

(3s.) **v. 38** 3 (2020): 133–140. ISSN-00378712 in press doi:10.5269/bspm.v38i3.38137

On the M-hypercyclicity of Cosine Function on Banach Spaces

A. Tajmouati, A. El Bakkali and A. Toukmati

ABSTRACT: In this paper we introduce and study the *M*-hypercyclicity of strongly continuous cosine function on separable complex Banach space, and we give the criteria for cosine function to be M-hypercyclic. We also prove that every separable infinite dimensional complex Banach space admits a uniformly continuous cosine function.

Key Words: Cosine function, Hypercyclicity, Topologically transitive, M-hypercyclicity, M-transitive.

Contents

1	Introduction	133
2	Preliminaries	134
3	Main Results	135

1. Introduction

A sequence of bounded operators $(T_n)_{n\geq 0}$ on Banach space X is called hypercyclic if there exists a vector $x \in X$ such that the $\{T_n x, n \ge 0\}$ is dense in X. We note that $(T_n)_{n\geq 0}$ is said to be topologically transitive if for every non-empty open sets U and V of X, there exists $n \in \mathbb{N}$ such that $T_n^{-1}(U) \cap V \neq \emptyset$. In [14] has been shown that in separable infinite dimensional Banach space X, $(T_n)_{n\geq 0}$ is hypercyclic if and only if it is topologically transitive, in this case the family $(T_n)_{n\geq 0}$ has a dense set of hypercyclic vectors. When $T_n := T^n$ for some $T \in B(X)$ and for all $n \in \mathbb{N}$, we say that T is hypercyclic. In this case, the set $\{T^n x, n \geq 0\}$ is known as the orbit of the element x by the operator T. Rolewicz [16] gave the first example of a hypercyclic operator on a Banach space; he showed that if the backward shift B on $l^2(\mathbb{N})$ then λB is hypercyclic if and only if $|\lambda| > 1$, he also proved that in every separable infinite dimensional Banach space there exists a hypercyclic operator, for the existence of hypercyclic operator had been studied by [1], [4] and [5]. We recall that $\tau = (T_t)_{t \ge 0} \subset B(X)$ is a C_0 -semigroup if $T_0 = I$, $T_t T_s = T_{t+s}$ for all $t, s \ge 0$ and $\lim_{t\to 0} T_t x = x$ for all $x \in X$. Given an arbitrary C_0 -semigroup $\tau = (T_t)_{t \ge 0}$ on Banach space X, it can be shown that $Ax = \lim_{t \to 0} \frac{T_t x - x}{t}$ exists on a dense subspace of X. The set of these x is the domain of A, that it is denoted by $D(A) = \{x \in X / \lim_{t \to 0} \frac{T_t x - x}{t} \text{ exists}\}$. Then A, is called the infinitesimal generator

Typeset by ℬ^Sℋstyle. ⓒ Soc. Paran. de Mat.

²⁰¹⁰ Mathematics Subject Classification: 47A10, 47D03, 47D09, 46H05.

Submitted July 12, 2017. Published October 29, 2017

of τ , moreover, $T_tAx = AT_tx$ for all $x \in D(A)$ and $t \geq 0$. Another important property is provided by the point spectral mapping theorem for C_0 -semigroups. If X is a Banach space, then for every $x \in X$ and $\lambda \in \mathbb{C}$, $Ax = \lambda x$ implies that $T_tx = e^{\lambda t}x$ for every $t \geq 0$. In 1997 Desch and al [10] introduced and studied the hypercyclicity of C_0 -semigroup. A C_0 -semigroup $\tau = (T_t)_{t\geq 0}$ is called hypercyclic if there exists a vector $x \in X$ such that $Orb(\tau, x) = \{T_tx, t \geq 0\}$ is dense in X, they showed that if $\tau = (T_t)_{t\geq 0}$ is a C_0 -semigroup then for all t > 0 the operator T_t has a dense range in X, and $\sigma_p(T_t^*) = \emptyset$, in [9] Conejero, A. Peris and Muller proved that there is a relationship between hypercyclicity of $\tau = (T_t)_{t\geq 0}$ and hypercyclicity of every T_t for all t > 0 which is $\tau = (T_t)_{t\geq 0}$ hypercyclic if and only if T_t is also for all t > 0. A discussion and references to earlier work on hypercyclic semigroup can be found in [11] and [13].

2. Preliminaries

A cosine operator function on a Banach space X is a strongly continuous $\mathcal{C} = (C_t)_{t \in \mathbb{R}} \subset B(X)$ satisfying $C_0 = I$, and the d'Alembert function equation $2C_tC_s = C_{t+s} + C_{t-s}$, for all $t, s \in \mathbb{R}$, which implies $C_t = C_{-t}$ for all $t \in \mathbb{R}$. $\mathcal{C} = (C_t)_{t \in \mathbb{R}}$ is called strongly continuous if $t \mapsto C_t(x)$ for all $x \in X$ is a continuous function from \mathbb{R} to X. The infinitesimal generator of a cosine function is defined by $Ax = 2\lim_{t \to 0} \frac{(C_t - I)(x)}{t^2}$ for all $x \in D(A)$ where:

Ax = $2\lim_{t\to 0} \frac{(C_t - I)(x)}{t^2}$ for all $x \in D(A)$ where: $D(A) = \{x \in X/\lim_{t\to 0} \frac{C_t(x) - x}{t^2} \text{ exists}\}$. In [2] W. Arendt and all proved that if A is a generator of cosine operator function, then A is a closed, densely defined operator($\overline{D(A)} = X$), and there exists constants $M > 0, w \ge 0$ such that $\|C_t\| \le M e^{w|t|}$ for all $t \in \mathbb{R}$; moreover if $z \in \mathbb{C}$ such that Re(z) > w we have $z^2 \in \rho(A)$. If $\lim_{t\to 0} \|C_t - I\| = 0$ we say that $\mathcal{C} = (C_t)_{t\in\mathbb{R}}$ is uniformly continuous cosine function, in this case the generator is a bounded operator A, and C admits the following representation: $C_t = I + \sum_{n\ge 1} \frac{t^{2n}}{(2n!)} A^n$ for all $t \in \mathbb{R}$, we note that

the cosine operator functions are associated with the solution of the second order Cauchy problem: $\frac{d^2}{dt^2}u(t) = Au(t)$ $t \in \mathbb{R}$; $u^k(0) = f_k \in D(A)$, k = 0, 1, we mention that the Cauchy problem is well posed if and only if A generates a cosine operator function $(C_t)_{t\in\mathbb{R}}$, with the solution given by $u(t) = C_t f_0 + \int_0^t C_u f_1 du$, $t \in \mathbb{R}$, for more details about this theory see [2]. For example if $\tau = (T_t)_{t\geq 0}$ is a C_0 -group on Banach space X with generator B, it is easily to see that $C_t = \frac{1}{2}(T_t + T_{-t})$ for all $t \in \mathbb{R}$, defines a cosine operator generated by $A = B^2$.

In [7] A. Bonilla and P.J. Miana introduced and studied the hypercyclicity of a cosine operator function on a Banach space. A cosine operator function $\mathcal{C} = (C_t)_{t \in \mathbb{R}}$ is hypercyclic if there exsits a vector $x \in X$ such that $\{C_t(x), t \in \mathbb{R}\}$ is dense in X; the same authors gave the sufficient conditions for the hypervclicity and topological mixing of a strongly continuous function, and showed that every infinite dimensional complex Banach space admits a topologically mixing uniformly cosine operator function. In [12] T. Kalmes gave the characterization for cosine operator function generated by second order partial differential operator on $l^p(\omega, \mu)$ and $C_{0,\rho}(\omega)$ with $\omega \subset \mathbb{R}^d$ is open, to be transitive and [8] the authors characterized the cosine operator function generated by unilateral and bilateral weighted shift on $l^p(\mathbb{N})$, and $l^p(\mathbb{Z})$ with $1 \leq p \leq \infty$.

Let M be a closed subspace of Banach space X, and $\tau = (T_t)_{t\geq 0}$ be a C_0 semigroup, we say that τ is M-hypercyclic if there exists a vector $x \in X$ such that $\{T_t x, t \geq 0\} \cap M$ is dense in M. The M-hypercyclicity of C_0 -semigroups are crucial for the investigation of hypercyclicity of C_0 -semigroups; we refer to [15], [17], [18] for some references. The motivation for the study of M-hypercyclicity of cosine operator function is inspired by the work of A. Bonilla and P.J. Miana [7]. In this work, we introduce and study the M-hypercyclicity of cosine operator function on separable complex Banach space, and we give the sufficient conditions for the M-hypercyclicity and M-transitivity of strongly continuous cosine function, we also prove that in every separable infinite dimensional complex Banach space Xthere exists a M-hypercyclic uniformly continuous cosine function, with M is a non-trivial closed subspace of X.

3. Main Results

Definition 3.1. Let $(C_t)_{t\in\mathbb{R}}$ be a cosine function on separable Banach space X, and M be a nonzero subspace of X, we say that $(C_t)_{t\in\mathbb{R}}$ is M-hypercyclic if there exists a vector $x \in X$, such that $\{C_t x, t \in \mathbb{R}\} \cap M$ is dense in M, in this case the vector $x \in X$ is called vector M-hypercyclic for $(C_t)_{t\in\mathbb{R}}$.

- **Remark 3.2.** 1. If M = X it is clear that the above definition coincides with the hypercyclicity of cosine function $(C_t)_{t \in \mathbb{R}}$.
 - 2. Let $(C_t)_{t \in \mathbb{R}}$ be a cosine function on Banach space X. Observe by taking t = 0in the d'Alembert equation $2C_tC_s = C_{t+s} + C_{t-s}$ we have $C_t = C_{-t}$ for all $t \ge 0$, then $(C_t)_{t \in \mathbb{R}}$ is M-hypercyclic if and only if $(C_t)_{t \ge 0}$ is M-hypercyclic.

Example 3.3. If $(A_t)_{t\in\mathbb{R}}$ is a hypercyclic cosine function on Banach space X, then $C_t := A_t \oplus I$ for all $t \in \mathbb{R}$ is M-hypercyclic cosine function with $M = X \oplus \{0\}$. Indeed firstly we prove that $(C_t)_{t\geq 0}$ is cosine function on $X \oplus X$. Let $x \oplus y \in X \oplus X$ we have:

$$2C_t C_s(x \oplus y) = 2C_t (A_s \oplus I)(x \oplus y) = 2C_t (A_s x \oplus y)$$

= $2(A_t \oplus I)(A_s x \oplus y) = 2(A_t A_s x \oplus y)$
= $2A_t A_s x \oplus 2y = A_{t+s}(x) + A_{t-s}(x) \oplus 2y$
= $(A_{t+s}(x) \oplus y) + (A_{t-s}(x) \oplus y) = C_{t+s}(x \oplus y) + C_{t-s}(x \oplus y)$
= $(C_{t+s} + C_{t-s})(x \oplus y)$

for all $t \ge s \ge 0$ then $2C_tC_s = C_{t+s} + C_{t-s}$, and we have: $C_0 = A_0 \oplus I = I \oplus I = I_{X \oplus X}$

finally $(C_t)_{t\geq 0}$ is a cosine function on $X\oplus X$, since $(A_t)_{t\geq 0}$ is hypercyclic, let

 $x \in X$ be a hypercyclic vector of $(A_t)_{t\geq 0}$ then $\{A_tx, t\geq 0\}$ is dense in X, then $\{C_t(x\oplus 0); t\geq 0\} = \{A_tx; t\geq 0\} \oplus \{0\}$ is dense in $M = X \oplus \{0\}$, wich implies that $x\oplus 0$ is M-hypercyclic vector for $(C_t)_{t\geq 0}$, but not hypercyclic on $X \oplus X$. In general if $(A_t)_{t\in\mathbb{R}}$ and $(B_t)_{t\in\mathbb{R}}$ be two hypercyclic cosines function on Banach space X, then $C_t := A_t \oplus B_t; \forall t \in \mathbb{R}$ is a hypercyclic cosine function on $X \oplus X$.

Example 3.4. If $(T_t)_{t \in \mathbb{R}}$ is C_0 -group on Banach space X, then $C_t = \frac{1}{2}(T_t + T_{-t}) \oplus I$ for all $t \in \mathbb{R}$ is M-hypercyclic cosine function with $M = X \oplus \{0\}$.

Definition 3.5. Let $(C_t)_{t \in \mathbb{R}}$ be a strongly continuous cosine function on separable Banach space X, and M be a nonzero subspace of X, $(C_t)_{t \in \mathbb{R}}$ is called M-transitive if for every non-empty sets U, V of M there exists $t \in \mathbb{R}$, such that $C_t^{-1}(U) \cap V$ contains a non-empty open set of M.

Remark 3.6. By $C_t = C_{-t}$ for all $t \in \mathbb{R}$, then $(C_t)_{t \in \mathbb{R}}$ is *M*-transitive if and only if $(C_t)_{t>0}$ is also.

Theorem 3.7. Let $(C_t)_{t\geq 0}$ be a strongly continuous cosine function on separable Banach space, and M be a nonzero subspace of X, then the following conditions are equivalent:

- 1. $(C_t)_{t>0}$ is M-transitive.
- 2. For every non-empty open sets U and V of M, there exists t > 0 such that $C_t^{-1}(U) \cap V$ is non-empty open set of M.
- 3. For every non-empty open sets U and V of M, there exists t > 0 such that $C_t^{-1}(U) \cap V$ is non-empty and $C_t(M) \subset M$.

Proof: $(2) \Leftrightarrow (1)$ is clear.

 $(3) \Rightarrow (2)$. Let U and V be non-empty open subsets of M, by (3) there is $t_0 \ge 0$ such that $C_{t_0}^{-1}(U) \cap V \neq \phi$ and $C_{t_0}(M) \subset M$

Since $C_{t_0|M}: M \longrightarrow M$ is continuous, then $C_{t_0}^{-1}(U)$ is open in M, therefore $C_{t_0}^{-1}(U) \cap V$ is non-empty open of M.

(1) \Rightarrow (3). Let U and V be two non-empty open subsets of M. By (1) there exists $t_0 \geq 0$ such that $C_{t_0}^{-1}(U) \cap V$ contains a non-empty open W of M, it gives $W \subset C_{t_0}^{-1}(U) \cap V$ and $C_{t_0}^{-1}(U) \cap V \neq \phi$.

Next, we prove that $C_{t_0}(M) \subset M$.

Let $x \in M$, we have $W \subset C_{t_0}^{-1}(U) \cap V$, this implies that $C_{t_0}(W) \subset U \subset M$. Let $x_0 \in W$, since W is open of M then for all r small enough we have $x_0 + rx \in W$, therefore $C_{t_0}(x_0 + rx) = C_{t_0}x_0 + rC_{t_0}x \in C_{t_0}(W) \subset M$. From $C_{t_0}x_0 \in M$ it follows that $C_{t_0}x \in M$.

We then conclude that $C_{t_0}(M) \subset M$.

Lemma 3.8. Let $(C_t)_{t\geq 0}$ be a strongly continuous cosine function on a separable Banach space X, and M be a nonzero subspace of X. If $(C_t)_{t\geq 0}$ is M-transitive, then $(C_t)_{t\geq 0}$ has a dense set in M of M-hypercyclic vectors.

Proof: Denote by $Hc(\mathcal{C}, M)$ the set of all *M*-hypercyclic vectors of $\mathcal{C} = (C_t)_{t \in \mathbb{R}}$, and since X is separable let $(B_k)_{k>0}$ be a countable open basis for the relative topology of M. We have $x \in Hc(\mathcal{C}, \overline{M})$ if and only if $Orb(\mathcal{C}, x) \cap M$ is dense in M if and only if for each $k \ge 0$; there are $t \ge 0$ such that $C_t x \in B_k$, if and only if $x \in \bigcap_{k \ge 0} \bigcup_{t \ge 0} C_t^{-1}(B_k).(*)$

then $Hc(\mathcal{C}, M) = \bigcap_{k \ge 0} \bigcup_{t \ge 0} C_t^{-1}(B_k)$. But \mathcal{C} is *M*-transitive, then by theorem 3-7,

for each $k, m \ge 0$ there exists $t = t_{k,m} \ge 0$ such that $C_t^{-1}(B_k) \bigcap B_m$ is non-empty open set, hence the set $A_k = \bigcup_{m\ge 0} C_t^{-1}(B_k) \cap B_m$ is non-empty and open set. Furthermore, for all $k \ge 0$; A_k is dense in M, and by Baire category theorem

we have that $\bigcap_{k\geq 0} A_k = \bigcap_{k\geq 0} \bigcup_{m\geq 0} C_t^{-1}(B_k) \cap B_m$ is dense in M, by (*) we have that

$$Hc(\mathcal{C}, M) = \bigcap_{k \ge 0} \bigcup_{t \ge 0} C_t^{-1}(B_k) \text{ is also dense in } M.$$

Theorem 3.9. Let $(C_t)_{t>0}$ be a strongly continuous cosine function on a separable Banach space X, and M be a nonzero subspace of X, if $(C_t)_{t>0}$ is M-transitive, then $(C_t)_{t>0}$ is M-hypercyclic.

Criteria of *M*-hypercyclicity of cosine function

In general it is difficult to find the M-hypercyclic vectors of cosine function, on Banach space, so we look for the criteria of M-hypercyclicity for cosine function.

Theorem 3.10. Let $(C_t)_{t \in \mathbb{R}}$ be a strongly continuous cosine function on separable Banach space X, and M be a subspace of X, suppose that there is D_0 and D_1 two dense set in M, and an increasing positively sequence $(t_n)_{n>0}$ such that:

- (i) $C_{t_n} x \to 0$ for all $x \in D_0$.
- (ii) For all $y \in D_1$, there is a sequence $(x_n)_n \subset M$, such that $x_n \to 0$ and $C_{t_n} x_n \to y.$
- (iii) $C_{t_n}(M) \subset M$. Then $(C_t)_{t>0}$ is M-transitive, it is M-hypercyclic.

Proof: Let U and V be two non-empty open set in M, we prove that there is $t \in \mathbb{R}$ such that $C_t^{-1}(U) \cap V \neq \emptyset$ and $C_t(M) \subset M$.

Since D_0 and D_1 are dense in M then $V \cap D_0 \neq \emptyset$ and $D_1 \cap U \neq \emptyset$. Let $a \in U \cap D_1$ and $b \in D_0 \cap V$, hence there is $\epsilon > 0$ such that $B(a, \epsilon) \subset U$ and $B(b, \epsilon) \subset V$. From $b \in D_0$ and $a \in D_1$, we have $C_{t_n} \to b$ and there exists $(x_n)_n \subset M$ such that $x_n \to 0$ and $C_{t_n} x_n \to a$.

Consequently there exists $N \in \mathbb{N}$ such that: $||x_n|| < \epsilon$, $||C_{t_n}(x_n) - a|| < \frac{\epsilon}{2}$ and

 $||C_{t_n}(b)|| < \frac{\epsilon}{2}$ for all $n \ge N$.

Therefore $\|\overline{b} + x_n - b\| = \|x_n\| < \epsilon \Rightarrow b + x_n \in B(b, \epsilon) \subset V \Rightarrow b + x_n \in V$. On the other hand $\|C_{t_n}(b+x_n) - a\| = \|C_{t_n}(b) + C_{t_n}(x_n) - a\| \le \|C_{t_n}(b)\| + \|C_{t_n}(x_n) - a\| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ this implies that $C_{t_n}(b+x_n) \in B(a, \epsilon) \subset U$ then $C_{t_n}(b+x_n) \in U$ hence $b + x_n \in C_{t_n}^{-1}(U)$. We obtain that $b + x_n \in C_{t_n}^{-1}(U) \cap V$ and $C_{t_n}^{-1}(U) \cap V \neq \emptyset$, since $C_{t_n}(M) \subset M$ then $(C_t)_{t\geq 0}$ is M-transitive.

Let $(C_t)_{t\in\mathbb{R}}$ be a strongly continuous cosine function on Banach space X, and (t_n) be a sequence of positive real we put: $X_0 := \{x \in X / \lim_{n \to +\infty} C_{t_n} x = 0\}$

and $X_{\infty} := \{ y \in X / \exists u_n \mapsto 0; \lim_{n \mapsto +\infty} C_{t_n}(u_n) = y \}.$

In [7] Antonio Bonilla and Pero J. Miana, proved that if there is $t_n \mapsto +\infty$ such that X_0 and X_∞ are dense, then $(C_t)_{t\geq 0}$ is a hypercyclic cosine function. \Box

Theorem 3.11. Let $(C_t)_{t\geq 0}$ be a strongly continuous cosine function on separable Banach space X, and Mbe a nonzero subspace of X, if there exists a sequence of positive real $(t_n); t_n \mapsto +\infty$ such that $X_0 \cap M$ and $X_{\infty} \cap M$ are dense in M and $C_{t_n}(M) \subset M$, then $(C_t)_{t\geq 0}$ is M-transitive in particular it is M-hypercyclic.

Proof: It is sufficient to take: $D_0 = X_0 \cap M$ and $D_1 = X_\infty \cap M$.

Corollary 3.12. Let $(C_t)_{t\geq 0}$ be a strongly continuous cosine function on a separable Banach space X, if there exists a sequence of real $(t_n); t_n \mapsto +\infty$ such that $X_1 = \{x \in X / \lim_{n \to +\infty} C_{t_n}(x) = \lim_{n \to +\infty} C_{2t_n}(x) = 0\} \cap M$ is dense in M and $C_{t_n}(M) \subset M$, then $(C_t)_{t\geq 0}$ is a M-transitive cosine function.

Proof: we prove that $X_1 \cap M \subset X_0 \cap M$ and $X_1 \cap M \subset X_\infty \cap M$ Let $y \in X_1 \cap M$ then $y \in X_1$ and $y \in M$, we define $x_n = 2C_{t_n}(y)$ we have $x_n \mapsto 0$ and

 $\begin{array}{l} C_{t_n}(x_n) = C_{t_n}(2C_{t_n}(y)) = 2C_{t_n}C_{t_n}(y) = C_{2t_n}(y) + y \mapsto y \text{ then } X_1 \cap M \subset X_0 \cap M \\ \text{and } X_1 \cap M \subset X_{\infty} \cap M, \text{ since } X_1 \cap M \text{ dense in } M, \text{ then } X_0 \cap M \text{ and } X_{\infty} \cap M \\ \text{are also dense in } M \text{ and since } C_{t_n}(M) \subset M \text{ then } (C_t)_{t \geq 0} \text{ is } M \text{-transitive. In } [2, \\ \text{proposition 3.14.6] Arendt and al showed that if } (C_t)_{t \in \mathbb{R}} \text{ is a strongly continuous} \\ \text{cosine function on Banach space } X, \text{ such that } \lim_{t \to \infty} C_t(x) = 0, \text{ then } x = 0. \text{ In } [6], \\ \text{A. Bpbrowski and W. Chojnacki generalized this result by showing: if } \lim_{t \to \infty} C_t(x) \\ \text{exists for all } x \in X \text{ then } C_t = I \text{ for all } t \in \mathbb{R}, \text{ based on this we obtain the following} \\ \text{result.} \end{array}$

Corollary 3.13. Let $(C_t)_{t\in\mathbb{R}}$ be a strongly continuous cosine function on Banach space X, if $\lim_{t\to\infty} C_t(x)$ exists for all $x \in X$, then $(C_t)_{t\in\mathbb{R}}$ is not M-hypercyclic for any M subspace of X, in particular it is not hypercyclic.

The existence of *M*-hypercyclic cosine function

138

It is natural to ask about the existence of M-hypercyclic cosine function on a separable Banach space.

Lemma 3.14. [3] If E is a dense subset of Banach space X, then there exists a non-trivial closed subspace M of X, such that $E \cap M$ is dense in M.

Proposition 3.15. If $(C_t)_{t\geq 0}$ is a hypercyclic strongly continuous cosine function on Banach space X, then $(C_t)_{t\geq 0}$ is M-hypercyclic cosine function with M is a non-trivial closed subspace of X.

Remark 3.16. Every hypercyclic strongly continuous cosine function is M-hypercyclic for M is non-trivial closed subspace of X, but there exists a M-hypercyclic cosine function, that is not hypercyclic on X see example 1.

Theorem 3.17. [γ] Every separable infinite dimensional complex Banach space X admits a topologically mixing (hypercyclic) uniformly continuous cosine function.

Corollary 3.18. Every separable infinite dimensional complex Banach space X, admits a M-hypercyclic uniformly continuous cosine function with M is a non-trivial closed subspace of X.

References

- S.I. ANSARI, Existence of hypercyclic operators on topological vector space. J. Funct. Anal. 148 (1997) 384-390.
- W. ARENDT, C. BATTY, M. HIEBER, AND F. NEUBRANDER, Vector-valued Laplace Transforms and Cauchy problem. Monographs in Mathematics. Birkhauser, Basel, ISBN 3-7643-6549-8,(2001).
- 3. N.BAMERNI, V.KADETS, A. KIHICMAN, On Subspace-diskcyclicity. Arab. J. Math. Sci,23(2017)133-140.
- T. BERMUDEZ, A. BONILLA, J. A. CONEJEROAND A. PERIS, Hypercyclic topologically mixing and chaotic semigroups on Banach spaces. Studia Math. 170 (2005) 57-75.
- L. BERNAL-GONZALEZ AND K-G. GROSSE-ERDMANN, Existence and non existence of hypercyclic semigroups. Proc. Amer. Math Soc. 135 (2007) 755-766.
- A. BOBROWSKI AND W. CHOJNACKI, Cosine Families and Semigroups Really Differ. J. of Evolutions Equations. 13 (2013) 897-916.
- A. BONILLA, P. MIANA, Hypercyclic and topologically mixing cosine function on Banach spaces. Proc. Amer. Math. Soc.136(2008) 519-532.
- S.-J. CHANG AND C.-C. CHEN, Topological mixing for cosine fuction generated by shifts. Topology and its Applications, vol. 160, no. 2 (2013) pp. 382-386.
- J.A. CONEJERO, V. MÜLLER, A. PERIS, Hypercyclic behaviour of operators in a hypercyclic C₀-semigroup. J. Funct. Anal 244 (2007) 342-348.
- W. DESCH, W. SCHAPPACHER, G.F. WEBB, Hypercyclic and chaotic semigroups of linear operators. Ergodic Theory Dynamical Systems. 17 (1997) 793 - 819.
- 11. S. EL MOURCHID, On a hypercyclicity criterion for strongly continuous semigroups. Disc.Cont. Dyn. Sys. 13 (2005), 271-275.
- T. KALMES, Hypercyclic and mixing for cosine operator function generated by second order partial differential operators. J. Math. Anal. Appl. 365. no.(2010), 363?375.

- T.KALMES, On chaotic C₀-semigroup and infinity regular hypercyclic vectors. Proc. Amer. Math. Soc.134 (2006),2997-3002.
- K.-G. GROSSE-ERDMANN, Universal families and hypercyclic operators. Bull. Amer. Math. Soc. 36 (1999) 345-381.
- B.F. MADORE, R.A. MARTINEZ-AVENDANO, Subspace hypercyclicity. J. Math. Anal. Appl. 373 (2011), 502-511.
- 16. S. ROLEWICZ, On orbits of elements. Studia Math.32 (1969). 17-22.
- 17. A.TAJMOUATI, A. EL BAKKALI, A.TOUKMATI, On M-hypercyclic semigroup. Int.J. Math. Anal Vol 9 (2015) No 9 417-428.
- 18. A.TAJMOUATI, A. EL BAKKALI, A.TOUKMATI, On some properties of M-hypercyclic C_0 -semigroup. Italian Journal of pure and applied Mathematics. N 35 (2015). 351-360.

A. Tajmouati, A. Toukmati, Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, Laboratory of Mathematical Analysis and Applications, Fez, Morocco. E-mail address: abdelaziz.tajmouati@usmba.ac.ma toukmahmed@gmail.com

and

A. El Bakkali,
Chouaib Doukkali University,
Faculty of Sciences,
24000, El Jadida, Morocco.
E-mail address: aba0101q@yahoo.fr