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On a Nonlinear System Arising in a Theory of Thermal Explosion

S.H. Rasouli

abstract: The purpose of this paper is to study the existence and multiplicity of
positive solutions for a mathematical model of thermal explosion which is described
by the system















−∆u = λf(v), x ∈ Ω,

−∆v = λg(u), x ∈ Ω,

n.∇u+ a(u)u = 0, x ∈ ∂Ω,

n.∇v + b(v)v = 0, x ∈ ∂Ω,

where Ω is a bounded smooth domain of RN , ∆ is the Laplacian operator, λ > 0 is
a parameter, f, g belong to a class of non-negative functions that have a combined
sublinear effect at ∞, and a, b : [0,∞) → (0,∞) are nondecreasing C1 functions.
We establish our existence and multiplicity results by the method of sub– and su-
persolutions.
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1. Introduction

A classical problem in combustion theory is a model of thermal explosion
which occurs due to a spontaneous ignition in a rapid combustion process. In this
paper, we consider a model involving a nonlinear boundary heat loss which is not
a very typical one in classical combustion theory, but is relevant to some more
applications (see [4,10,12,5] for details). The model reads as:























θ(t)−∆θ = λf(η), (t, x) ∈ (0,∞)× Ω,
η(t)−∆η = λg(θ), (t, x) ∈ (0,∞)× Ω,
n.∇θ + a(θ)θ = 0, (t, x) ∈ (0,∞)× ∂Ω,
n.∇η + b(η)η = 0, (t, x) ∈ (0,∞)× ∂Ω,
θ(0, x) = 0 = η(0, x).

(1.1)

Here θ, η are the appropriately scaled temperature in a bounded smooth domain
Ω ⊂ RN, N ≥ 1, and f, g are the normalized reaction rate. We assume that f, g
satisfying the following assumptions:

(H1) f, g ∈ C([0,∞)) are nondecreasing functions,
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and

(H2) lims→∞
f(Ag(s))

s
= 0, for all A > 0.

On the C2 boundary ∂Ω, with the outward unit normal denoted by n, the
heat-loss parameters a(θ), b(η) are assumed to satisfy the following hypothesis:

(H3) a, b : [0,∞) → (0,∞) are nondecreasing bounded C1 functions.

Physically this assumption means that a heat loss through the boundary always
exists and increases linearly with the temperature even in the small temperature
regime.

A bifurcation (or scaling) parameter λ > 0 can be associated with the size of
domain Ω in (1) which grows linearly as the measure of Ω increases. It is well
known that, after normalizing for the size of Ω, the long term behavior of solution
of (1) is close to the solution of the time-independent system:















−∆u = λf(v), x ∈ Ω,
−∆v = λg(u), x ∈ Ω,
n.∇u+ a(u)u = 0, x ∈ ∂Ω,
n.∇v + b(v)v = 0, x ∈ ∂Ω.

(1.2)

The motivation for this study cames from the work in [7] where the authors es-
tablished the existence, uniqueness and multiplicity of positive solutions for certain
range of λ for the single equation of the form

{

−∆u = λf(u), x ∈ Ω,
n.∇u+ a(u)u = 0, x ∈ ∂Ω.

Here we extend this study to Laplacian system of the form (1). In [1], Ali-
Shivaji-Ramaswamy discussed the existence of multiple positive solutions to such
systems with Dirichlet boundary conditions. One can refer to [3,8] for some re-
cent existence and uniqueness results of elliptic problems with nonlinear boundary
conditions.

2. Existence results

In this section, we shall establish our existence results via the method of
sub - supersolution. A pair of nonnegative functions (ψ1, ψ2) ∈ W 1,2 ∩ C(Ω) ×
W 1,2 ∩ C(Ω) and (z1, z2) ∈ W 1,2 ∩ C(Ω) ×W 1,2 ∩ C(Ω) are called a subsolution
and supersolution of (1) if they satisfy















−∆ψ1 ≤ λf(ψ2), x ∈ Ω,
−∆ψ2 ≤ λg(ψ1), x ∈ Ω,
n.∇ψ1 + a(ψ1)ψ1 ≤ 0, x ∈ ∂Ω,
n.∇ψ2 + b(ψ2)ψ2 ≤ 0, x ∈ ∂Ω,

(2.1)
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and














−∆z1 ≥ λf(z2), x ∈ Ω,
−∆z2 ≥ λg(z1), x ∈ Ω,
n.∇z1 + a(z1)z1 ≥ 0, x ∈ ∂Ω,
n.∇z2 + b(z2)z2 ≥ 0, x ∈ ∂Ω,

(2.2)

respectively. It is well known that if there exist sub and supersolutions (ψ1, ψ2)
and (z1, z2) respectively of (1) such that (ψ1, ψ2) ≤ (z1, z2). Then (1) has a solution
(u, v) such that (u, v) ∈ [(ψ1, ψ2), (z1, z2)] ( see [2,6] ).

By strict sub and super-solutions we understand functions (ψ1, ψ2) and (z1, z2)
for which strict inequalities (3) and (4) hold.

Our multiplicity results are obtained by constructing sub and super-solution
pairs that satisfy the following Lemma:

Lemma 2.1. ( See [6,9,11] ). Suppose the system (1) has a sub-solution (ψ1, ψ2),
a strict super-solution (ζ1, ζ2), a strict sub-solution (w1, w2), and a super-solution
(z1, z2) for (1) such that

(ψ1, ψ2) ≤ (ζ1, ζ2) ≤ (z1, z2),

(ψ1, ψ2) ≤ (w1, w2) ≤ (z1, z2),

and (w1, w2) � (ζ1, ζ2). Then (1) has at least three distinct solutions (ui, vi),
i = 1, 2, 3 such that

(u1, v1) ∈ [(ψ1, ψ2), (ζ1, ζ2)], (u2, v2) ∈ [(w1, w2), (z1, z2)]

and

(u3, v3) ∈
[

(ψ1, ψ2), (z1, z2)
]

\
([

(ψ1, ψ2), (ζ1, ζ2)
]

∪
[

(w1, w2), (z1, z2)
])

.

To precisely state our existence result we consider the unique classical solution
er of the following linear elliptic problem

{

−∆er = 1, x ∈ Ω,
n.∇er + r0er = 0, x ∈ ∂Ω,

(2.3)

for r = a, b, where r0 = r(0). Then we establish:

Theorem 2.2. Let (H1)− (H3) hold and f(0) or g(0) be strictly positive. Then
(1) has a positive solution (u, v) for all λ > 0.

Proof. It is easy to see that (ψ1, ψ2) = (0, 0) is a subsolution of (1). We now

construct the supersolution (z1, z2). Let (z1, z2) =
(

Cλea, λg(Cλ‖eb‖∞)eb

)

, where
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Cλ is a large number to be chosen later. We shall verify that (z1, z2) is a superso-
lution of (1) for all λ > 0. By (H2) we can choose Cλ large enough so that

Cλ ≥ λf
(

λg(Cλ‖eb‖∞)‖eb‖∞

)

,

and therefore

−∆z1 = Cλ ≥ λf
(

λg(Cλ‖eb‖∞)‖eb‖∞

)

≥ λf
(

λg(Cλ‖eb‖∞)eb

)

= λf(z2) inΩ,

and

n.∇z1 + a(z1)z1 ≥ Cλn.∇ea + Cλeaa0

= Cλ(n.∇ea + eaa0)

= 0 on ∂Ω.

Next,

−∆z2 = λg
(

Cλ‖eb‖∞

)

≥ λg
(

Cλeb

)

= λg(z1) inΩ,

and

n.∇z2 + b(z2)z2 ≥ λg
(

Cλ‖eb‖∞

)

n.∇eb + λg
(

Cλ‖eb‖∞

)

ebb0

= λg
(

Cλ‖eb‖∞

)

(n.∇eb + b0eb)

= 0 on∂Ω,

which implies that (z1, z2) is indeed a positive supersolution of (1). Therefore
(1) has a positive solution for all λ > 0. ✷

Our second result concerns with multiplicity of solution for the system (1) and
gives an estimate on the parameter λ when such a situation occurs. For positive
constants ai, bi; i = 1, 2, define

Q1(a1, b1) = min{
a1

f(b1)
,
b1

g(a1)
}

and

Q2(a2, b2) = max{
a2

f(b2)
,
b2

g(a2)
}.
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Then we establish:

Theorem 2.3. Assume f(0) or g(0) be strictly positive. Let BR be the largest
ball of radius R inscribed in Ω, for 0 < ǫ < R, we define

C1(Ω) = inf
ǫ

N

ǫN
RN−1

R− ǫ
,

and C(Ω) = C1(Ω)‖er‖∞, for r = a, b. Let (H1) − (H3) hold and Q1

Q2

> C(Ω) for

some ai, bi, i = 1, 2. Then (1) has at least three positive solutions for λ ∈ (λ∗, λ
∗),

where λ∗ = CQ2 and λ∗ = Q1

‖er‖∞

, for r = a, b.

Proof. We will establish a pair of subsolutions (ψ1, ψ2), (w1, w2) and a pair of
supersolutions (ζ1, ζ2), (z1, z2), satisfying Lemma 2.1. Clearly (ψ1, ψ2) = (0, 0) is
a subsolution of (1).

We next construct a positive supersolution (ζ1, ζ2), of (1) when λ <
Q1

‖er‖∞

, for

r = a, b. Since λ < a1

f(b1)‖ea‖∞

, we can choose ǫ > 0 so small that λf(b1) <
a1

ǫ+‖ea‖∞

.

Let (ζ1, ζ2) = (a1
ea+ǫ

‖ea‖∞+ǫ
, b1

eb+ǫ
‖eb‖∞+ǫ

). Then, we have

−∆ζ1 =
a1

ǫ+ ‖ea‖∞
> λf(b1)

≥ λf
(

b1
eb + ǫ

‖eb‖∞ + ǫ

)

= λf(ζ2) inΩ,

and

n.∇ζ1 + a(ζ1)ζ1 ≥
a1

ǫ+ ‖ea‖∞

(

n.∇ea + (ea + ǫ)a0

)

=
a1

ǫ+ ‖ea‖∞
(n.∇ea + a0ea + a0ǫ)

=
a1a0ǫ

ǫ+ ‖ea‖∞

> 0 on∂Ω.

Similar argument shows that ζ2 satisfies−∆ζ2 > λg(ζ1) inΩ, and n.∇ζ2+b(ζ2)ζ2 >
0.

Next let us construct a strict sub-solution (w1, w2) of (1). First note that a
system







−∆uD = λf(vD), x ∈ Ω,
−∆vD = λg(uD), x ∈ Ω,
uD = 0 = vD, x ∈ ∂Ω,

admits a strict sub-solution (w1D, w2D) with ‖w1D‖∞ ≥ a2 and ‖w2D‖∞ ≥ b2
provided λ < λ∗ (see [1]). Then we have (w1, w2) � (ζ1, ζ2). By the Hopf’s lemma
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we have that n.∇wiD < 0 for i = 1, 2. Therefore, setting w1 = w1D and w2 = w2D

we obtain a strict sub-solution for (1) for λ > λ∗.

Let (z1, z2) be the super solution as in the proof of Theorem 2.2 Further wi, ζi ≤
zi, i = 1, 2 for Cλ large. Hence there exist positive solutions (ui, vi), i = 1, 2, 3 such
that

(u1, v1) ∈ [(ψ1, ψ2), (ζ1, ζ2)], (u2, v2) ∈ [(w1, w2), (z1, z2)]

and

(u3, v3) ∈
[

(ψ1, ψ2), (z1, z2)
]

\
([

(ψ1, ψ2), (ζ1, ζ2)
]

∪
[

(w1, w2), (z1, z2)
])

. ✷
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