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One Sided Generalized (σ, τ )-derivations on Rings

Evrim Guven

abstract: Let R be a prime ring with characteristic not 2 and σ, τ , λ, µ, α, β be au-
tomorphisms of R. Let h be a nonzero left (resp. right)-generalized (σ, τ)−derivation
of R and I, J nonzero ideals of R and a ∈ R. The main object in this arti-
cle is to study the situations. (1) h(I)a ⊂ Cλ,µ(J) and ah(I) ⊂ Cλ,µ(J), (2)
h(I) ⊂ Cλ,µ(J), (3) [h(I), a]λ,µ = 0, (4) h(I, a)λ,µ = 0 ( or (h(I), a)λ,µ = 0), (5)
[h(x), x]λ,τ = 0,∀x ∈ I, (6) [h(x)a, x]λ,τ = 0,∀x ∈ I.
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1. Introduction

Let R be an associative ring with center Z. Recall that R is prime if aRb = (0)
implies that a = 0 or b = 0. For any x, y ∈ R the symbol [x, y] represents com-
mutator xy − yx and the Jordan product (x, y) = xy + xy. Let σ and τ be any
two endomorphisms of R. For any x, y ∈ R we set [x, y]σ,τ = xσ(y) − τ (y)x
and (x, y)σ,τ = xσ(y) + τ (y)x. Let h and d be additive mappings of R. If
d(xy) = d(x)y + xd(y), ∀x, y ∈ R then d is called a derivation of R. If there
exists a derivation d such that h(xy) = h(x)y + xd(y), ∀x, y ∈ R then h is called
generalized derivation of R (see [3]). If d(xy) = d(x)σ(y) + τ(x)d(y), ∀x, y ∈ R

then d is called a (σ, τ)−derivation of R. Obviously every derivation d : R →
R is a (1, 1)−derivation of R, where 1 : R → R is an identity mapping. If
h(xy) = d(x)σ(y) + τ (x)h(y), ∀x, y ∈ R then h is said to be a left-generalized
(σ, τ)−derivation with d and if h(xy) = h(x)σ(y) + τ(x)d(y), ∀x, y ∈ R then h is
said to be a right-generalized (σ, τ )−derivation associated with (σ, τ)−derivation d,

(see [4]). Every (σ, τ )−derivation associated with d is a right (and left)-generalized
(σ, τ)−derivation associated with d.

The mapping defined by h(r) = [r, a]σ,τ , ∀r ∈ R is a right-generalized deriva-
tion associated with derivation d(r) = [r, σ(a)] , ∀r ∈ R and left-generalized deriva-
tion associated with derivation d1(r) = [r, τ (a)] , ∀r ∈ R. The mapping h(r) =
(a, r)σ,τ , ∀r ∈ R is a left-generalized (σ, τ )− derivation associated with (σ, τ )−
derivation d2(r) = [a, r]σ,τ , ∀r ∈ R and right-generalized (σ, τ )−derivation associ-
ated with (σ, τ )−derivation d2.
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The following result is proved by Posner in (see [12]). Let R be a prime ring
and d 6= 0 derivation of R such that [d(x), x] = 0, ∀x ∈ R. Then R is commutative.
Ashraf and Rehman (see [1]) generalized Posner’s result as follows. Let R be a
2−torsion free prime ring. Suppose there exists a (σ, τ )−derivation d : R → R

such that [d(x), x]σ,τ = 0, ∀x ∈ R. Then either d = 0 or R is commutative.
Taking an ideal of R instead of R, Marubayashi H.and Ashraf M.,Rehman N., Ali
Shakir, generalized Rehman’s result in (see [10]). On the other hand, Rehman
(see [13]) gave another generalization of Posner’s Theorem as follows. Let R be
a prime ring. If R admits a nonzero generalized derivation h with d such that
[h(x), x] = 0, ∀x ∈ R, and if d 6= 0, then R is commutative.

In this paper, using left-generalized (σ, τ)−derivation of R, we have given an-
other generalization of Ashraf and Rehman’s result (see [1]) as in Theorem 3.
Also, we discuss the commutativity of prime rings admitting a left-generalized
(σ, τ)−derivation h : R −→ R satisfying several conditions on ideals.

Throughout the paper, R will be a prime ring with characteristic not 2 and
σ, τ , λ, µ, α, β be automorphisms of R. Let J be an ideal of R We write Cσ,τ (J) =
{r ∈ R | rσ(x) = τ(x)r, ∀ x ∈ J} and will make extensive use of the following basic
commutator identities.

[xy, z]σ,τ = x[y, z]σ,τ + [x, τ (z)]y = x[y, σ(z)] + [x, z]σ,τy
[x, yz]σ,τ = τ (y)[x, z]σ,τ + [x, y]σ,τσ(z)
(x, yz)σ,τ = τ (y)(x, z)σ,τ + [x, y]σ,τσ(z) = −τ(y)[x, z]σ,τ + (x, y)σ,τσ(z)
(xy, z)σ,τ = x(y, z)σ,τ − [x, τ (z)]y = x[y, σ(z)] + (x, z)σ,τy..

2. Results

We begin with the following known results which will be used to prove our
theorems.

Lemma 2.1. [2, Lemma1] Let R be a prime ring and d : R −→ R be a (σ, τ )−
derivation. If U is a nonzero right ideal of R and d(U) = 0 then d = 0.

Lemma 2.2. [11, Lemma3] If a prime ring contains a nonzero commutative right
ideal then it is commutative.

Lemma 2.3. [6, Lemma5] Let I be a nonzero ideal of R and a, b ∈ R. If [a, I]α,β ⊂
Cλ,µ(R) or (a, I)α,β ⊂ Cλ,µ(R) then a ∈ Cα,β(R) or R is commutative.

Lemma 2.4. [5, Corollary 1] If I is a nonzero ideal of R and a ∈ R such that
[I, a]α,β ⊂ Cλ,µ(R), then a ∈ Z.

Lemma 2.5. [7, Lemma 2.16] Let R be a prime ring and h : R −→ R be a nonzero
left-generalized (σ, τ )− derivation associated with a nonzero (σ, τ )−derivation d. If
I is a nonzero ideal of R and a ∈ R such that (h (I) , a)λ,µ = 0 then a ∈ Z or
dτ−1µ(a) = 0.

Lemma 2.6. [7, Theorem 2.7] Let h : R → R be a nonzero right-generalized
(σ, τ)−derivation associated with (σ, τ)−derivation d and I, J be nonzero ideals of
R. If a ∈ R such that ah(I) ⊂ Cλ,µ(J) then a ∈ Z or d = 0.
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Lemma 2.7. Let I be a nonzero ideal of R and a, b ∈ R. If h : R −→ R is a
nonzero left-generalized (σ, τ )−derivation associated with (σ, τ )−derivation d such
that [h(I)a, b]λ,µ = 0 then a[a, λ(b)] = 0 or d(τ−1µ(b)) = 0.

Proof. Using hypothesis we have,

0 = [h(τ−1µ(b)x)a, b]λ,µ = [d(τ−1µ(b))σ(x)a + µ(b)h(x)a, b]λ,µ

= d(τ−1µ(b))[σ(x)a, λ(b)] + [d(τ−1µ(b)), b]λ,µσ(x)a

+ µ(b)[h(x)a, b]λ,µ + [µ(b), µ(b)]h(x)a

= d(τ−1µ(b))[σ(x)a, λ(b)] + [d(τ−1µ(b)), b]λ,µσ(x)a, ∀x ∈ I

That is,

k[σ(x)a, λ(b)] + [k, b]λ,µσ(x)a = 0, ∀x ∈ I where k = d(τ−1µ(b)). (2.1)

Replacing x by xσ−1(a)y in (1) and using (1) we get,

0 = k[σ(x)aσ(y)a, λ(b)] + [k, b]λ,µσ(x)aσ(y)a

= kσ(x)a[σ(y)a, λ(b)] + k[σ(x)a, λ(b)]σ(y)a+ [k, b]λ,µσ(x)aσ(y)a

= kσ(x)a[σ(y)a, λ(b)], ∀x, y ∈ I.

That is kσ(I)a[σ(I)a, λ(b)] = 0. Since σ(I) is a nonzero ideal of R then we have

d(τ−1µ(b) = 0 or a[σ(I)a, λ(b)] = 0. (2.2)

If a[σ(I)a, λ(b)] = 0 in (2) then we get,

0 = a[σ(σ−1(a)x)a, λ(b)] = a[aσ(x)a, λ(b)]

= aa[σ(x)a, λ(b)] + a[a, λ(b)]σ(x)a = a[a, λ(b)]σ(x)a, ∀x ∈ I.

From the last relation we obtain that a[a, λ(b)] = 0 for two case. ✷

Remark 2.8. Let J be a nonzero ideal of R. If b ∈ Cλ,µ(J) then b ∈ Cλ,µ(R).

Proof. If b ∈ Cλ,µ(J) then we have 0 = [b, xr]λ,µ = µ(x)[b, r]λ,µ + [b, x]λ,µλ(r) =
µ(x)[b, r]λ,µ, ∀x ∈ J, r ∈ R. That is µ(J)[b, R]λ,µ = 0. This gives that b ∈ Cλ,µ(R).
✷

Theorem 2.9. Let h : R −→ R be a nonzero left-generalized (σ, τ )−derivation
associated with nonzero (σ, τ)−derivation d and a, b ∈ R. Let I, J be nonzero ideals
of R.

(i) If h(I)a ⊂ Cλ,µ(J) then a ∈ Z .

(ii) If ah(I) ⊂ Cλ,µ(J) then a ∈ Z or adτ−1(a) = 0.
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Proof. (i) If h(I)a ⊂ Cλ,µ(J) then we have [h(I)a, x]λ,µ = 0, ∀x ∈ J. Using this
relation and Lemma 7 we get, for any x ∈ J,

a[a, λ(x)] = 0 or dτ−1µ(x) = 0

Let K = {x ∈ J | a[a, λ(x)] = 0} and L =
{

x ∈ J | dτ−1µ(x) = 0
}

.Then K

and L are subgroups of J and J = K ∪ L. A group can not write the union of its
proper subgroups. Hence we have K = J or L = J. That is,

a[a, λ(J)] = 0 or d(τ−1µ(J) = 0

Since d 6= 0 then d(τ−1µ(J)) 6= 0 by Lemma 1. If a[a, λ(J)] = 0 then we get

0 = a[a, λ(xr)] = aλ(x)[a, λ(r)] + a[a, λ(x)]λ(r)

= aλ(x)[a, λ(r)], ∀x ∈ J, r ∈ R

and so aλ(J)[a,R] = 0. From this relation we obtain that a ∈ Z.

(ii) If ah(I) ⊂ Cλ,µ (J) then we have ah(I) ⊂ Cλ,µ(R) by Remark 1. Using this
relation we get

0 = [ah(τ−1(a)y), µ−1(a)]λ,µ = [ad(τ−1(a))σ(y) + aah(y), µ−1(a)]λ,µ

= ad(τ−1(a))[σ(y), λµ−1(a)] + [ad(τ−1(a)), µ−1(a)]λ,µσ(y)

+a[ah(y), µ−1(a)]λ,µ + [a, a]ah(y)

= ad(τ−1(a))[σ(y), λµ−1(a)] + [ad(τ−1(a)), µ−1(a)]λ,µσ(y), ∀y ∈ I,

and so

k[σ(y), p]+[k, µ−1(a)]λ,µσ(y) = 0, ∀y ∈ I, where k = ad(τ−1(a)) and p = λµ−1(a).
(2.3)

Replacing y by yx, x ∈ I in (3) we obtain that

0 = kσ(y)[σ(x), p] + k[σ(y), p]σ(x) + [k, µ−1(a)]λ,µσ(y)σ(x)

= kσ(y)[σ(x), p], ∀x, y ∈ I.

That is,

kσ(I)[σ(I), p] = 0 (2.4)

Since σ(I) is a nonzero ideal of R then k = 0 or [σ(I), p] = 0 is obtained by the
(4). This gives that ad(τ−1(a)) = 0 or a ∈ Z. ✷

Corollary 2.10. Let I, J be nonzero ideals of R and a, b ∈ R.

(i) If [I, b]σ,τa ⊂ Cλ,µ(J) then a ∈ Z or b ∈ Z.

(ii) If [b, I]σ,τa ⊂ Cλ,µ(J) then a ∈ Z or b ∈ Cσ,τ (R).

(iii) If a(b, I)σ,τ ⊂ Cλ,µ(J) then a ∈ Z or b ∈ Cσ,τ (R) or a[b, τ−1(a)]σ,τ = 0.
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Proof. (i) Let h(r) = [r, b]σ,τ , ∀r ∈ R and d(r) = [r, τ (b)], ∀r ∈ R. Since,

h(rs) = [rs, b]σ,τ = r[s, b]σ,τ + [r, τ(b)]s = d(r)s + rh(s), ∀r, s ∈ R, (2.5)

then h is a left-generalized derivation associated with derivation d. If h = 0
then d = 0 ( and so b ∈ Z ) is obtained by the relation (5).

If [I, b]σ,τa ⊂ Cλ,µ(J) then we can write h(I)a ⊂ Cλ,µ (J). If h 6= 0 and d 6= 0
then we have a ∈ Z by Theorem 1(i).

(ii) The mapping defined by d1(r) = [b, r]σ,τ , ∀r ∈ R is a (σ, τ )−derivation and
so, left (and right)-generalized (σ, τ )−derivation with d1. If d1 = 0 then we have
b ∈ Cσ,τ (R).

Let d1 6= 0. If [b, I]σ,τa ⊂ Cλ,µ(J) then we can write d1(I)a ⊂ Cλ,µ (J) . This
gives that a ∈ Z by Theorem 1(i). Finally we obtain that a ∈ Z or b ∈ Cσ,τ (R).

(iii) The mapping defined by g(r) = (b, r)σ,τ , ∀r ∈ R is a left-generalized
(σ, τ)−derivation associated with (σ, τ)−derivation d1(r) = [b, r]σ,τ , ∀r ∈ R. If
g = 0 then d1 = 0 and so b ∈ Cσ,τ (R) is obtained. Let g 6= 0 and d1 6= 0. If
a(b, I)σ,τ ⊂ Cλ,µ(J) then we have ag(I) ⊂ Cλ,µ(J). This implies that a ∈ Z or
ad1τ

−1(a) = 0 by Theorem 1(ii). That is a ∈ Z or a[b, τ−1(a)]σ,τ = 0. ✷

Lemma 2.11. Let I be a nonzero ideal of R and h : R −→ R be a nonzero
left-generalized (σ, τ )−derivation associated with a nonzero (σ, τ)−derivation d. If
a ∈ R such that [h(I), a]λ,µ = 0 then a ∈ Z or d(τ−1µ(a)) = 0.

Proof. Using hypothesis we get,

0 = [h(τ−1µ(a)x), a]λ,µ = [d(τ−1µ(a))σ(x) + µ(a)h(x), a]λ,µ

= d(τ−1µ(a))[σ(x), λ(a)] + [d(τ−1µ(a)), a]λ,µσ(x)

+µ(a)[h(x), a]λ,µ + [µ(a), µ(a)]h(x)

= d(τ−1µ(a))[σ(x), λ(a)] + [d(τ−1µ(a)), a]λ,µσ(x), ∀x ∈ I.

That is,

k[σ(x), λ(a)] + [k, a]λ,µσ(x) = 0, ∀x ∈ I, where k = d(τ−1µ(a)). (2.6)

Replacing x by xr, r ∈ R in (6) and using (6) we get

0 = kσ(x)[σ(r), λ(a)] + k[σ(x), λ(a)]σ(r) + [k, a]λ,µσ(x)σ(r)

= kσ(x)[σ(r), λ(a)], ∀x ∈ I, r ∈ R.

and so kσ(I)[R, λ(a)] = 0. Since σ(I) 6= 0 is an ideal and R is prime then we
have a ∈ Z or d(τ−1µ(a)) = 0. ✷

Theorem 2.12. Let h be a nonzero left-generalized (σ, τ) derivation associated
with (σ, τ )− derivation 0 6= d and I, J be nonzero ideals of R.

(i) If h(I) ⊂ Cλ,µ(J) then R is commutative.
(ii) If [h(I), J ]α,β ⊂ Cλ,µ(R) or (h(I), J)α,β ⊂ Cλ,µ(R) then R is commutative.
(iii) If [J, h(I)]α,β ⊂ Cλ,µ(R) then R is commutative.
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Proof. (i) If h(I) ⊂ Cλ,µ(J) then we have [h(I), x]λ,µ = 0, ∀x ∈ J. This means that,
for any x ∈ J,

x ∈ Z or d(τ−1µ(x)) = 0 (2.7)

by Lemma 8. Using (7), let us consider the following sets, K = {x ∈ J | x ∈ Z}
and L = {x ∈ J | dτ−1µ(x) = 0}. Considering as in the proof of Theorem 1 we
obtain that J ⊂ Z or d(τ−1µ(J)) = 0. Since d 6= 0 then we have d(τ−1µ(J)) 6= 0
by Lemma 1. Hence, we obtain that K = J and so J ⊂ Z. This means that R is
commutative by Lemma 2.

(ii) If [h(I), J ]α,β ⊂ Cλ,µ(R) or (h(I), J)α,β ⊂ Cλ,µ(R) then we have h(I) ⊂
Cα,β(R) or R is commutative by Lemma 3. On the other hand h(I) ⊂ Cα,β(R)
means that R is commutative by (i).

(iii) If [J, h(I)]α,β ⊂ Cλ,µ(R) then we have h(I) ⊂ Z by Lemma 4 and so R is
commutative by (i). ✷

Corollary 2.13. [8, Lemma 2] Let U be a nonzero ideal of R. If d : R −→ R is
a nonzero (σ, τ)−derivation such that d(U) ⊂ Cλ,µ(R). Then R is commutative.

Theorem 2.14. Let h : R −→ R be a nonzero left-generalized (σ, τ )−derivation
associated with a nonzero (σ, τ)−derivation d. If I 6= 0 is an ideal of R such that
[h(x), x]λ,τ = 0, ∀x ∈ I then R is commutative.

Proof. Linearizing the hypothesis, we get

[h(x), y]λ,τ + [h(y), x]λ,τ = 0, ∀x, y ∈ I. (2.8)

Replacing x by yx in (8) and using (8) we have

0 = [h(yx), y]λ,τ + [h(y), yx]λ,τ

= [d(y)σ(x) + τ(y)h(x), y]λ,τ + [h(y), yx]λ,τ

= d(y)[σ(x), λ(y)] + [d(y), y]λ,τσ(x) + τ (y)[h(x),y]λ,τ

+ [τ (y), τ (y)]h(x) + τ(y)[h(y), x]λ,τ + [h(y),y]λ,τλ(x)

= d(y)[σ(x), λ(y)] + [d(y), y]λ,τσ(x), ∀x, y ∈ I.

That is
d(y)[σ(x), λ(y)] + [d(y), y]λ,τσ(x) = 0, ∀x, y ∈ I. (2.9)

Taking xr, r ∈ R instead of x in (9) and using (9) then we arrive

0 = d(y)σ(x)[σ(r), λ(y)] + d(y)[σ(x), λ(y)]σ(r) + [d(y), y]λ,τσ(x)σ(r)

= d(y)σ(x)[σ(r), λ(y)], ∀x, y ∈ I, r ∈ R

which leads to
d(y)σ(I)[R, λ(y)] = 0, ∀y ∈ I. (2.10)

Since σ(I) 6= 0 an ideal then, for any y ∈ I, we have [R, λ(y)] = 0 or d(y) = 0
by (10) and so y ∈ Z or d(y) = 0.
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Let K = {y ∈ I | y ∈ Z} and L = {y ∈ I | d (y) = 0}. Considering as in the
proof of Theorem 1 we have, I ⊂ Z or d (I) = 0. Since I 6= 0 an ideal and d 6= 0
then we obtain that K = I by Lemma 1 and so I ⊂ Z. This means that R is
commutative by Lemma 2. ✷

Corollary 2.15. [1, Theorem 1] Let R be a prime ring and I be a nonzero ideal
of R. If R admits a nonzero (α, β)−derivation d such that [d(x), x]α,β = 0, ∀x ∈ I,
then R is commutative.

Theorem 2.16. Let R be a prime ring and 0 6= a ∈ R. If h : R −→ R is a nonzero
left-generalized (σ, τ )−derivation associated with a nonzero (σ, τ)−derivation d and
I 6= 0 an ideal of R such that [h(x)a, x]λ,τ = 0, ∀x ∈ I then R is commutative.

Proof. Replacing x by x+ y in hypothesis we have

[h(x)a, y]λ,τ + [h(y)a, x]λ,τ = 0, ∀x, y ∈ I. (2.11)

If we take yx instead of x in (11) and using (11) we get

0 = [h(yx)a, y]λ,τ + [h(y)a, yx]λ,τ

= [d(y)σ(x)a+ τ (y)h(x)a, y]λ,τ + [h(y)a, yx]λ,τ

= d(y)[σ(x)a, λ(y)] + [d(y), y]λ,τσ(x)a + τ (y)[h(x)a,y]λ,τ

+ [τ (y), τ (y)]h(x)a + τ(y)[h(y)a, x]λ,τ + [h(y)a, y]λ,τλ(x), ∀x, y ∈ I.

That is
d(y)[σ(x)a, λ(y)] + [d(y), y]λ,τσ(x)a = 0, ∀x, y ∈ I. (2.12)

Replacing x by xσ−1(a) in (12) and using (12) we have

0 = d(y)[σ(x)aa, λ(y)] + [d(y), y]λ,τσ(x)aa

= d(y)σ(x)a[a, λ(y)] + d(y)[σ(x)a, λ(y)]a+ [d(y), y]λ,τσ(x)aa

= d(y)σ(x)a[a, λ(y)], ∀x, y ∈ I.

That is
d(y)σ(I)a[a, λ(y)] = 0, ∀y ∈ I. (2.13)

Since σ(I) a nonzero ideal of R then, for any y ∈ I, we obtain that

a[a, λ(y)] = 0 or d(y) = 0

by (13). Hence, the additive group I is a union of subgroups K = {y ∈ I |
a[a, λ(y)] = 0} and L = {y ∈ I | d(y) = 0}. Considering as in the proof of the
Theorem 1, we obtain that K = I and so a[a, λ(I)] = 0. Using this result we get,

0 = a[a, λ(yr)] = aλ(y)[a, λ(r)] + a[a, λ(y)]λ(r)

= aλ(y)[a, λ(r)], ∀r ∈ R, y ∈ I.
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That is aλ(I)[a,R] = 0. This means that a ∈ Z. On the other hand, considering
that a ∈ Z and hypothesis, we get

0 = [h(x)a, x]λ,τ = h(x)[a, λ(x)] + [h(x), x]λ,τa

= [h(x), x]λ,τa for all x ∈ I.

That is [h(x), x]λ,τa = 0, ∀x ∈ I. Since a ∈ Z and a 6= 0 we have [h(x), x]λ,τ = 0
for all x ∈ I.This gives that R is commutative by Theorem 3. ✷

Remark 2.17. Let I be a nonzero ideal of R and a, b ∈ R. If (I, a)λ,µb = 0 or
b(I, a)λ,µ = 0 then a ∈ Z or b = 0.

Proof. If (I, a)λ,µb = 0 then we have
0 = (rx, a)λ,µb = r(x, a)λ,µb− [r, µ(a)]xb = −[r, µ(a)]xb, ∀r ∈ R, x ∈ I. That is

[R, µ(a)]Ib = 0. This gives that a ∈ Z or b = 0.
Let b(I, a)λ,µ = 0. Then 0 = b(xr, a)λ,µ = bx[r, λ(a)]+b(x, a)λ,µr = bx[r, λ(a)], ∀r ∈

R, x ∈ I.

This gives that bI[R, λ(a)] = 0 and so a ∈ Z or b = 0. ✷

Lemma 2.18. Let I be a nonzero ideal of R and a be a noncentral element of
R. Let h : R −→ R be a nonzero right-generalized derivation associated with d. If
h(I, a)λ,µ = 0 or (h(I), a)λ,µ = 0 then dλ(a) = 0.

Proof. If h(I, a)λ,µ = 0 then using that h is a right generalized derivation we get

0 = h(xλ(a), a)λ,µ = h{x[λ(a), λ(a)] + (x, a)λ,µλ(a)} = h{(x, a)λ,µλ(a)}

= h(x, a)λ,µλ(a) + (x, a)λ,µdλ(a) = (x, a)λ,µdλ(a), ∀x ∈ I,

which leads to
(I, a)λ,µdλ(a) = 0. (2.14)

Using Remark 2 and (14) we have a ∈ Z or dλ(a) = 0. Since a be a noncentral
then dλ(a) = 0 is obtained.

If (h(I), a)λ,µ = 0 then we have

0 = (h(xλ(a)), a)λ,µ = (h(x)λ(a) + xdλ(a), a)λ,µ

= h(x)[λ(a), λ(a)] + (h(x), a)λ,µλ(a) + x(dλ(a), a)λ,µ − [x, µ(a)]dλ(a)

= x(dλ(a), a)λ,µ − [x, µ(a)]dλ(a), ∀x ∈ I.

That is,
x(dλ(a), a)λ,µ − [x, µ(a)]dλ(a) = 0, ∀x ∈ I. (2.15)

Replacing x by xy, y ∈ I in (15) and using (15) we get

0 = xy(dλ(a), a)λ,µ − x[y, µ(a)]dλ(a)− [x, µ(a)]ydλ(a)

= −[x, µ(a)]ydλ(a), ∀x, y ∈ I.

and so [I, µ(a)]Idλ(a) = 0. Since R is prime and a be a noncentral element then
we obtain that dλ(a) = 0. ✷
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Lemma 2.19. Let I be a nonzero ideal of R and a is a noncentral element of R.
Let h : R −→ R be a nonzero left generalized derivation associated with derivation
d1 : R −→ R. If h((I, a)λ,µ) = 0 or (h(I), a)λ,µ = 0 then d1µ(a) = 0.

Proof. If h(I, a)λ,µ = 0 then using that h is a left-generaized derivation we get

0 = h(µ(a)x, a)λ,µ = h {µ(a)(x, a)λ,µ − [µ(a), µ(a)]x}

= h {µ(a)(x, a)λ,µ} = d1(µ(a))(x, a)λ,µ + µ(a)h((x, a)λ,µ)

= d1(µ(a))(x, a)λ,µ, ∀x ∈ I.

That is,
d1(µ(a))(I, a)λ,µ = 0. (2.16)

Since a be noncentral then using Remark 2 and (16) we obtain thatd1(µ(a)) = 0.
On the other hand, If (h(I), a)λ,µ = 0 then we have d1(µ(a)) = 0 by Lemma 5.

✷

Theorem 2.20. Let I be a nonzero ideal of R and a is a noncentral element of
R. Let h : R −→ R be a nonzero right-generalized derivation associated with d and
left-generalized derivation associated with d1 . Then h((I, a)λ,µ) = 0 if and only if
(h(I), a)λ,µ = 0.

Proof. If h((I, a)λ,µ) = 0 or (h(I), a)λ,µ = 0 then d(λ(a)) = 0 and d1(µ(a)) = 0 are
obtained by Lemma 9 and Lemma 10.

Using these results we get

h((I, a)λ,µ) = 0 ⇐⇒ h(xλ(a) + µ(a)x) = 0, ∀x ∈ I.

⇐⇒ h(x)λ(a) + xd(λ(a)) + d1(µ(a))x+ µ(a)h(x) = 0, ∀x ∈ I.

⇐⇒ h(x)λ(a) + µ(a)h(x) = 0, ∀x ∈ I.

⇐⇒ (h(I), a)λ,µ = 0.

✷

Corollary 2.21. [9, Theorem 7] Let R be a prime ring of characteristic different
from two, d : R −→ R be a nonzero derivation and a ∈ R. Then (d(R), a) = 0 if
and only if d(R, a) = 0.
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