instance
Theorem 5.1 in [5, ch.IV]). We also denote by ‖(·, ·)‖A the norm on G×g associated
with ‖ · ‖A.

In the following we show a technical lemma that is necessary to show our main
theorem.

Lemma 2.2. Let A ∈ g and assume that hyperbolic condition is satisfied, that is,
there exists a > 0 such that for every t ≥ 0 we have

‖eAtv‖A ≤ Ce−at‖v‖A. (2.2)

Then there exists a unique time τ such that ‖(eAτg, eAτv)‖A = 1.

Proof. We first assume that the hyperbolic condition is satisfied for eAtv. In con-
sequence, the same occur with (eAtg, eAtv), that is,

‖(eAtg, eAtv)‖A ≤ e−at‖(g, v)‖A, t ≥ 0. (2.3)

On the other hand, if t < 0 then

‖eAtv‖A ≥ ea|t|‖v‖A,

and, consequently,
‖(eAtg, eAtv)‖A ≥ ea|t|‖(g, v)‖A.

Taking t→ ∞ or t→ −∞ we obtain ‖(eAtg, eAtv)‖A → 0 or ‖(eAtg, eAtv)‖A → ∞,
respectively. Since ‖(·, ·)‖A is a continuous function, there is a time τ such that

‖(eAτg, eAτv)‖A = 1.
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We claim that this time is unique. In fact, suppose that there exist τ1, τ2 ∈ R

such that ‖(eAτ1g, eAτ1v)‖A = ‖(eAτ2g, eAτ2v)‖A = 1. Assume that τ2 ≥ τ1. If we
write τ2 = (τ2 − τ1) + τ1, then

1 = ‖eAτ2v‖A = ‖eA(τ2−τ1)eAτ1v‖A.

From (2.3) it follows that

‖eA(τ2−τ1)eAτ1v‖A ≤ e−a(τ2−τ1)‖eAτ1v‖A = e−a(τ2−τ2).

Therefore 1 = e−a(τ2−τ1) and, consequently, −a(τ2 − τ1) = 0. Since a > 0, we
conclude that τ2 = τ1. ✷ ✷

In this context, we can prove the following theorem which is an adaptation of a
classical result (see for instance Theorem 2.2.8 in [2] or Theorem 7.1 in [5, ch.IV]).

Theorem 2.3. Take A,B ∈ g such that eAtv and eBtv satisfy the hyperbolic
property. Then (eAtg, eAtv) and (eBtg, eBtv) are topologically conjugate in G× g.
In consequence, eAtg and eBtg are topologically conjugate in G.

Proof. We first assume that there exist a, b > 0 such that for every t ≥ 0 we have

‖(eAtg, eAtv)‖A ≤ e−at‖(g, v)‖A
‖(eBtg, eBtv)‖B ≤ e−bt‖(g, v)‖B.

For every t < 0, it follows that

‖(eAtg, eAtv)‖A ≥ ea|t|‖(g, v)‖A
‖(eBtg, eBtv)‖B ≥ eb|t|‖(g, v)‖B.

Denote by SA and SB the unit spheres in G× g

SA = {(g, v) : ‖(g, v)‖A = 1} and SB = {(g, v) : ‖(g, v)‖B = 1}. (2.4)

It is clear that the flows (eAtg, eAtv) and (eBtg, eBtv) cross SA and SB , respectively,
in an unique point, by Lemma (2.2).

Let tA : G×g → R be the map that associates for every (g, v) ∈ G×g the unique
time tA(g, v) such that ‖(eAtA(g,v)g, eAtA(g,v)v)‖A = 1. This map is well defined by
Lemma (2.2). We claim that tA is continuous. In fact, take (g, v) ∈ G × g and a
sequence (gn, vn) ∈ G × g such that (gn, vn) → (g, v). We observe that vn → v,
that is, ‖vn−v‖A → 0. For simplicity, suppose that tA(gn, vn) > 0 for every n ∈ N.
Thus we have

‖eAtA(g,vn)(vn − v)‖A ≤ e−atA(gn,vn)‖vn − v‖A → 0.

This gives
lim
n→∞

eAtA(gn,vn)(vn) = lim
n→∞

eAtA(gn,vn)v.
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Since ‖ · ‖A is a continuous map,

lim
n→∞

‖eAtA(gn,vn)(vn)‖A = ‖eA limn→∞ tA(gn,vn)v‖A

As ‖eAtA(gn,vn)(vn)‖A = 1 we have ‖eA limn→∞ tA(gn,vn)v‖A = 1. According to
uniqueness, we get limn→∞ tA(gn, vn) = tA(g, v). Therefore tA is a continuous
map.

Before we construct a homeomorphism that conjugate the flows, we show the
following property: tA(e

Atg, eAtv) = tA(g, v)− t. In fact,

1 = ‖eAtA(g,v)v‖A = ‖eAtA(g,v)eA(−t)eAtv‖A = ‖eA(tA(g,v)−t)eAtv‖A.

By uniqueness, we conclude that tA(e
Atg, eAtv) = tA(g, v)− t.

We define the maps ψ0 : SA → SB by ψo(g, v) = (g, v
‖v‖B

) and φ0 : SB → SA

by φo(g, v) = (g−1, v
‖v‖A

). Note that φ0 = ψ−1
0 and that ψ0 and φ0 are continuous.

Hence ψ0 is a homeomorphism.
Now we extend the homeomorphism ψ0 to G × g. We begin by defining the

map ψ : G× g → G× g by

ψ(g, v) =

{

(e−B tA(g,v)eAtA(g,v)g, e−B tA(g,v)ψ0(g, e
AtA(g,v)v)) if v 6= 0

(g, 0) if v = 0.

To simplify, we write ψ(g, v) = (h1(g), h2(v)) where

h1(g) = e−B tA(g,v)eAtA(g,v)g

and

h2(v) =

{

e−B tA(g,v)ψ0(g, e
AtA(g,v)v) if v 6= 0

0 if v = 0.

We now proceed to show the conjugacy of the flows. In fact,

ψ(eAtg, eAtv) =

(e−B tA(eAtg,eAtv)eAtA(eAtg,eAtv)eAtg, e−B tA(eAtg,eAtv)ψ0(g, e
AtA(eAtg,eAtv)eAtv).

Using tA(e
Atg, eAtv) = tA(g, v)− t we obtain

ψ(eAt
g, e

At
v) = (e−B [tA(g,v)−t]

e
A[tA(g,v)−t]

e
At
g, e

−B [tA(g,v)−t]
ψ0(g, e

A[tA(g,v)−t]
e
At
v))

= (eBt
e
−B tA(g,v)

e
AtA(g,v)

g, e
Bt
e
−B tA(g,v)

ψ0(g, e
AtA(g,v)

v))

= (eBt
h1(g), e

Bt
h2(v))

= (eBt
, e

Bt)(h1(g), h2(v))

= (eBt
, e

Bt)ψ(g, v).

The next step is to show that ψ is continuous. We need only consider the case
(g, v) with v = 0. In fact, the map ψ = (h1, h2) is continuous if v 6= 0 because
(eAtg, eAtv), (eBtg, eBtv), tA and tB are continuous. We begin by observing that
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h1 is continuous at v = 0, so we only need to show that h2 is continuous at v = 0.
Fix g ∈ G and take a sequence vn such that vn → 0 in g. Our work is to show that

h2(vn) → h2(0) = 0.

If tA(g, vn) is the time such that ‖eAtA(g,vn)vn‖A = 1, then tn = tA(g, vn) → −∞.
Let us denote un = ψ0(g,

Atn vn). Thus

‖un‖A = ‖ψ0(g, e
Atnvn)‖A =

‖eAtnvn‖A
‖eAtnvn‖A

= 1

and, for this,

‖h2(vn)‖A = ‖e−Btnψ0(g, e
Atnvn)‖A

≤ ‖e−Btn‖A‖ψ0(g, e
Atnvn)‖A = ‖e−Btn‖A ≤ ebtn → 0.

We conclude that h2(vn) → 0, hence that h2 is continuous at 0 ∈ g, and finally
that ψ is continuous.

To end, we define the map

ψ−1(g, v) =

{

(e−AtB(g,v)eB tB(g,v)g, e−AtB(g,v)φ0(g, e
BtB(g,v)v)) if v 6= 0

(g−1, 0) if v = 0.

It is easily verified that ψ−1 is the inverse map of ψ. It follows from the argu-
ments above that ψ is a homeomorphism that conjugate the flows (eAtg, eAtv) and
(eBtg, eBtv) in G× g.

It is not difficult to see that the projection of ψ on G is a homeomorphism that
conjugates eAt and eBt on G. ✷ ✷

3. Topological conjugacy in Gl(n,R)

Let A be a matrix in gl(n,R) and consider the system

Ẋ = AX, X ∈ Gl(n,R).

This system is well posted (see for instance [6, section 2.3]). Following the idea of
previous section, we consider the trivial bundle Gl(n,R) × gl(n,R) and study the
topological conjugacy of the flow of

(

Ẋ

V̇

)

=

(

AX

AV

)

,

that is, the flow given by (eAtX, eAtV ), with eAt =
∑∞

i=1
(tA)i

i! . Thus, taking a
norm | · | on R

n we consider the supremun norm in gl(n,R)

‖A‖ = sup

{ |Ax|
|x| ; 0 6= x ∈ R

n

}

. (3.1)

The choice of the norm ‖ · ‖ allows us to show a well-known result that relates
hyperbolic property and eigenvalues of A (see e.g. Theorem 5.1 in [5, ch. IV]).
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Proposition 3.1. Take A ∈ gl(n,R) and consider the equation Ẋ = AX. The
following statements are equivalent:

1. There are a norm ‖ · ‖A and a constant a > 0 such that for any initial
condition X ∈ Gl(n,R), the solution satisfies

‖eAtX‖A ≤ e−at‖X‖A, for all t > 0.

2. for every generalized eigenvalue µ of A we have Re(µ) < 0.

Proof. We first observe that every generalized eigenvalue µ of A has Re(µ) < 0 if
and only if there is a norm | · |A on Rn and a constant a > 0 such that for any
initial condition x ∈ Rn, the solution of ẋ = Ax satisfies

|eAx|A ≤ e−at|x|A, for all t > 0.

Thus it is sufficient to show that

|eAtx|A ≤ e−at|x|A ⇔ ‖eAtX‖A ≤ e−at‖X‖A.

In fact, suppose that |eAtx|A ≤ e−at|x|A where ẋ = Ax. Since eAtX(x) is a solution
for ẋ = Ax, it follows that |eAtX(x)|A ≤ e−at|X(x)|A. Thus we obtain

‖eAtX‖A ≤ e−at‖X‖A.

Conversely, suppose that ‖eAtX‖A ≤ e−at‖X‖A. Taking x = e1 in Definition (3.1),
it follows that

|eAtx|A ≤ e−at|x|A
with x satisfying ẋ = Ax, and it assures the last assertion is hold. ✷ ✷

Now we take a norm on Gl(n,R) × gl(n,R) as ‖(X,V )‖A = ‖V ‖A. Thus, we
are able to show a sufficient condition for topological conjugacy on GL(n,R).

Theorem 3.2. Consider the systems Ẋ = AX and Ẏ = BY , where A,B ∈
gl(n,R). If every generalized eigenvalue of A and B has negative real part, then
eAt and eBt are topologically conjugate on Gl(n,R).

Proof. By Proposition 3.1, we have that there exist norms ‖·‖A, ‖·‖B and constants
a, b > 0 such that

‖eAtX‖A ≤ e−at‖X‖A
‖eBtY ‖B ≤ e−bt‖Y ‖B

in gl(n,R). Using Theorem (2.3) we have that eAt and eBt are topologically con-
jugate on Gl(n,R). ✷

✷
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As every generalized eigenvalue of −A and −B has negative real part it follows
that

Corollary 3.3. Consider Ẋ = AX and Ẏ = BY , where A,B ∈ gl(n,R), and
suppose that every generalized eigenvalue of A and B has positive real part. Then
eAt and eBt are topologically conjugate on Gl(n,R).

Example 3.4. Take the matrix

(

a b

c d

)

in gl(2,R). Then its eigenvalues are given by λ =
(a+d)±

√
(a−d)2+bc

2 . When

(a− d)2 + bc ≤ 0 (3.2)

the real part of the eigenvalues depend only on the trace a + d. Thus, supposing
that two matrix A and B in gl(2,R) satisfy the inequality (3.2) we have:

1. if tr(A) < 0 and tr(B) < 0, then by previous theorem eAt and eBt are topo-
logically conjugate; and

2. if tr(A) > 0 and tr(B) > 0, then by previous corollary eAt and eBt are
topologically conjugate.

4. Invariant flows on Semisimple and Affine Lie Groups

In this section, we study the topological conjugation on semisimple Lie group.
Our idea is to transfer the dynamical system ġ = Ag on G to one on the adjoint
Lie group Ad(G) and to find a condition to topological conjugation in this group,
since Ad(G) is a matrix group.

We begin by assuming that G is a semisimple Lie group. We know that solution
of ġ = Ag is given by

g(t) = eAtg0.

Applying the adjoint operator in g(t) we have

Ad(g(t)) = Ad(eAtg0) = ead(At)Ad(g0).

Taking the derivative of Ad(g(t)) with respect to t we obtain

Ad′(g(t)) = ad(A) · Ad(g(t)).

Thus considering two systems ġ = Ag and ḣ = Bh we have the dynamical
systems on Gl(g)

Ad′(g(t)) = ad(A)Ad(g(t))

Ad′(h(t)) = ad(B)Ad(h(t)).
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Suppose that every generalized eigenvalue of ad(A) and ad(B) has real part neg-
ative. From Theorem 3.2 there exists a homeomorphism ψ : Gl(g) → Gl(g) such
that

ψ(ead(At)Ad(g0)) = ead(Bt)ψ(Ad(g0)).

Since g is semisimple, it follows that Ad is an isomorphism on its image (see for
instance Corollaries 5.2 and 6.2 in [3, ch.II]). Thus we apply Ad−1 in the above
equality to obtain

Ad−1(ψ(Ad(eAt)Ad(g0))) = Ad−1(Ad(eBt)ψ(Ad(g0)))

Ad−1(ψ(Ad(eAtg0))) = eBtAd−1ψ(Ad(g0))).

If we denote ϕ = Ad−1 ◦ ψ ◦Ad we have

ϕ(eAtg0) = eBtϕ(g0).

Summarizing,

Theorem 4.1. Let A,B ∈ g and consider ġ = Ag and ḣ = Bh. Suppose that g is
a semisimple Lie algebra. If every generalized eigenvalue of ad(A) and ad(B) has
negative real part then eAt and eBt are topologically conjugate on G.

Our final step is to work with the class of Affine groups. This idea follows
from work due to Kawan, Rocio and Santana [4]. We recall the affine Lie groups
and study the topological conjugacy on it. First, we need to establish a result on
semisimple Lie groups.

Proposition 4.2. Take A ∈ g where g is a semisimple Lie algebra. Consider
the system ġ = Ag. Suppose that G has a left invariant metric and denote by
ρ the distance associated to this metric. If ad(A) has negative real part for every
generalized eigenvalue, then there exists a positive constant a such that ρ(eAtgo, e) ≤
e−atρ(go, e).

Proof. Let <,> be a left invariant metric on Lie group G. As Ad is an isomorphism
we consider the following metric on Ad(G):

< X, Y >=< d(Ad−1)X, d(Ad−1)Y > .

Let us denote by ρ1 the distance associated to metric on Ad(G). It follows that
ρ1(Ad(g(t)), Id) = ρ(g(t), e) for any smooth curve g(t) ∈ G. Suppose now that
Ad(c(t)) satisfies the differential equation Ad′(c(t)) = ad(A) · Ad(c(t)). Then
Proposition 3.1 assures that there are a positive constant a such that

ρ1(Ad(g(t)), Id) = ρ1(e
ad(A)tAd(g0), Id) ≤ e−atρ1(Ad(g0), Id).

Hence ρ(g(t), e) ≤ e−atρ(g0, e). ✷ ✷
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Now we recall the affine Lie groups. Let V be an n-dimensional real vector
space and H a Lie group that acts on V . Take the group G = H ⋊ V given by
the semidirect product of H and V . If Φ(t, g) = expG(tX)g is a flow on G, where
X = (A, b) ∈ g = h ⋊ V and g ∈ G, we denote by ΦH the flow on H given by
ΦH(t, h) = expH(At)h with h ∈ H .

Before we state and show the last result, we recall, for group actions, that a
fundamental domain is a subset of the space on which the group acts such that
this subset contains exactly one point of each orbit. For example, spheres SA and
SB given by (2.4) are fundamental domains.

Proposition 4.3. Consider the affine group G = H⋊V with H being a semisimple
Lie group with a left invariant metric. Let π : G→ H be the canonical projection.
Take flows Φi(t, g) = exp(tXi)g with Xi = (Ai, bi), i = 1, 2, on G, and suppose that
every generalized eigenvalue of ad(A1) and ad(A2) has negative real part. Then Φ1

and Φ2 are topologically conjugate.

Proof. We first suppose that the real part of all generalized eigenvalues of ad(A1)
and ad(A2) are negative. From Proposition 4.2 we have two unitary spheres S1A1

and
S1A2

in G with center g0 and g1, respectively, such that exp(A1t)g0 and exp(A2t)g1
cross these in a unique time, respectively. It means that these unitary spheres are
fundamental domains to flows exp(A1t)g0 and exp(A2t)g1, respectively. In this
way, Proposition 12 of [4] guarantees that Φ1 and Φ2 are topologically conjugate.
✷ ✷
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