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1. Introduction

The source for the development of stability of functional equations is the ques-
tion solicited by Ulam [29]. Hyers [11] presented an excellent answer to the question
of Ulam. Later, the result of Hyers was generalized and refined further by many
great mathematicians like Aoki [1], Th.M. Rassias [14], J.M. Rassias [13] and
Găvruta [9] in various directions. The progress of the theory of stability of various
types of functional equations such as quadratic, cubic, quartic, quintic, sextic, sep-
tic, octic, nonic, decic, undecic, duodecic, tredecic, quattordecic have been dealt
by many mathematicians and there are lot of interesting and significant results
available in the literature.

For the first time, Ravi and the second author [23] achieved various stability
results of the following functional equation

φ(u+ v) =
φ(u)φ(v)

φ(u) + φ(v)
(1.1)

where φ : R∗ −→ R is a function and R∗ = R \ {0}. The rational function
φ(x) = c

x
is a solution of the functional equation (1.1). The functional equation

(1.1) is interconnected with “Reciprocal formula” which will be useful in any electric
circuit with couple of parallel resistors [24]. Hence, the equation (1.1) is said to
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be reciprocal functional equation. The geometrical interpretation of the equation
(1.1) is also discussed in [24]. Suitable counter-examples are presented to show the
non-stability of the equation (1.1) controlled by the sum of powers of norms and
product of powers of norms for singular cases in [18] and [19] respectively.

Senthil Kumar et al. [25] obtained the solutions of the following functional
equations (arising from arithmetic and harmonic means of position of pixels in an
image)

f(x, y) =
1

4
[f(x+ t, y + t) + f(x+ t, y − t) + f(x− t, y + t) + f(x− t, y − t)]

(1.2)

and

f(x, y) =
f1(x, y, t)

f2(x, y, t)
(1.3)

where f1(x, y, t) = 4f(x+ t, y + t)f(x+ t, y − t)f(x− t, y + t)f(x− t, y − t) and

f2(x, y, t) = f(x+ t, y + t)f(x+ t, y − t)f(x− t, y + t)

+ f(x+ t, y + t)f(x+ t, y − t)f(x− t, y − t)

+ f(x+ t, y + t)f(x− t, y + t)f(x− t, y − t)

+ f(x+ t, y − t)f(x− t, y + t)f(x− t, y − t) 6= 0.

for all x, y, t ∈ N. The equations (1.2) and (1.3) are applied to remove noise in an
image by filtering techniques. The study of stability of several functional equations
in various spaces and their solutions as rational functions can be found in [2], [3],
[4], [5], [6], [7], [12], [15], [16], [17], [21], [22], [26], [27], [28].

In this study, we consider the following reciprocal-nonic functional equation

n(2x+ y) + n(2x− y)

=
4n(x)n(y)

(

4n(y)
2
9 − n(x)

2
9

)9

[

256n(y) + 2304n(x)
2
9n(y)

7
9 + 2016n(x)

4
9n(y)

5
9

+ 336n(x)
6
9n(y)

3
9 + n(x)

8
9n(y)

1
9

]

(1.4)

and the reciprocal-decic functional equation

d(2x+ y) + d(2x− y)

=
2d(x)d(y)

(

4d(y)
1
5 − d(x)

1
5

)10

[

1024d(y) + 11520d(x)
1
5 d(y)

4
5 + 13440d(x)

2
5 d(y)

3
5

+ 3360d(x)
3
5 d(y)

2
5 + 180d(x)

4
5 d(y)

1
5 + d(x)

]

. (1.5)

The reciprocal-nonic function n(x) = 1
x9 and the reciprocal-decic function d(x) =

1
x10 satisfy the equations (1.4) and (1.5), respectively. Hence the functions n(x) =
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1
x9 and d(x) = 1

x10 are solutions of equations (1.4) and (1.5), respectively. We
investigate various Ulam stabilties of the above equations (1.4) and (1.5) and also
prove the non-stability results through proper illustrative examples.

2. Preliminaries

In this section, we recall the basic facts of non-Archimdean fields.

Definition 2.1. A field K provided with a function (valuation) | · | from K

into [0,∞) is called a non-Archimedean field provided the subsequent conditions

hold:

1. |s| = 0 if and only if s = 0;

2. |st| = |s||t|;

3. |s+ t| ≤ max{|s|, |t|}, for all s, t ∈ K.

Clearly |1| = |−1| = 1 and |n| ≤ 1 for all n ∈ N. We always assume, in addition,
that | · | is non-trivial, i.e., there exists an µ0 ∈ K such that |µ0| 6= 0, 1. A sequence
{un} is Cauchy if and only if {un+1− un} converges to zero in a non-Archimedean
field because

|uk − ul| ≤ max {|ui+1 − ui| : l ≤ i ≤ k − 1} (k > l).

By a complete non-Archimedean field, we mean that every Cauchy sequence is
convergent in the field.

In [10], Hensel discovered the p-adic numbers as a number theoretical ana-
logue of power series in complex analysis. The most interesting example of non-
Archimedean normed spaces is p-adic numbers. A key property of p-adic numbers
is that they do not satisfy the Archimedean axiom: for all x, y > 0, there exists an
integer n such that x < ny. Let p be a prime number. For any non-zero rational
number x = pr m

n
in which m and n are coprime to the prime number p. Consider

the p-adic absolute value |x|p = p−r on Q. It is easy to check that | · | is a non-
Archimedean norm on Q. The completion of Q with respect to | · | which is denoted
by Qp is said to be the p-adic number field. Note that if p > 2, then |2n| = 1 for
all integers n.

Let us presume that throughout this paper, A and B are a non-Archimedean
field and a complete non-Archimedean field, respectively. In the sequel, we denote
A∗ = A\{0}, where A is a non-Archimedean field. For the equations (1.4) and
(1.5), we define the difference operators ∆1n,∆2d : A∗ × A∗ −→ B through

∆1n(x, y) = n(2x+ y) + n(2x− y)

−
4n(x)n(y)

(

4n(y)
2
9 − n(x)

2
9

)9

[

256n(y) + 2304n(x)
2
9n(y)

7
9 + 2016n(x)

4
9n(y)

5
9

+ 336n(x)
6
9n(y)

3
9 + n(x)

8
9n(y)

1
9

]
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and

∆2d(x, y) = d(2x+ y) + d(2x− y)

−
2d(x)d(y)

(

4d(y)
1
5 − d(x)

1
5

)10

[

1024d(y) + 11520d(x)
1
5 d(y)

4
5

+ 13440d(x)
2
5 d(y)

3
5 + 3360d(x)

3
5 d(y)

2
5

+ 180d(x)
4
5 d(y)

1
5 + d(x)

]

for all x, y ∈ A∗.

3. Stability results

In this section, we investigate the various Ulam stabilities of equations (1.4)
and (1.5) in non-Archimedean fields.

Definition 3.1. A mapping n : A∗ −→ B is said to be as reciprocal-nonic mapping

if n satisfies the equation (1.4). Also, a mapping d : A∗ −→ B is called as reciprocal-

decic mapping if d satisfies the equation (1.5).

Assumptions on the above definition and equations (1.4) and (1.5). By as-

sumuing n(x) 6= 0, n(y) 6= 0, d(x) 6= 0, d(y) 6= 0, 4n(y)
2
9 − n(x)

2
9 6= 0 and

4d(y)
1
5 − d(x)

1
5 6= 0 for all x, y ∈ A∗, the singular cases are eliminated.

Theorem 3.2. Let p ∈ {1,−1}. Let ζ : A∗×A∗ −→ [0,∞) be a function such that

lim
k→∞

∣

∣

∣

∣

1

19683

∣

∣

∣

∣

pk

ζ

(

x

3pk+
p+1

2

,
y

3pk+
p+1

2

)

= 0 (3.1)

for all x, y ∈ A∗. Suppose that n : A∗ −→ B is a mapping satisfying the inequality

|∆1n(x, y)| ≤ ζ(x, y) (3.2)

for all x, y ∈ A∗. Then, there occurs a distinct reciprocal-nonic mapping N : A∗ −→
B which satisfies (1.4) and

|n(x)−N(x)| ≤ max

{

∣

∣

∣

∣

1

19683

∣

∣

∣

∣

pl+ p−1

2

ζ

(

x

3pl+
p+1

2

,
x

3pk+
p+1

2

)

: l ∈ N ∪ {0}

}

(3.3)
for all x ∈ A∗.

Proof: Switching (x, y) into (x, x) in (3.2), we obtain

∣

∣

∣

∣

n(x) −
1

19683p
n
( x

3p

)

∣

∣

∣

∣

≤ |19683|
|p−1|

2 ζ

(

x

3
p+1

2

,
x

3
p+1

2

)

(3.4)
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for all x ∈ A∗. Now, by interchanging x into x
3pk

in (3.5) and multiplying the

resultant by
∣

∣

1
19683

∣

∣

pk
, we arrive at

∣

∣

∣

∣

1

19683pk
n
( x

3pk

)

−
1

19683(k+1)p
n
( x

3(k+1)p

)

∣

∣

∣

∣

≤

∣

∣

∣

∣

1

19683

∣

∣

∣

∣

pk+ p−1

2

ζ

(

x

3pk+
p+1

2

,
x

3pk+
p+1

2

)

(3.5)

for all x ∈ A∗. Using the inequalities (3.1) and (3.5), we see that the sequence
{

1
19683pk n

(

x
3pk

)}

is Cauchy. Due to completeness of B, this sequence converges to
a mapping N : A∗ −→ B defined by

N(x) = lim
k→∞

1

19683pk
n
( x

3pk

)

. (3.6)

Also, for every x ∈ A∗ and non-negative integers k, we find

∣

∣

∣

∣

1

19683pk
n
( x

3pk

)

− n(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k−1
∑

l=0

{

1

19683p(l+1)
n
( x

3p(l+1)

)

−
1

19683pl
n
( x

3pl

)

}

∣

∣

∣

∣

∣

≤ max

{
∣

∣

∣

∣

1

19683p(l+1)
n
( x

3p(l+1)

)

−
1

19683pl
n
( x

3pl

)

∣

∣

∣

∣

: 0 ≤ l < k

}

≤ max

{

∣

∣

∣

∣

1

19683

∣

∣

∣

∣

pl+ p−1

2

ζ

(

x

3pl+
p+1

2

,
x

3pl+
p+1

2

)

: 0 ≤ l < k

}

. (3.7)

Letting k → ∞ in the inequality (3.7) and using (3.6), we attain that the inequality
(3.3) holds. Once more, by applying the inequalities (3.1), (3.2) and (3.6), for every
x, y ∈ A∗, we arrive at

|∆1n(x, y)| = lim
k→∞

∣

∣

∣

∣

1

19683

∣

∣

∣

∣

pk
∣

∣

∣
∆1n

( x

3pk
,
y

3pk

)∣

∣

∣
≤ lim

k→∞

∣

∣

∣

∣

1

19683

∣

∣

∣

∣

pk

ζ
( x

3pk
,
y

3pk

)

= 0.

Hence, the mapping N satisfies (1.4) and so it is reciprocal-nonic mapping. Next,
we confirm that N is unique. Let us consider N′ : A∗ −→ B be another reciprocal-
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nonic mapping satisfying (3.3). Then

|N(x) −N
′(x)|

= lim
m→∞

∣

∣

∣

∣

1

19683

∣

∣

∣

∣

pm
∣

∣

∣
N

( x

3pm

)

−N
′
( x

3pm

)∣

∣

∣

≤ lim
m→∞

∣

∣

∣

∣

1

19683

∣

∣

∣

∣

pm

max
{∣

∣

∣
N

( x

3pm

)

− n
( x

3pm

)∣

∣

∣
,
∣

∣

∣
n
( x

3pm

)

−N
′
( x

3pm

)∣

∣

∣

}

≤ lim
m→∞

lim
n→∞

max
{

max
{

∣

∣

∣

∣

1

19683

∣

∣

∣

∣

p(l+m)+ p−1

2

ζ

(

x

3p(l+m)+ p+1

2

,
x

3p(l+m)+p+1

2

)

:

m ≤ l ≤ n+m
}}

= 0

for all x ∈ A∗. This implies that N is distinct, which concludes the proof. �

From now on, we assume that |2| < 1 for a non-Archimdean field A. In the
upcoming cosequences, we obtain the stability results of equation (1.4) associated
with the upper bound controlled by a fixed positive constant, sum of powers of
norms, product of powers of norms and mixed product-sum of powers of norms by
Theorem 3.2.

Corollary 3.3. Let ǫ > 0 be a constant. If n : A∗ −→ B satisfies |∆1n(x, y)| ≤ ǫ

for all x, y ∈ A∗, then there exists a unique reciprocal-nonic mapping N : A∗ −→ B

satisfying (1.4) and |n(x) −N(x)| ≤ ǫ for all x ∈ A∗.

Proof: Considering ζ(x, y) = ǫ in Theorem 3.2 when p = −1, we obtain the
requisite result. �

Corollary 3.4. Let ǫ > 0 and q 6= −9, be fixed constants. If n : A∗ −→ B

satisfies |∆1n(x, y)| ≤ ǫ (|x|q + |y|q) for all x, y ∈ A∗, then there exists a unique

reciprocal-nonic mapping N : A∗ −→ B satisfying (1.4) and

|n(x)−N(x)| ≤

{

|2|ǫ
|3|q |x|

q
, q > −9

|2|ǫ|3|9 |x|
q
, q < −9

for all x ∈ A∗.

Proof: Taking ζ(x, y) = ǫ (|x|
q
+ |y|

q
) in Theorem 3.2, the required result is

achieved. �

Corollary 3.5. Let n : A∗ −→ B be a mapping and let there exist real numbers

r, s, q = r + s 6= −9 and ǫ > 0 such that |∆1n(x, y)| ≤ ǫ |x|r |y|s for all x, y ∈ A∗.

Then, there exists a unique reciprocal-nonic mapping N : A∗ −→ B satisfying (1.4)
and

|n(x)−N(x)| ≤

{

ǫ
|3|q |x|

q
, q > −9

ǫ|3|9| |x|
q
, q < −9

for all x ∈ A∗.



Stabilities and Non-stabilities of the Reciprocal-nonic and · · · 15

Proof: Letting ζ(x, y) = ǫ |x|
r
|y|

s
, for all x, y ∈ A∗ in Theorem 3.2, we attain

the necessary result. �

Corollary 3.6. Let ǫ > 0 and q 6= −9 be real numbers, and n : A∗ −→ B be a

mapping satisfying the functional inequality

|∆1n(x, y)| ≤ ǫ
(

|x|
q

2 |y|
q

2 + (|x|q + |y|q)
)

for all x, y ∈ A∗. Then, there exists a unique reciprocal-nonic mapping N : A∗ −→
B satisfying (1.4) and

|n(x)−N(u)| ≤

{

|3|ǫ
|3|q |x|

q
, q > −9

|3|ǫ|3|9 |x|
a
, q < −9

for all x ∈ A∗.

Proof: Opting ζ(x, y) = ǫ
(

|x|
q

2 |y|
q

2 + (|x|q + |y|q)
)

in Theorem 3.2, the result

follows directly. �

The following theorem proves the stability result of the equation (1.5). Even
though the way of proving the result is similar to Theorem 3.2, for the purpose of
comprehensiveness we provide the main skeleton of proof.

Theorem 3.7. Let p ∈ {1,−1} be fixed, and let ξ : A∗×B∗ −→ [0,∞) be a function

such that

lim
k→∞

∣

∣

∣

∣

1

59049

∣

∣

∣

∣

pk

ξ

(

x

3pk+
p+1

2

,
y

3pk+
p+1

2

)

= 0 (3.8)

for all x, y ∈ A∗. Suppose that d : A∗ −→ B is a mapping satisfying the inequality

|∆2d(x, y)| ≤ ξ(x, y) (3.9)

for all x, y ∈ A∗. Then, there exists a unique reciprocal-decic mapping D : A∗ −→ B

satisfying (1.5) and

|d(x) −D(x)| ≤ max

{

∣

∣

∣

∣

1

59049

∣

∣

∣

∣

pl+ p−1

2

ξ

(

x

3pl+
p+1

2

,
x

3pl+
p+1

2

)

: l ∈ N ∪ {0}

}

(3.10)
for all x ∈ A∗.

Proof: Letting (x, y) as (x, x) in (3.9), we obtain
∣

∣

∣

∣

d(x) −
1

59049p
d
( x

3p

)

∣

∣

∣

∣

≤ |59049|
|p−1|

2 ξ

(

x

3
p+1

2

,
x

3
p+1

2

)

(3.11)

for all x ∈ A∗. Changing x into x
3pk in (3.11) and multiplying by

∣

∣

1
59049

∣

∣

pk
, one

finds
∣

∣

∣

∣

1

59049pk
d
( x

3pk

)

−
1

59049p(k+1)
d
( x

3p(k+1)

)

∣

∣

∣

∣

≤

∣

∣

∣

∣

1

59049

∣

∣

∣

∣

pk+ p−1

2

ξ

(

x

3pk+
p+1

2

,
x

3pk+
p+1

2

)

(3.12)
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for all x ∈ A∗.

From the inequalities (3.8) and (3.12), we conclude that
{

1
59049pk d

(

x
3pk

)}

is a
Cauchy sequence. By the completeness of B, there exists a mapping D : A∗ −→ B

so that

D(x) = lim
k→∞

1

59049pk
d
( x

3pk

)

(3.13)

for all x ∈ A∗. The remaining part of the proof is alike Theorem 3.2. �

Using Theorem 3.7, we obtain the stability results of equation (1.5) related with
the upper bound controlled by a fixed positive constant, sum of powers of norms,
product of powers of norms and mixed product-sum of powers of norms via the
following corollaries.

Corollary 3.8. Let θ > 0 be a constant, and let d : A∗ −→ B satisfies |∆2d(x, y)| ≤
θ for all x, y ∈ A∗. Then, there exists a unique reciprocal-decic mapping D : A∗ −→
B satisfying (1.5) and |d(x) −D(x)| ≤ θ for all x ∈ A∗.

Proof: It is enough to put ξ(x, y) = θ in Theorem 3.7 in the case p = −1. �

Corollary 3.9. Let θ > 0 and α 6= −10, be fixed constants. If d : A∗ −→ B

satisfies |∆2d(x, y)| ≤ θ (|x|
α
+ |y|

α
) for all x, y ∈ A∗, then there exists a unique

reciprocal-decic mapping D : A∗ −→ B satisfying (1.5) and

|d(x) −D(x)| ≤

{

|2|θ
|3|α |x|

α
, α > −10

|2|α|3|10 |x|
α
, α < −10

for all x ∈ A∗.

Proof: Allowing ξ(x, y) = θ (|x|α + |y|α), for all x, y ∈ A∗ in Theorem 3.7, we
attain the desired result. �

Corollary 3.10. Let d : A∗ −→ B be a mapping and let there exist real numbers

a, b, α = a+ b 6= −10 and θ > 0 such that

|∆2d(x, y)| ≤ θ |x|
a
|y|

b

for all x, y ∈ A∗. Then, there exists a unique reciprocal-decic mapping D : A∗ −→ B

satisfying (1.5) and

|d(x) −N(x)| ≤

{

θ
|3|α |x|

α
, α > −10

λ|3|10 |x|
α
, α < −10

for all x ∈ A∗.

Proof: Choosing ξ(x, y) = θ |x|
a
|y|

b
, for all x, y ∈ A∗ in Theorem 3.7, the

requisite result is achieved. �
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Corollary 3.11. Let θ > 0 and α > −10 be real numbers, and d : A∗ −→ B be a

mapping satisfying the functional inequality

|∆2d(x, y)| ≤ θ
(

|x|
α
2 |y|

α
2 + (|x|α + |y|α)

)

for all x, y ∈ A∗. Then, there exists a unique reciprocal-decic mapping D : A∗ −→ B

satisfying (1.5) and

|d(x) −D(x)| ≤

{

|3|θ
|3|α |x|α , α > −10

|3|θ|3|10 |x|
α
, α < −10

for every x ∈ A∗.

Proof: It is simple to obtain the required result by selecting

ξ(x, y) = θ
(

|x|
α
2 |y|

α
2 + (|x|

α
+ |y|

α
)
)

in Theorem 3.7. �

4. Proper examples

We wind up this investigation with two proper examples. The famous counter-
example provided by Gajda [8] enthused to prove the non-stability of the equations
(1.4) and (1.5) for singular cases. In this section we illustrate that the stability
results of functional equations (1.4) and (1.5) are not valid for q = −9 in Corollary
3.4 and α = −10 in Corollary 3.9, respectively.

Example 4.1. Let us consider the function

φ(x) =

{

k
x9 , for x ∈ (1,∞)

k, otherwise
(4.1)

where φ : R∗ −→ R. Let g : R∗ −→ R be defined by

g(x) =
∞
∑

m=0

19683−mφ(3−nx) (4.2)

for all x ∈ R. Let the function g : R∗ −→ R defined in (4.2) satisfies the functional
inequality

|∆1g(x, y)| ≤
29525 k

9841

(

|x|
−9

+ |y|
−9

)

(4.3)

for all x, y ∈ R∗. We show that there do not exist a reciprocal-nonic mapping
N : R∗ −→ R and a constant α > 0 such that

|g(x)−N(x)| ≤ α |x|
−9

(4.4)
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for all x ∈ R∗. For this, let us first prove that g satisfies (4.3). By computation,
we have

|g(x)| =

∣

∣

∣

∣

∣

∞
∑

m=0

19683−mφ(3−nx)

∣

∣

∣

∣

∣

≤
∞
∑

m=0

k

19683m
=

19683

19682
k.

So, we see that f is bounded by 19683 k
19682 on R. If |x|−9 + |y|−9 ≥ 1, then the left

hand side of (4.3) is less than 29525 k
9841 . Now, suppose that 0 < |x|

−9
+ |y|

−9
< 1.

Hence, there exists a positive integer m such that

1

19683m+1
≤ |x|

−9
+ |y|

−9
<

1

19683m
. (4.5)

Thus, the relation (4.5) produces 19683m
(

|x|
−9

+ |y|
−9

)

< 1, or equivalently;

19683mx−9 < 1, 19683my−9 < 1. So, x9

19683m > 1, y9

19683m > 1. The last inequalities

imply that x9

19683m−1 > 19683 > 1, y9

19683m−1 > 19683 > 1 and consequently

1

3m−1
(x) > 1,

1

3m−1
(y) > 1,

1

3m−1
(2x+ y) > 1,

1

3m−1
(2x− y) > 1.

Therefore, for each value of m = 0, 1, 2, . . . , n− 1, we obtain

1

3n
(x) > 1,

1

3n
(y) > 1,

1

3n
(2x+ y) > 1,

1

3n
(2x− y) > 1.

and ∆1g(3
−nx, 3−ny) = 0 for m = 0, 1, 2, . . . , n− 1. Using (4.1) and the definition

of g, we obtain

|∆1g(x, y)| ≤

∞
∑

m=n

k

19683m
+

∞
∑

m=n

k

19683m
+

19684

19683

∞
∑

m=n

k

19683m

≤
59050 k

19683

1

19683m

(

1−
1

19683

)−1

≤
59050 k

19682

1

19683m

≤
59050 k

19682

1

19683m+1
≤

29525 k

9841

(

|x|
−9

+ |y|
−9

)

for all x, y ∈ R∗. This means that the inequality (4.3) holds. We claim that the
reciprocal-nonic functional equation (1.4) is not stable for q = −9 in Corollary 3.4.
Assume that there exists a reciprocal-nonic mapping N : R∗ −→ R satisfying (4.4).
So, we have

|g(x)| ≤ (α+ 1)|x|−9. (4.6)

However, we can choose a positive integer m with mk > α + 1. If x ∈
(

1, 3m−1
)

then 3−nx ∈ (1,∞) for all m = 0, 1, 2, . . . , n− 1 and thus

|g(x)| =
∞
∑

m=0

φ(3−mx)

19683m
≥

n−1
∑

m=0

19683mk
x9

19683m
=
mk

x9
> (α+ 1)x−9

which contradicts (4.6). Therefore, the reciprocal-nonic functional equation (1.4)
is not stable for q = −9 in Corollary 3.4.
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In analogous to Example 4.1, we have the following result which acts as a
counter-example for the fact that the functional equation (1.5) is not stable for
α = −10 in Corollary 3.9.

Example 4.2. Define the function ψ : R∗ −→ R via

ψ(x) =

{

c
x10 for x ∈ (1,∞)

c, otherwise
(4.7)

Let h : R∗ −→ R be defined by

h(x) =
∞
∑

m=0

59049−mh(3−mx) (4.8)

for all m ∈ R. Assume that the function h satisfies the functional inequality

|∆2h(x, y)| ≤
44287 c

14762

(

|x|
−10

+ |y|
−10

)

(4.9)

for all x, y ∈ R∗. Then, there do not exist a reciprocal-decic mapping D : R∗ −→ R

and a constant β > 0 such that

|h(x)−D(x)| ≤ β |x|
−10

(4.10)

for all x ∈ R∗. For this, we have

|h(x)| =

∣

∣

∣

∣

∣

∞
∑

m=0

59049−mψ(3−mx)

∣

∣

∣

∣

∣

≤
∞
∑

m=0

c

59049m
=

59049 c

59048
.

Hence, we see that h is bounded by 59049 c
59048 on R. If |x|

−10
+|y|

−10
≥ 1, then the left

hand side of (4.9) is less than 44287 c
14762 . Now, suppose that 0 < |x|

−10
+ |y|

−10
< 1.

Then, there exists a positive integer m such that

1

59059m+1
≤ |x|−10 + |y|−10

<
1

59049m
. (4.11)

Similar to Example 4.1, the relation |x|−10 + |y|−10
< 1

59049m implies

1

3m−1
(x) > 1,

1

3m−1
(y) > 1,

1

3m−1
(2x+ y) > 1,

1

3m−1
(2x− y) > 1.

Thus, for any n = 0, 1, 2, . . . ,m− 1, we obtain

1

3n
(x) > 1,

1

3n
(y) > 1,

1

3n
(2x+ y) > 1,

1

3n
(2x− y) > 1
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and ∆2h(3
−nx, 3−ny) = 0 for n = 0, 1, 2, . . . ,m − 1. Applying (4.7) and the

definition of h, we find

|∆2h(x, y)| ≤

∞
∑

n=m

c

59049n
+

∞
∑

n=m

c

59049n
+

59040

59049

∞
∑

n=k

c

59049n

≤
177148 c

59048

1

59049m

(

1−
1

59049

)−1

≤
1177148 c

59048

1

59049m
≤

177148 c

59048

1

59049m+1

≤
44287 c

14762

(

|x|−10 + |y|−10
)

for all x, y ∈ R∗. This shows that the inequality (4.9) holds. Assume that there
exists a reciprocal-decic mapping D : R∗ −→ R satisfying (4.10). Hence

|h(x)| ≤ (β + 1)|x|−10. (4.12)

On the other hand, we can choose a positive integer k with kc > β + 1. If x ∈
(

1, 3k−1
)

then 3−nx ∈ (1,∞) for all n = 0, 1, 2, . . . , k − 1 and so

|h(x)| =

∞
∑

n=0

ψ(3−nx)

59049n
≥

k−1
∑

n=0

59049n c
x10

59049n
=

kc

x10
> (β + 1)x−10

which contradicts (4.12). Therefore, the reciprocal-decic functional equation (1.5)
is not stable for α = −10 in Corollary 3.9.
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