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Existence of Solution of Urysohn Integral Equation Through
Generalized Contractive Mapping
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abstract: In this note, we establish the existence of fixed point through fixed
point theorems in the setting of partially ordered complex valued b- metric spaces.
Then this fixed point is co-related as solution of equivalent operator equation of
the Urysohn integral equation. In this process to make our results more authentic
and meaningful we adopt an innovative way through visualling the given example
supporting our findings. Naturally our results generalize some existing results.
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1. Introduction and preliminaries

In 1989, Bakhtin [5] introduced and studied the concept of b-metric spaces as
a generalization of metric spaces. Also he proved the Banach contraction principle
in b-metric spaces. After that many researchers obtained fixed point results in
b-metric spaces (see [2], [3], [6], [8]).

In 2011, Azam et al. [4] introduced the concept of complex valued metric
spaces as a generalization of the classical metric spaces and established some fixed
point theorems for a pair of mappings for contraction condition satisfying a rational
expression. After the establishment of complex valued metric spaces, Rao et al.
[15] introduced the complex valued b-metric spaces and then several authors have
contributed with different concepts in these spaces. One can see in ( [1], [9]- [13],
[16]- [21]).

On the other hand, many authors generalized the Banach contraction theorem
in ordered metric spaces. The first result in ordered metric spaces was given by
Ran and Reurings [14] who presented its applications to the linear and nonlinear
metric spaces.
In this study, we have presented some fixed point theorems having rational type
contraction conditions in the notion of partially ordered complex valued b-metric
space. Furthermore, an application to establish the solution of Urysohn integral
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equation is also presented, utilizing our investigated results.
In what follows, we recall some definitions and notations that will be used in our
note.
Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order - on
C as follows:
z1 - z2 if and only if Re(z1) ≤ Re(z2)and Im(z1) ≤ Im(z2).
It follows that - exists if one of the followings conditions is satisfied:

(C1) Re(z1) = Re(z2) and Im(z1) = Im(z2);

(C2) Re(z1) < Re(z2) and Im(z1) = Im(z2);

(C3) Re(z1) = Re(z2) and Im(z1) < Im(z2);

(C4) Re(z1) < Re(z2) and Im(z1) < Im(z2).

In particular, we will write z1 � z2 if z1 6= z2 and one of (C2), (C3) and (C4) is
satisfied and we will write z1 ≺ z2 if only (C4) is satisfied. Note that
The following definition is due to Azam et al. [4].

Definition 1.1. : Let X be a non empty set. A mapping d : X ×X → C is called
a complex valued metric on X if d satisfies the following conditions :

(CM1) 0 - d(x, y) for all x, y ∈ X and d(x, y) ⇔ x = y;

(CM2) d(x, y) = d(y, x) for all x, y ∈ X;

(CM3) d(x, y) - d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a complex valued metric on X, and (X, d) is called complex valued
metric space.

Example 1.2. Let X = C be a set of complex number. Define the mapping
d : X ×X → C by

d(z1, z2) = eik|z1 − z2|,
where k ∈ R. Then (X, d) is a complex valued metric space.

Acknowledging the concepts of Bakhtin [5] and Azam et al. [4], K.P.R. Rao et
al. [15] introduced the notion of complex valued b-metric spaces as follows.

Definition 1.3. [15] Let X be a nonempty set and s ≥ 1 a given real number. A
function d : X ×X → C satisfies the following conditions:

(CVBM1) 0 - d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(CVBM2) d(x, y) = d(y, x), for all x, y ∈ X;

(CVBM3) d(x, y) - s[d(x, z) + d(z, y)] for all x, y, z ∈ X.

Then d is called a complex valued b-metric on X and (X, d) is called a complex
valued b-metric space.
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Example 1.4. Let X = [0, 1]. Define the mapping d : X ×X → C by

d(x, y) = |x− y|2 + i|x− y|2, for all x, y ∈ X.

Then (X, d) is a complex valued b- metric space with s = 2.

For the routine definitions like convergent sequence, Cauchy sequence, complete
complex valued b-metric space we refer [15].

Lemma 1.5. [15] Let (X, d) be a complex valued b- metric space and let {xn} be a
sequence in X. Then {xn} converges to x if and only if |d(xn, x)| → 0 as n → ∞.

Lemma 1.6. [15] Let (X, d) be a complex valued b- metric space and let {xn} be a
sequence in X. Then {xn} is a Cauchy sequence if and only if |d(xn, xn+m)| → 0
as n → ∞, where m ∈ N

Definition 1.7. Let (X, d) be a complex valued metric space, T : X → X and
x ∈ X. Then the function T is continuous at x if for any sequence {xn} in X,

xn → x ⇒ Txn → Tx.

Definition 1.8. Let (X,-) be a partially ordered set and T : X → X. The
mapping T is said to be nondecreasing if for all x1, x2 ∈ X, x1 - x2 implies Tx1 -

Tx2 and nonincreasing if for all x1, x2 ∈ X, x1 - x2 implies Tx1 % Tx2.

2. Main Result

In this section, some fixed point theorems for contraction conditions described
by rational expressions are proved.

Theorem 2.1. Let (X,-) be a partially ordered set and suppose that there exist
a complex valued b-metric d on X such that (X, d) is a complete complex valued
b-metric space. Let the mapping A : X → X be a continuous and non decreasing
mapping. Suppose there exist non-negative real numbers α, β, γ, δ with α+ β+ γ+
2sδ < 1

s
such that, for all x, y ∈ X with x - y,

d(Ax,Ay) -αd(x, y) + β
d(y,Ay)[1 + d(x,Ax)]

1 + d(x, y)
+ γ

d(y,Ax)[1 + d(x,Ay)]

1 + d(x, y)

+ δ[d(y,Ax) + d(x,Ay)]

(2.1)

if there exist x0 ∈ X with x0 - Ax0, then A has a fixed point.

Proof: If x0 = Ax0, then we have the result.
Suppose that x0 ≺ Ax0. Then we construct the sequence {xn} in X such that

xn+1 = Axn, for every n ≥ 0. (2.2)

Since A is a non-decreasing mapping, we obtain by induction that

x0 ≺ Ax0 = x1 - Ax1 = x2 - Ax1 = x2 - · · ·Axn−1 = xn - Axn = xn+1. (2.3)
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If there exist some N ≥ 1 such that xN+1 = xN , then from (2.2), xN+1 = AxN =
xN ; that is, xN is a fixed point of A and the proof is finished.
Now we suppose that xN+1 6= xN for all n ≥ 1. Since xn ≺ xn+1, for all n ≥ 1,
applying (2.1) we have

d(xn+1, xn+2) =d(Axn, Axn+1)

-αd(xn, xn+1) + β
d(xn+1, Axn+1)[1 + d(xn, Axn)]

1 + d(xn, xn+1)

+ γ
d(xn+1, Axn)[1 + d(xn, Axn+1)]

1 + d(xn, xn+1)

+ δ[d(xn+1, Axn) + d(xn, Axn+1)]

-αd(xn, xn+1) + β
d(xn+1, xn+2)[1 + d(xn, xn+1)]

1 + d(xn, xn+1)

+ γ
d(xn+1, xn+1)[1 + d(xn, xn+2)]

1 + d(xn, xn+1)
+ δ[d(xn+1, xn+1)

+ d(xn, xn+2)]

-αd(xn, xn+1) + βd(xn+1, xn+2) + δd(xn, xn+2)

-αd(xn, xn+1) + βd(xn+1, xn+2) + sδ[d(xn, xn+1) + d(xn+1, xn+2)]

thus one can get

d(xn+1, xn+2) -
( α+ sδ

1− β − sδ

)

d(xn, xn+1)

-hd(xn, xn+1), where h =
( α+ sδ

1− β − sδ

)

<
1

s
.

(2.4)

This follows immediately

d(xn+1, xn+2) - hd(xn, xn+1) - h2d(xn−1, xn)

- h3d(xn−2, xn−1) - · · · - hn+1d(x0, x1)

for m > n

d(xn, xm) -s[d(xn, xn+1) + d(xn+1, xm)]

-sd(xn, xn+1) + s2[d(xn+1, xn+2) + d(xn+2, xm)]

-sd(xn, xn+1) + s2d(xn+1, xn+2)

+ s3d(xn+2, xm) + · · ·+ sm−nd(xm−1, xm)

-(shn + s2hn+1 + · · ·+ sm−nhm−1)d(x0, x1)

-shn[1 + (sh) + (sh)2 · · ·+ (sh)m−n−1]d(x0, x1)

-
shn

1− sh
d(x0, x1).

Since 0 ≤ h < 1
s
, we conclude that shn

1−sh
→ 0 as n → ∞. Which implies that {xn}

is a Cauchy sequence. From the completeness of X , there exist a point z ∈ X such
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that
xn → z as n → ∞. (2.5)

The continuity of A implies that Az = lim
n→∞

Axn = lim
n→∞

xn+1 = z.

That is z is a fixed point of A. ✷

Now question arised if some how continuity is dropped for underlying mapping
then how it impacts on existence of fixed point, this question is answered in the
following result.

Theorem 2.2. Let (X,-) be a partially ordered set and suppose that there exist
a complex valued b-metric d on X such that (X, d) is a complete complex valued
b-metric space. Assume that if {xn} is a non-decreasing sequence in X such that
xn → x, then xn - x, for all n ∈ N . Let the mapping A : X → X be a non
decreasing mapping. Suppose that (2.1) holds for all x, y ∈ X, with x - y. If there
exist x0 ∈ X with x0 - Ax0, then A has a fixed point.

Proof: We take the same pattern of sequence {xn} as in the proof of Theorem 2.1
and with Similar approach we prove that {xn} is a non-decreasing sequence such
that xn → z ∈ X . Then xn - z, for all n ∈ N .
Applying Inequality (2.1), we have

d(xn+1, Az) =d(Axn, Az)

-αd(xn, z) + β
d(z, Az)[1 + d(xn, Axn)]

1 + d(xn, z)

+ γ
d(z, Axn)[1 + d(xn, Az)]

1 + d(xn, z)

+ δ[d(z, Axn) + d(xn, Az)]

-αd(xn, z) + β
d(z, Az)[1 + d(xn, xn+1)]

1 + d(xn, z)

+ γ
d(z, xn+1)[1 + d(xn, Az)]

1 + d(xn, z)

+ δ[d(z, xn+1) + d(xn, Az)].

Taking the limit as n → ∞ and using (2.5), we have

d(z, Az) -αd(z, z) + β
d(z, Az)[1 + d(z, z)]

1 + d(z, z)
+ γ

d(z, z)[1 + d(z, Az)]

1 + d(z, z)

+ δ[d(z, z) + d(z, Az)]

-βd(z, Az) + δd(z, Az)

-(β + δ)d(z, Az).

Since β+ δ < 1, it is a contradiction unless d(z, Az) = 0. This amounts to say that
Az = z, therefore z is a fixed point of A. ✷
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In the following result we proved uniqueness of fixed point with the application
of order relation, justifying the setting of working space.

Theorem 2.3. In addition to the hypothesis of Theorem 2.1 or Theorem 2.2,
suppose that for every x, y ∈ X, there exist u ∈ X such that u - x and u - y, then
A has a unique fixed point.

Proof: It follows from the Theorem 2.1 or Theorem 2.2 that the set of fixed point
of A is non-empty. We shall show that if x∗ and y∗ two fixed point of A, that is,
if x∗ = Ax∗ and y∗ = Ay∗ then x∗ = y∗.
By the assumption, there exist u0 ∈ X such that u0 - x∗ and u0 - y∗. Then
similarly as in the proof of Theorem 2.1, we define the sequence {un} such that

un+1 = Aun = An+1u0, n = 0, 1, 2, ... (2.6)

monotonicity of A implies that

Anu0 = un - x∗ = Anx∗ and Anu0 = Aun - y∗ = Any∗.

If there exist a positive integer m such that

x∗ = um, then x∗ = Ax∗ = Aun = cn+1,

for all n ≥ m. Then un → x∗ as n → ∞. Suppose that x∗ 6= un, for all n ≥ 0. So
un ≺ x∗ for all n ≥ 0. Applying inequality (2.1), we have

d(un+1, x
∗) =d(Aun, Ax

∗)

-αd(un, x
∗) + β

d(x∗, Ax∗)[1 + d(un, Axn)]

1 + d(un, x∗)

+ γ
d(x∗, Aun)[1 + d(un, Ax

∗)]

1 + d(un, x∗)

+ δ[d(x∗, Aun) + d(un, Ax
∗)]

-αd(un, x
∗) + β

d(x∗, x∗)[1 + d(un, Axn)]

1 + d(un, x∗)

+ γ
d(x∗, un+1)[1 + d(un, x

∗)]

1 + d(un, x∗)

+ δ[d(x∗, un+1) + d(un, x
∗)]

-αd(un, x
∗) + γd(x∗, un+1) + δ[d(x∗, un+1) + d(un, x

∗)]

-
( α+ δ

1− γ − δ

)

d(un, x
∗),

put
(

α+γ
1−γ−δ

)

= k < 1
s
. Thus we get

d(un+1, x
∗) - kd(un, x

∗) - k2d(un−1, x
∗) - · · · kn+1d(u0, x

∗) → 0 as n → ∞.
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Hence d(un, x
∗) → 0 as n → ∞,

or un → x∗ as n → ∞.
Using a similar argument, we can prove that
un → y∗ as n → ∞.
Finally, the uniqueness of the limit implies that x∗ = y∗.
Hence A has a unique fixed point. ✷

If we put δ = 0 and s = 1 in inequality (2.1) of Theorem 2.1 then we get
following corollary which coincides the result due to Choudhury et al. [7].

Corollary 2.4. Let (X,-) be a partially ordered set and suppose that there exist a
complex valued metric d on X such that (X, d) is a complete complex valued metric
space. Let the mapping A : X → X be a continuous and non decreasing mapping.
Suppose there exist non-negative real numbers α, β, γ with α+ β+ γ < 1 such that,
for all x, y ∈ X with x - y,

d(Ax,Ay) - αd(x, y) + β
d(y,Ay)[1 + d(x,Ax)]

1 + d(x, y)
+ γ

d(y,Ax)[1 + d(x,Ay)]

1 + d(x, y)
(2.7)

if there exist x0 ∈ X with x0 - Ax0, then A has a fixed point.

If we set β = γ = 0 in inequality (2.1) of Theorem 2.1 then we get following
corollary.

Corollary 2.5. Let (X,-) be a partially ordered set and suppose that there exist
a complex valued b-metric d on X such that (X, d) is a complete complex valued
b-metric space. Let the mapping A : X → X be a continuous and non decreasing
mapping. Suppose there exist non-negative real numbers α, δ with α+2sδ < 1

s
such

that, for all x, y ∈ X with x - y,

d(Ax,Ay) - αd(x, y) + δ[d(y,Ax) + d(x,Ay)] (2.8)

if there exist x0 ∈ X with x0 - Ax0, then A has a fixed point.

Example 2.6. Let X = [3, 4] with usual partial order ≤. Let the complex valued
b-metric d be given by

d(x, y) = |x− y|2eiπ4 with s =
√
2, for all x, y ∈ X.

Let A : X → X be defined as Ax =
√
x+ 2.

First we check that there exist x0 ∈ X such that x0 - Ax0 with usual partial order
≤.
Clearly, x ≤ √

x+ 2, ∀x ∈ [3, 4].
then this condition is satisfied.
In order to verify the condition (2.1), first we notice that

0 -
d(y,Ay)[1 + d(x,Ax)]

1 + d(x, y)
, 0 -

d(y,Ax)[1 + d(x,Ay)]

1 + d(x, y)
, 0 - [d(y,Ax) + d(x,Ay)].
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for all x, y ∈ X.

Thus it is sufficient to show that d(Ax,Ay) - ad(x, y) with α, β, γ, δ ≥ 0 and
α+ β + γ + 2sδ < 1

s

Now,

d(Ax,Ay) -αd(x, y)

⇒ d(
√
x+ 2,

√
y + 2) -αd(x, y)

⇒ |
√
x+ 2−√

y + 2)|2e iπ

4 -α|x− y|2e iπ

4 .

This implies that

|
√
x−√

y)|2e iπ

4 - α|x− y|2e iπ

4 (2.9)

(2.9) is true with a view that aeiθ - beiθ iff a ≤ b, where a, b ∈ R and in (2.9), we
have

|
√
x−√

y)|2 - α|x− y)|2, (2.10)

for all x, y ∈ [3, 4] with α = 0.5 and suitable values of β, γ, δ such that α+ β +
γ + 2sδ < 1

s
where s =

√
2.

Following Figures 1 and 2 validate inequality (2.10) graphically. In subsequent
Figures 1 and 2 , surfaces with purple color represent the L.H.S. of (2.10) and
surfaces with red color represent the R. H. S. of (2.10). Clearly red surfaces are
dominating the purple surfaces. consequently, Condition (2.1) is satisfied.

Figure 1: Plot of condition 2.11
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Figure 2: Zoom view of condition 2.11 exactly in [3, 4]

Also the function is continuous. Hence all the conditions of Theorem 2.1 are
satisfied and x = 4 is a unique fixed point of A which is demonstrated by the Figure
2. In the Figure 2 lines with red color represent function f(x) =

√
x+2 and purple

line represents y = x for fixed point purpose. Clearly, we can see that line y = x

intersects functions f(x) only at x = 4, this amounts to say that x = 4 is the unique
fixed point of f(x) =

√
x+ 2.

Figure 3: Fixed Point
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3. Application of fixed point results

Let X = C([a, b],Rn), a > 0 and d : X ×X → X be defined by

d(x, y) =
[

max
t∈[a,b]

||x(t) − y(t)||∞
√

1 + a2 ei tan
−1 a

]q

, (3.1)

where s = 2q−1. Consider the Urysohn integral equation

x(t) =

∫ b

a

K(t, s, x(s)) ds+ g(t), (3.2)

where t ∈ [a, b] ⊂ R, x ∈ X . Suppose that K : [a, b]× [a, b]×Rn such that Fx ∈ X ,
for each x ∈ X , where

Fx(t) =

∫ b

a

K(t, s, x(s)) ds, for all t ∈ [a, b].

Theorem 3.1. If there exist non-negative real numbers α, β, γ, δ such that for all
x, y ∈ X with x - y

(i) α+ β + γ + 2sδ < 1
s
; (ii)

[

||Fx(t)− Fy(t)||∞
√

1 + a2 ei tan
−1 a

]q

-αS(x, y)(t) + β T (x, y)(t) + γ U(x, y)(t)

+ δ V (x, y)(t),

where,

S(x, y)(t) =
[

||x(t)− y(t)||∞
√

1 + a2 e
i tan−1 a

]q

;

T (x, y)(t) =

[

||Fy(t) + g(t)− y(t)||∞
√
1 + a2 ei tan

−1 a
]q[

1 + ||Fx(t) + g(t)− x(t)||q∞
]

1 + maxt∈[a,b] S(x, y)(t)
;

U(x, y)(t) =

[

||Fx(t) + g(t)− y(t)||∞
√
1 + a2 ei tan

−1 a
]q[

1 + ||Fy(t) + g(t)− x(t)||q∞
]

1 +maxt∈[a,b] S(x, y)(t)
;

V (x, y)(t) =
[

||Fx(t) + x(t)− y(t)||q∞ + ||Fy(t) + y(t)− x(t)||q∞
][

√

1 + a2 e
i tan−1 a

]q

;

(iii) there exists x0 ∈ X such that

x0(t) -

∫ b

a

K(t, s, x0(s)) ds + g(t), for all t ∈ [a, b].

Then the integral equation defined in (3.1) has a solution in X.

Proof: Define A : X → X by Ax = Fx + g. It is easy to deduce that (X, d) is a



Existence of Solution of Urysohn Integral Equation Through... 111

complex valued b-metric space. Then

d(Ax,Ay) =
[

max
t∈[a,b]

||Fx(t) + g(t)− Fy(t)− g(t)||∞
√

1 + a2 ei tan
−1 a

]q

=
[

max
t∈[a,b]

||Fx(t)− Fy(t)||∞
√

1 + a2 ei tan
−1 a

]q

;

d(x, y) = max
t∈[a,b]

S(x, y)(t);

d(y,Ay)[1 + d(x,Ax)]

1 + d(x, y)
= max

t∈[a,b]
T (x, y)(t);

d(y,Ax)[1 + d(x,Ay)]

1 + d(x, y)
= max

t∈[a,b]
U(x, y)(t);

d(y,Ax) + d(x,Ay) = max
t∈[a,b]

V (x, y)(t).

It is easy to conclude that

d(Ax,Ay) -αd(x, y) + β
d(y,Ay)[1 + d(x,Ax)]

1 + d(x, y)
+ γ

d(y,Ax)[1 + d(x,Ay)]

1 + d(x, y)

+ δ[d(y,Ax) + d(x,Ay)].

Clearly, the contractive condition of Theorem 2.1 is satisfied. From condition (iii),
we have x0 - Ax0.
Hence all the conditions of Theorem 2.1 are fulfilled. Therefore, by Theorem 2.1,
Urysohn integral equation (3.1) has a solution in X . ✷
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