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abstract: The aim of this paper is to introduce and study upper and lower
almost semi-I-continuous multifunctions as a generalization of upper and lower semi-
I-continuous multifunctions, respectively.
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1. Introduction

It is well known that various types of functions play a significant role in the
theory of classical point set topology. A great number of papers dealing with such
functions have appeared, and a good number of them have been extended to the
setting of multifunctions [1,3,15,16,17,18,19]. This implies that both, functions
and multifunctions are important tools for studying other properties of spaces and
for constructing new spaces from previously existing ones. The concept of ide-
als in topological spaces has been introduced and studied by Kuratowski [10] and
Vaidyanathaswamy [21]. An ideal I on a topological space (X, τ) is a nonempty
collection of subsets of X which satisfies (i) A ∈ I and B ⊂ A implies B ∈ I and
(ii) A ∈ I and B ∈ I implies A ∪ B ∈ I. Given a topological space (X, τ) with an
ideal I on X and if P(X) is the set of all subsets of X , a set operator (.)⋆: P(X)
→ P(X), called the local function [21] of A with respect to τ and I, is defined as
follows: for A ⊂ X , A⋆(τ , I) = {x ∈ X |U∩A /∈ I for every U ∈ τ(x)}, where τ (x) =
{U ∈ τ |x ∈ U}. A Kuratowski closure operator Cl⋆(.) for a topology τ⋆(τ , I) called
the ∗-topology, finer than τ is defined by Cl⋆(A) = A ∪ A⋆(τ , I) when there is no
chance of confusion, A⋆(I) is denoted by A⋆. If I is an ideal on X , then (X, τ, I)
is called an ideal topological space. In 1990, Jankovic and Hamlett [8] introduced
the notion of I-open sets in topological spaces. In 2002, Hatir and Noiri [5] further
investigated semi-I-open sets and semi-I-continuous functions. Recently, Akdag
and Canan [1] introduced and studied the concept of semi-I-continuous multifunc-
tions on ideal topological spaces. Also in [16], the theory of almost continuity
for multifunctions is unified using certain minimal conditions. In this paper, we
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introduce and study upper (lower) almost-I continuous multifunctions and obtain
several characterizations of upper (lower) almost semi-I-continuous multifunctions
and basic properties of such functions.

2. Preliminaries

Throughout this paper, (X, τ ) and (Y, σ) (or simply X and Y ) always mean
topological spaces in which no separation axioms are assumed unless explicitly
stated. Let A be a subset of a space X . For a subset A of (X, τ ), Cl(A) and Int(A)
denote the closure of A with respect to τ and the interior of A with respect to τ ,
respectively. A subset S of an ideal topological space (X, τ, I) is semi-I-open [8] if
S ⊂ Cl⋆ Int(S). The complement of a semi-I-closed set is said to be a semi-I-open
set. The semi-I-closure and the semi-I-interior, that can be defined in the same
way as Cl(A) and Int(A), respectively, will be denoted by sICl(A) and sI Int(A),
respectively. The family of all semi-I-open (resp. semi-I-closed) sets of (X, τ, I) is
denoted by SIO(X) (resp. IC(X)). The family of all semi-I-open (resp. semi-I-
closed) sets of (X, τ, I) containing a point x ∈ X is denoted by SIO(X, x) (resp.
IC(X, x)). A subset A is said to be regular open [20] (resp. semiopen [11], preopen
[12], semi-preopen [2]) if A = Int(Cl(A)) (resp. A ⊂ Cl(Int(A)), A ⊂ Int(Cl(A)),
A ⊂ Cl(Int(Cl(A)))). The complement of regular open (resp. semiopen, semi-
preopen) set is called regular closed (resp. semiclosed, α-closed, semi pre-closed)
set. The intersection (resp. union) of all semiclosed (resp. semiopen) set containing
(resp. contained in) A ⊂ X is called the semiclosure (resp. semiinterior) of A
and is denoted by sCl(A) (resp. s Int(A)). The family of all regular open (resp.
regular closed, semiopen, semiclosed, preopen, semi-preopen, semi-preclosed) sets
of (X, τ) is denoted by RO(X) (resp. RC(X), SO(X), SC(X), PO(X), SPO(X),
SPC(X)). By a multifunction F : (X, τ ) → (Y, σ), we shall denote the upper
and lower inverse of a set B of Y by F+(B) and F−(B), respectively, that is,
F+(B) = {x ∈ X : F (x) ⊂ B} and F−(B) = {x ∈ X : F (x) ∩ B 6= ∅}. In
particular, F−(y) = {x ∈ X : y ∈ F (x)} for each point y ∈ Y and for each
A ⊂ X , F (A) =

⋃
x∈A F (x). A multifunction F : (X, τ, I) → (Y, σ) is said to

be lower semi-I-continuous [1] (resp. upper semi-I-continuous) multifunction if
F−(V ) ∈ SIO(X, τ ) (resp. F+(V ) ∈ SIO(X, τ )) for every V ∈ σ. A subset N
of an ideal topological space (X, τ, I) is said to be semi-I-neighborhood of a point
x ∈ X , if there exists a semi-I-open set V such that x ∈ V ⊂ N .

Lemma 2.1. The following statements are true:

1. Let A be a subset of a space (X, τ ). Then A ∈ PO(X) if and only if sCl(A) =
Int(Cl(A)) [6].

2. A subset A of a space (X, τ) is semi-preopen if and only if Cl(A) is regular
closed [2].

Definition 2.2. [19] A multifunction F : (X, τ, I) → (Y, σ) is said to be:

1. lower weakly semi-I-continuous if for each x ∈ X and each open set V of Y
such that x ∈ F−(V ), there exists U ∈ SIO(X, x) such that U ⊂ F−(Cl(V )),
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2. upper weakly semi-I-continuous if for each x ∈ X and each open set V of Y
such that x ∈ F+(V ), there exists U ∈ SIO(X, x) such that U ⊂ F+(Cl(V )),

3. weakly semi-I-continuous if it is both upper weakly semi-I-continuous and
lower weakly semi-I-continuous.

3. On upper and lower almost semi-I-continuous multifunctions

Definition 3.1. A multifunction F : (X, τ, I) → (Y, σ) is said to be:

1. lower almost semi-I-continuous if for each x ∈ X and each open set V
of Y such that x ∈ F−(V ), there exists U ∈ SIO(X, x) such that U ⊂
F−(Int(Cl(V ))),

2. upper almost semi-I-continuous if for each x ∈ X and each open set V
of Y such that x ∈ F+(V ), there exists U ∈ SIO(X, x) such that U ⊂
F+(Int(Cl(V ))),

3. almost semi-I-continuous if it is both upper almost semi-I-continuous and
lower almost semi-I-continuous.

It is clear that every upper (lower) semi-I-continuous function is upper (lower)
almost semi-I-continuous. But the converse is not true as shown by the following
example.

Example 3.2. Let X = {a, b, c}, τ = {∅, {a}, X}, σ = {∅, {b}, X} and I =
{∅, {a}}. Then the multifunction F : (X, τ , I) → (X, σ) defined by F (x) = {x} for
all x ∈ X is upper almost semi-I-continuous but is not upper semi-I-continuous.

Theorem 3.3. The following statements are equivalent for a multifunction F :
(X, τ , I) → (Y, σ):

1. F is upper almost semi-I-continuous multifunction,

2. for each x ∈ X and for each open set V such that F (x) ⊂ V , there exists
U ∈ SIO(X, x) such that if y ∈ U , then F (y) ⊂ Int(Cl(V )) = sCl(V ),

3. for each x ∈ X and for each regular open set G of Y such that F (x) ⊂ G,
there exists U ∈ SIO(X, x) such that F (U) ⊂ G,

4. for each x ∈ X and for each closed set K such that x ∈ F+(Y \K), there
exists a semi-I-closed set H such that x ∈ X\H and F−(Cl(Int(K))) ⊂ H,

5. F+(Int(Cl(V ))) ∈ SIO(X) for any open set V ⊂ Y ,

6. F−(Cl(Int(K))) ∈ SIC(X) for any closed set K ⊂ Y ,

7. F+(G) ∈ SIO(X) for any regular open set G of Y ,

8. F−(K) ∈ SIC(X) for any regular closed set K of Y ,
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9. for each point x of X and each neighbourhood V of F (x), F+(Int(Cl(V ))) is
a semi-I-neighbourhood of x,

10. for each point x of X and each neighbourhood V of F (x), there exists a semi-
I-neighborhood U of x such that F (U) ⊂ Int(Cl(V )).

Proof. (1)⇔(2): The proof follows from Definition 3.1 and lemma 2.1.
(2)⇒(3): Let x ∈ X and G be a regular open set of Y such that F (x) ⊂ G. By
(2), there exists U ∈ SIO(X, x) such that if y ∈ U , then F (y) ⊂ Int(Cl(G)) = G.
We obtain F (U) ⊂ G.
(3)⇒(2): Let x ∈ X and V be an open set of Y such that F (x) ⊂ V . Then,
Int(Cl(V )) ∈ RO(Y ). By (3), there exists U ∈ SIO(X, x) such that F (U) ⊂
Int(Cl(V )).
(2)⇒(4): Let x ∈ X and K be a closed set of Y such that x ∈ F+(Y \K).
By (2), there exists U ∈ SIO(X, x) such that F (U) ⊂ Int(Cl(Y \K)). We have
Int(Cl(Y \K)) = Y \Cl(Int(K)) and U ⊂ F+(Y \Cl(Int(K))) = X\F−(Cl(Int(K))).
We obtain F−(Cl(Int(K))) ⊂ X\U . Take H = X\U . Then, x ∈ X\H and H is
semi-I-closed set.
(4)⇒(2): Let x ∈ X and V be an open set of Y such that F (x) ⊂ V . Then Y \V
is closed in Y and x ∈ F+(V ) = F+(Y \(Y \V )). By (4), there exits a semi-I-
closed set L such that x ∈ X\L and F−(Cl(Int(Y \V ))) ⊂ L. This implies that
X\L ⊆ F+(Int(Cl(V ))). Put U = X\L. Then U ∈ SIO(X) and if y ∈ U , then
F (y) ⊂ Int(Cl(V )).
(1)⇒(5): Let V be any open set of Y and x ∈ F+(Int(Cl(V ))). By (1), there
exists Ux ∈ SIO(X, x) such that Ux ⊂ F+(Int(Cl(V ))). Therefore, we obtain
F+(Int(Cl(V ))) =

⋃

x∈F+(Int(Cl(V )))

Ux. Hence, F
+(Int(Cl(V ))) ∈ SIO(X).

(5)⇒(1): Let V be any open set of Y and x ∈ F+(V ). By (5), F+(Int(Cl(V ))) ∈
SIO(X). Take U = F+(Int(Cl(V ))). Then F (U) ⊂ Int(Cl(V )). Hence, F is upper
almost semi-I-continuous.
(5)⇒(6): Let K be any closed set of Y . Then, Y \K is an open set of Y . By (5),
F+(Int(Cl(Y \K))) ∈ SIO(X). Since Int(Cl(Y \K)) = Y \Cl(Int(K)), it follows
that F+(Int(Cl(Y \K))) = F+(Y \Cl(Int(K))) = X\F−(Cl(Int(K))). We obtain
that F−(Cl(Int(K))) is semi-I-closed in X .
(6)⇒(5): It can be obtained similarly as (5)⇒(6).
(5)⇒(7): Let G be any regular open set of Y . By (5), F+(Int(Cl(G))) = F+(G) ∈
SIO(X).
(7)⇒ (5): Let V be any open set of Y . Then, Int(Cl(V )) ∈ RO(Y ). By (7),
F+(Int(Cl(V ))) ∈ SIO(X).
(6)⇒(8): It can be obtained similarly as (5)⇒(7).
(8)⇒(6): It can be obtained similarly as (7)⇒(5).
(5)⇒(9): Let x ∈ X and V be a neighbourhood of F (x). Then there exists an
open set G of Y such that F (x) ⊂ G ⊂ V . Then we have x ∈ F+(G) ⊂ F+(V ).
Since F+(Int(Cl(G))) ∈ SIO(X), F+(Int(Cl(V ))) is a semi-I-neighbourhood of x.
(9)⇒(10): Let x ∈ X and V be a neighbourhood of F (x). By (9), F+(Int(Cl(V )))
is a semi-I-neighbourhood of x. Take U = F+(Int(Cl(V ))). Then F (U) ⊂
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Int(Cl(V )).
(10)⇒(1): Let x ∈ X and V be any open set of Y such that F (x) ⊂ V . Then
V is a neighbourhood of F (x). By (10), there exists a semi-I-neighbourhood U of
x such that F (U) ⊂ Int(Cl(V )). Therefore, there exists G ∈ SIO(X) such that
x ∈ G ⊂ U and hence F (G) ⊂ F (U) ⊂ Int(Cl(V )). We obtain that F is upper
almost semi-I-continuous. ✷

Theorem 3.4. For a multifunction F : (X, τ , I) → (Y, σ), the following statements
are equivalent:

1. F is lower almost semi-I-continuous multifunction,

2. for each x ∈ X and for each open set V such that F (x) ∩ V 6= ∅, there exists
U ∈ SIO(X, x) such that if y ∈ U , then F (y) ∩ Int(Cl(V )) 6= ∅,

3. for each x ∈ X and for each regular open set G of Y such that F (x)∩G 6= ∅,
there exists U ∈ SIO(X, x) such that if y ∈ U , then F (y) ∩G 6= ∅,

4. for each x ∈ X and for each closed set K such that x ∈ F−(Y \K), there
exists a semi-I-closed set H such that x ∈ X\H and F+(Cl(Int(K))) ⊂ H,

5. F−(Int(Cl(V ))) ∈ SIO(X) for any open set V ⊂ Y ,

6. F+(Cl(Int(K))) ∈ SIC(X) for any closed set K ⊂ Y ,

7. F−(G) ∈ SIO(X) for any regular open set G of Y ,

8. F+(K) ∈ SIC(X) for any regular closed set K of Y .

Proof. We Prove only (1)⇒(2), (2)⇒(3), (3)⇒(4). The other proofs can be ob-
tained similarly as Theorem 3.3.
(1)⇒(2): Let x ∈ X and V be an open subset of Y such that F (x) ∩ V 6= ∅.
Since F is lower almost semi-I-continuous, there exists U ∈ SIO(X, x) such that
U ⊂ F−(Int(Cl(V ))). This implies that if y ∈ U , then F (y) ∩ Int(Cl(V )) 6= ∅.
(2)⇒(3): Let x ∈ x and G be a regular open subset of Y such that F (x) ∩G 6= ∅.
Then G = Int(Cl(G)) is open in Y . By (2), there exits U ∈ SIO(X, x) such that if
y ∈ U , then F (y) ∩ Int(Cl(G)) 6= ∅. That is, if y ∈ U , then F (y) ∩G 6= ∅.
(3)⇒(4): Let x ∈ X and K be a closed subset of Y such that x ∈ F−(Y \K).
Then Int(Cl(Y \K)) is regular open in Y such that x ∈ F−(Int(Cl(Y \K))). Thus
F (x) ∩ Int(Cl(Y \K)) 6= ∅. By (3), there exits U ∈ SIO(X, x) such that if
y ∈ U , then F (y) ∩ Int(Cl(Y \K)) 6= ∅. Hence U ⊂ F−(Int(Cl(Y \K))), and so
U ⊂ X\F+(Cl(Int(K))). Set L = X\U . Then L is a semi-I-closed set such that
x ∈ X\L and F+(Cl(Int(K))) ⊂ L.
(4)⇒(1): Let x ∈ x and V be an open subset of Y such that x ∈ F−(V ). Then
Y \V is closed in Y such that x ∈ F−(Y \(Y \V )). By (4), there exits a semi-I-
closed set L such that x ∈ X\L and F+(Cl(Int(Y \V ))) ⊂ L. Set U = X\L. Thus
U is semi-I-open in X such that x ∈ U and U ⊂ F−(Int(Cl(V ))). Therefore, F is
lower almost semi-I-continuous. ✷
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Theorem 3.5. The following are equivalent for a multifunction F : (X, τ , I) →
(Y, σ):

1. F is upper almost semi-I-continuous;

2. sICl(F−(V )) ⊂ F−(Cl(V )) for every V ∈ SPO(Y );

3. sICl(F−(V )) ⊂ F−(Cl(V )) for every V ∈ SO(Y );

4. F+(V ) ⊂ sI Int(F+(Int(Cl(V )))) for every V ∈ PO(Y ).

Proof. (1)→(2). Let V be any semi-I-open set of Y . Since Cl(V ) ∈ RC(Y ), by
Theorem 3.3 F−(Cl(V )) is semi-I-closed in X and F−(V ) ⊂ F−(Cl(V )). There-
fore, we obtain sICl(F−(V )) ⊂ F−(Cl(V )).
(2)→(3). This is obvious since SO(Y ) ⊂ SPO(Y ).
(3)→(4). Let V ∈ PO(Y ). Then, we have V ⊂ Int(Cl(V )) and Y \V ⊃ Cl(Int(Y \V )).
Since Cl(Int(Y \V )) ∈ SO(Y ), X\F+(V ) = F−(Y \V ) ⊃ F−(Cl(Int(Y \V ))) ⊃
sICl(F−(Cl(Int(Y \V )))) =
sICl(F−(Y \ Int(Cl(V )))) = sIClCl(X\F+(Int(Cl(V ))))
= X\sI Int(F+(Int(Cl(V )))). Therefore, F+(V ) ⊂ sI Int(F+(Int(Cl(V )))).
(4)→(1). Let V be any regular open set of Y . Since V ∈ PO(Y ), we have
F+(V ) ⊂ sI Int(F+(Int(Cl(V )))) = sI Int(F+(V )) and hence F+(V ) ∈ SIO(X).
It follows from Theorem 3.3, that F is upper almost semi-I-continuous. ✷

Theorem 3.6. The following are equivalent for a multifunction F : (X, τ , I) →
(Y, σ):

1. F is lower almost semi-I-continuous;

2. sICl(F+(V )) ⊂ F+(Cl(V )) for every V ∈ SPO(Y );

3. sICl(F+(V )) ⊂ F+(Cl(V )) for every V ∈ SO(Y );

4. F−(V ) ⊂ sI Int(F−(Int(Cl(V )))) for every V ∈ PO(Y ).

Proof. The proof is similar to that of Theorem 3.5 and is thus omitted. ✷

Definition 3.7. Let (X, τ, I) be an ideal topological space and let (xα) be a net in
X. It is said that the net (xα) semi-I-converges to x if for each semi-I-open set G
containing x in X, there exists an index α0 ∈ I such that xα ∈ G for each α ≥ α0.

Theorem 3.8. If F : (X, τ , I) → (Y, σ) is a lower (upper) almost semi-I-continuous
multifunction, then for each x ∈ X and for each net (xα) which semi-I-converges
to x in X and for each open set V ⊂ Y such that x ∈ F−(V ) (resp. x ∈ F+(V )),
the net (xα) is eventually in F−(Int(Cl(V ))) (resp. F+(Int(Cl(V )))).
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Proof. Let (xα) be a net semi-I-converges to x in X and let V be any open set in
Y such that x ∈ F−(V ). Since F is lower almost semi-I-continuous multifunction,
there exists a semi-I-open set U in X containing x such that U ⊂ F−(Int(Cl(V ))).
Since (xα) semi-I-converges to x, there exists an index α0 ∈ J such that xα ∈ U
for all α ≥ α0. So we obtain that xα ∈ U ⊂ F−(Int(Cl(V ))) for all α ≥ α0. Thus,
the net (xα) is eventually in F−(Int(Cl(V ))).
The proof of the upper almost semi-I-continuity of F is similar to the above. ✷

Definition 3.9. Let (X, τ ) be a topological space. The collection of all regular
open sets forms a base for a topology τ∗. It is called the semiregularization. In
case when τ = τ∗, the space (X, τ ) is called semiregular [20].

Theorem 3.10. Let F : (X, τ, I) → (Y, σ) be a multifunction from a topological
space (X, τ) to a semiregular topological space (Y, σ). Then F is lower almost
semi-I-continuous multifunction if and only if F is lower semi-I-continuous.

Proof. Let x ∈ X and let V be an open set such that x ∈ F−(V ). Since (Y, σ) is a
semiregular space, there exist regular open sets Ui for i ∈ I such that V = ∪

i∈I
Ui.

We have F−(V ) = F−( ∪
i∈I

Ui) = ∪
i∈I

F−(Ui). By Theorem 3.3, F−(Ui) ∈ SIO(X)

for i ∈ I. We obtain F−(V ) ∈ SIO(X). Hence F is lower semi-I-continuous. The
converse is obvious. ✷

Corollary 3.11. A multifunction F : (X, τ , I) → (Y, σ) is lower almost semi-I-
continuous multifunction if and only if F : (X, τ, I) → (Y, σ∗) is lower semi-I-
continuous.

Suppose that (X, τ ), (Y, σ) and (Z, η) are topological spaces. It is known that
if F1 : (X, τ , I) → (Y, σ) and F2 : (Y, σ) → (Z, η) are multifunctions, then the
composite multifunction F2 ◦ F1 : (X, τ ) → (Z, η) is defined by (F2 ◦ F1)(x) =
F2(F1(x)) for each x ∈ X .

Theorem 3.12. If F : (X, τ , I) → (Y, σ) is an upper (lower) semicontinuous
multifunction and G : (Y, σ) → (Z, η) is an upper (lower) semicontinuous multi-
function, then G◦F : (X, τ ) → (Z, η) is an upper (lower) almost semi-I-continuous
multifunction.

Proof. Let V ⊂ Z be any regular open set. From the definition of G ◦ F , we
have (G ◦ F )+(V ) = F+(G+(V )) (resp. (G ◦ F )−(V ) = F−(G−(V ))). Since G
is upper (lower) semicontinuous multifunction, G+(V ) (resp. G−(V )) is an open
set. Since F is upper (lower) semi-I-continuous multifunction, F+(G+(V )) (resp.
F−(G−(V ))) is a semi-I-open set. It shows that G ◦ F is an upper (resp. lower)
almost semi-I-continuous multifunction. ✷

Theorem 3.13. A multifunction F : (X, τ , I) → (Y, σ) is upper almost semi-
I-continuous if and only if sClF : (X, τ , I) → (Y, σ) is upper almost semi-I-
continuous, where sClF (x) = sCl(F (x)) for each point x ∈ X.
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Proof. Suppose that F is upper almost semi-I-continuous. Let V be any open set of
Y such that sClF (x) ⊂ V . Then F (x) ⊂ V and by Theorem 3.3, there exists U ∈
SIO(X, x) such that F (U) ⊂ sCl(V ). For each u ∈ U , F (U) ⊂ sCl(V ) and hence
(sClF )+(V ) ⊂ sI Int(sClF )+(sCl(V )). It follows from Theorem 3.3, that sClF
is upper almost semi-I-continuous. Conversely, suppose that sClF : (X, τ, I) →
(Y, σ) is upper almost semi-I-continuous. Let V be any open set of Y and x ∈
F+(V ). Then F (x) ⊂ V and sClF (x) ⊂ sCl(V ). There exists U ∈ SIO(X, x)
such that sClF (U) ⊂ sCl(V ). Therefore, we have U ⊂ (sClF )+(sCl(V )) ⊂
F+(sCl(V )) and hence x ∈ U ⊂ sI Int(F+(sCl(V ))). Thus, we obtain F+(V ) ⊂
sI Int(F+(sCl(V ))) and by Theorem 3.3, F is upper almost semi-I-continuous. ✷

Theorem 3.14. A multifunction F : (X, τ , I) → (Y, σ) is lower almost semi-
I-continuous if and only if sClF : (X, τ, I) → (Y, σ) is lower almost semi-I-
continuous.

Proof. Suppose that F is lower almost semi-I-continuous. Let x ∈ X and V be
any open set of Y such that sCl(F )(x) ∩ V 6= ∅. Then we have x ∈ (sClF )−(V )
= F−(V ) and F (x) ∩ V 6= ∅. By Theorem 3.4, there exists U ∈ SIO(X, x) such
that F (U) ∩ sCl(V ) 6= ∅ for every u ∈ U . Therefore, we obtain that (sClF )(u) ∩
sCl(V ) 6= ∅ for every u ∈ U . It follows from Theorem 3.4, that sClF is lower
almost semi-I-continuous. Conversely, suppose that sClF is lower almost semi-I-
continuous. Let x ∈ X and V be any open set of Y such that F (x)∩V 6= ∅. Then,
we have x ∈ F−(V ) = (sClF )−(V ) and hence (sClF )(x) ∩ V 6= ∅. Since sClF
is lower almost semi-I-continuous, by Theorem 3.4, there exists U ∈ SIO(X, x)
such that (sClF )(u) ∩ sCl(V ) 6= ∅ for every u ∈ U . Therefore, we obtain that
F (u)∩sCl(V ) 6= ∅ for every u ∈ U . It follows from Theorem 3.4, F is lower almost
semi-I-continuous. ✷

Definition 3.15. A subset A of a topological space (X, τ ) is said to be:

1. α-regular [9] if for each a ∈ A and any open set U containing a, there exists
an open set G of X such that a ∈ G ⊂ Cl(G) ⊂ U ;

2. α-paracompact [9] if every X-open cover A has an X-open refinement which
covers A and is locally finite for each point of X.

Lemma 3.16. [9] If A is an α-paracompact and α-regular set of a topological space
(X, τ ) and U an open neighborhood of A, then there exists an open set G of X such
that A ⊂ G ⊂ Cl(G) ⊂ U .

Lemma 3.17. If F : (X, τ , I) → (Y, σ) is a multifunction such that F (x) is α-
paracompact and α-regular for each x ∈ X, then we have the following

1. G+(V ) = F+(V ) for each open set V of Y ,

2. G−(V ) = F−(V ) for each closed set V of Y , where G denotes ClF or sIClF .
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Proof. (1). Let V be any open set of Y and x ∈ G+(V ). Then G(x) ⊂ V and
F (x) ⊂ G(x) ⊂ V . We have x ∈ F+(V ) and hence G+(V ) ⊂ F+(V ). Then we
have F (x) ⊂ V and by Lemma 3.16, there exists an open set H of V such that
F (x) ⊂ H ⊂ Cl(H) ⊂ V . Since F+(V ) ⊂ G+(V ). Therefore, G+(V ) = F+(V ).
(2). This follows from (1). ✷

Theorem 3.18. Let F : (X, τ, I) → (Y, σ) be a multifunction such that F (x) is
α-paracompact and α-regular for each x ∈ X. Then the following statements are
equivalent:

1. F is upper almost semi-I-continuous;

2. sIClF is upper almost semi-I-continuous;

3. ClF is upper almost semi-I-continuous.

Proof. We put G = sIClF or ClF . Suppose that F is upper almost semi-I-
continuous. Let x ∈ X and V be any open set of Y containing G(x). By Lemma
3.17, x ∈ G+(V ) = F+(V ) and there exists U ∈ SIO(X, x) such that F (U) ⊂
sCl(V ). Since F (u) is α-paracompact and α-regular for each u ∈ U , there exists an
open set H such that F (u) ⊂ H ⊂ Cl(H) ⊂ sCl(V ) hence G(u) ⊂ Cl(H) ⊂ sCl(V )
for each u ∈ U . Therefore, we obtain G(U) ⊂ sCl(V ). This shows that G is upper
almost semi-I-continuous. Conversely, suppose that G is upper almost semi-I-
continuous. Let x ∈ X and V be any open set of Y containing F (x). By Lemma
3.17, x ∈ F+(V ) = G+(V ) and hence G(x) ⊂ V . There exists U ∈ SIO(X, x) such
that G(U) ⊂ sCl(V ). Therefore, we obtain F (u) ⊂ sCl(V ). This shows that F is
upper almost semi-I-continuous. ✷

Theorem 3.19. Let F : (X, τ, I) → (Y, σ) be a multifunction such that F (x) is
α-paracompact and α-regular for each x ∈ X. Then the following statements are
equivalent:

1. F is lower almost semi-I-continuous;

2. sIClF is lower almost semi-I-continuous;

3. ClF is lower almost semi-I-continuous.

Proof. We put G = sIClF or ClF . Suppose that F is lower almost semi-I-
continuous. Let x ∈ x and V be any open set of Y such thatG(x)∩V 6= ∅. Since V is
open, F (x)∩V 6= ∅ and there exists U ∈ SIO(X, x) such that F (u)∩Int(Cl(V )) 6= ∅
for each u ∈ U . Therefore, we obtain G(u) ∩ Int(Cl(V )) 6= ∅ for each u ∈ U . This
shows that G is lower almost semi-I-continuous. Conversely, suppose that G is
lower almost semi-I-continuous. Let x ∈ X and V any open set of Y such that
F (x) ∩ V 6= ∅. Since F (x) ⊂ G(x), G(x) ∩ V 6= ∅ and there exists U ∈ SIO(X, x)
such that G(u) ∩ Int(Cl(V )) 6= ∅ for each u ∈ U . Therefore, by Theorem 3.4, F is
lower almost semi-I-continuous. ✷
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Theorem 3.20. For a multifunction F : (X, τ , I) → (Y, σ) such that F (x) is an
α-regular and α-paracompact set for each x ∈ X, the following are equivalent:

1. F is upper weakly semi-I-continuous,

2. F is upper almost semi-I-continuous,

3. F is upper semi-I-continuous.

Proof. (1)⇒(3). Suppose that F is upper weakly semi-I-continuous. Let x ∈ X and
G and open set of Y such that F (x) ⊂ G. Since F (x) is α-regular α-paracompact,
by Lemma 3.16, there exists an open set V such that F (x) ⊂ V ⊂ Cl(V ) ⊂ G.
Since F is upper weakly semi-I-continuous at x and F (x) ⊂ V , there exists U ∈
SIO(X, x) such that F (U) ⊂ Cl(V ) and hence F (U) ⊂ Cl(V ) ⊂ G. Therefore, F
is upper semi-I-continuous. ✷

Corollary 3.21. Let F : (X, τ, I) → (Y, σ) be a multifunction such that F (x) is
compact for each x ∈ X and Y is regular. Then, the following are equivalent:

1. F is upper weakly semi-I-continuous;

2. F is upper almost semi-I-continuous;

3. F is upper semi-I-continuous.

Lemma 3.22. [17] If A is an α-regular set of X, then for every open set G which
intersects A, there exists an open set D such that A ∩D 6= ∅ and Cl(D) ⊂ G.

Theorem 3.23. For a multifunction F : (X, τ , I) → (Y, σ) such that F (x) is an
α-regular set of Y for each x ∈ X, the following are equivalent:

1. F is lower weakly semi-I-continuous,

2. F is lower almost semi-I-continuous,

3. F is lower semi-I-continuous.

Proof. (1)⇒(3): Suppose that F is lower weakly semi-I-continuous. Let x ∈ X and
G an open set of Y such that F (x) ∩ G 6= ∅. Since F (x) is α-regular, by Lemma
3.22, there exists an open set D of Y such that F (x) ∩ D 6= ∅ and Cl(D) ⊂ G.
Since F is lower weakly semi-I-continuous at x, there exists U ∈ SIO(X, x) such
that F (u) ∩ Cl(D) 6= ∅ for each u ∈ U . Since Cl(D) ⊂ G, we have F (u) ∩ G 6= ∅
for each u ∈ U . Therefore, F is lower semi-I-continuous. ✷

Theorem 3.24. Let F : (X, τ, I) → (Y, σ) be a multifunction such that F (x) is
closed in Y for each x ∈ X and Y is normal. Then the following are equivalent:

1. F is upper weakly semi-I-continuous,

2. F is upper almost semi-I-continuous,
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3. F is upper semi-I-continuous.

Proof. (1)⇒(3): Suppose that F is upper weakly semi-I-continuous. Let x ∈ X
and G an open set of Y containing F (x). Since F (x) is closed in Y , by the
normality of Y there exists an open set V of Y such that F (x) ⊂ V ⊂ Cl(V ) ⊂ G.
Since F is upper weakly semi-I-continuous, there exists U ∈ SIO(X, x) such that
F (U) ⊂ Cl(V ) ⊂ G. This shows that F is upper semi-I-continuous. ✷

Definition 3.25. A topologial space (X, τ ) is said to be rimcompact if each point
of X has a base of neighborhoods with compact frontiers.

Theorem 3.26. If (Y, σ) is a rimcompact space and F : (X, τ, I) → (Y, σ) is a
compact valued multifunction with the closed graph, then the following are equiva-
lent:

1. F is upper weakly semi-I-continuous;

2. F is upper almost semi-I-continuous;

3. F is upper semi-I-continuous.

Proof. Suppose that F is upper weakly α-continuous. Let x ∈ X and V be any
open set of Y containing F (x). Since Y is rimcompact, for each z ∈ F (x). Since
Y is rimcompact, for each z ∈ F (x) there exists an open set W (z) such that z ∈
W (z) ⊂ V and the frontier Fr(W (z)) is compact. The family {W (z) : z ∈ F (x)}
is a cover of F (x) by open sets of Y . Since F (x) is compact, there exists a finite
number of points, say, z1, z2, ..zn in F (x) such that F (x) ⊂ ∪{W (zj) : 1 ≤ j ≤ n}.
Let W = ∪{W (zj) : 1 ≤ j ≤ n}, then we have Fr(W ) is compact, F (x) ⊂
W ⊂ V and F (x) ∩ Fr(W ) = F (x) ∩ Cl(W ) ∩ Cl(Y \W ) ⊂ F (x) ∩ Y \W = ∅.
For each y ∈ Fr(W ), (x, y) ∈ X × Y \G(F ). Since G(F ) is closed, there exist
open sets U(y) ⊂ X and V (y) ⊂ Y containing x and y, respectively, such that
F (U(y))∩ V (y) = ∅. The family {V (y) : y ∈ Fr(W )} is a cover of Fr(W ) by open
sets of Y . Since Fr(W ) is compact, there exists a finite subset K of Fr(W ) such
that Fr(W ) ⊂ ∪{V (y) : y ∈ K}. Since F is upper weakly semi-I-continuous, there
exits U0 ∈ SIO(X, x) such that F (U0) ⊂ Cl(W ). Put U = U0∩ (∩{U(y) : y ∈ K}).
Then we obtain U ∈ SIO(X, x), F (U) ⊂ Cl(W ) and F (U)∩Fr(W ) = ∅. Therefore,
we obtain F (U) ⊂ W ⊂ V . This shows that F is upper semi-I-continuous. ✷

Corollary 3.27. If (Y, σ) is a rimcompact space and f : (X, τ , I) → (Y, σ) is an
almost semi-I-continuous function with closed graph, then f is semi-I-continuous.

For a multifunction F : (X, τ , I) → (Y, σ), the graph multifunction GF : X ⇒
X × Y is defined as follows: GF (x) = {x} × F (x) for every x ∈ X .

Lemma 3.28. For a multifunction F : (X, τ , I) → (Y, σ) , the following hold:

1. G+F (A×B) = A ∩ F+(B),

2. G−F (A×B) = A ∩ F−(B)
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for any subsets A ⊂ X and B ⊂ Y [15].

Theorem 3.29. Let F : (X, τ, I) → (Y, σ) be a multifunction such that F (x) is
compact for each x ∈ X. Then F is upper almost semi-I-continuous if and only if
GF : X → X × Y is upper almost semi-I-continuous.

Proof. Suppose that GF : X → X × Y is upper almost semi-I-continuous. Let
x ∈ X and V be any open set of Y containing F (x). Since X×V is open in X×Y
and GF (x) ⊂ X × V , there exists U ∈ SIO(X, x) such that GF (U) ⊂ Int(Cl(X ×
V )) = X × Int(Cl(V )). By Lemma 3.28, we have U ⊂ G+

F (X × Int(Cl(V ))) =
F+(Int(Cl(V ))) and F (U) ⊂ Int(Cl(V )). This shows that F is upper almost semi-
I-continuous. Conversely, suppose that F : (X, τ, I) → (Y, σ) is upper almost
semi-I-continuous. Let x ∈ X and W be any open set of X × Y containing GF (x).
For each y ∈ F (x), there exist open sets U(y) ⊂ X and V (y) ⊂ Y such that
(x, y) ∈ U(y) × V (y) ⊂ W . The family of {V (y) : y ∈ F (x)} is an open cover
of F (x). Since F (x) is compact, it follows that there exists a finite number of
points, say y1, y2, y3, ..., yn in F (x) such that F (x) ⊂ ∪{V (yi) : i = 1, 2, ..., n}.
Take U = ∩{U(yi) : i = 1, 2, ...., n} and V = ∪{V (yi) : i = 1, 2, ..., n}. Then U
and V are open sets in X and Y , respectively, and {x} × F (x) ⊂ U × V ⊂ W .
Since F is upper almost semi-I-continuous, there exists U0 ∈ SIO(X, x) such that
F (U0) ⊂ Int(Cl(V )). By Lemma 3.28, we have U ∩ U0 ⊂ U ∩ F+(Int(Cl(V ))) =
G+

F (U × Int(Cl(V ))) ⊂ G+
F (Int(Cl(U × V ))) ⊂ G+

F (Int(Cl(W ))). Therefore, we
obtain U ∩U0 ∈ SIO(X, x) and GF (U ∩U0) ⊂ Int(Cl(W )). This shows that GF is
upper almost semi-I-continuous. ✷

Theorem 3.30. A multifunction F : (X, τ, I) → (Y, σ) is lower almost semi-I-
continuous if and only if GF : X → X × Y is lower almost semi-I-continuous.

Proof. Suppose that F is lower almost semi-I-continuous. Let x ∈ X and W be
any open set of X × Y such that x ∈ G−

F (W ). Since W ∩ ({x} × F (x)) 6= ∅,
there exists y ∈ F (x) such that (x, y) ∈ W and hence (x, y) ∈ U × V ⊂ W for
some open sets U and V of X and Y , respectively. Since F (x) ∩ V 6= ∅, there
exists G ∈ SIO(X, x) such that G ⊂ F−(Int(Cl(V ))). By Lemma 3.28, U ∩ G ⊂
U ∩ F−(Int(Cl(V ))) = G−

F (U × Int(Cl(V ))) ⊂ G−
F (Int(Cl(W ))). Furthermore,

x ∈ U ∩G ∈ SIO(X) and hence GF is lower almost semi-I-continuous. Conversely,
suppose that GF is lower almost semi-I-continuous. Let x ∈ X and V be any
open set of Y such that x ∈ F−(V ). Then X × V is open in X × Y and GF (x) ∩
(X × V ) = ({x} × F (x)) ∩ (X × V ) = {x} × (F (x) ∩ V ) 6= ∅. Since GF is lower
almost semi-I-continuous, there exists a semi-I-open set U containing x such that
U ⊂ G−

F (Int(Cl(X × V ))). Since G−
F (Int(Cl(X × V ))) = G−

F (X × Int(Cl(V ))), by
Lemma 3.28, we have U ⊂ F−(Int(Cl(V ))). This shows that F is lower almost
semi-I-continuous. ✷

Definition 3.31. Let F : (X, τ , I) → (Y, σ) be a multifunction. The multigraph
G(F ) is said to be semi-I-closed graph in X × Y if for each (x, y) ∈ X × Y \G(F ),
there exist semi-I-open set U and an open set V containing x and y, respectively,
such that (U × V ) ∩G(F ) = ∅.
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Theorem 3.32. Let F : (X, τ) → (Y, σ) be an upper almost semi-I-continuous
and punctually α-paracompact multifunction into a Hausdorff space (Y, σ). Then
the multigraph G(F ) of F is a semi-I-closed graph in X × Y .

Proof. Suppose that (x0, y0) /∈ G(F ). Then y0 /∈ F (x0). Since (Y, σ) is a Hausdorff
space, then for each y ∈ F (x0) there exist open sets V (y) and W (y) containing y
and y0 respectively such that V (y) ∩W (y) = ∅. The family {V (y) : y ∈ F (x0)} is
an open cover of F (x0) which is α-paracompact. Thus, it has a locally finite open
refinement Φ = {Uβ : β ∈ I} which covers F (x0). Let W0 be an open neighbour-
hood of y0 such that W0 intersects only finitely many members Uβ1

, Uβ2
, ..., Uβ

n

of Φ. Choose y1, y2, ..., yn in F (x0) such that Uβ
i
⊂ V (yi) for each i = 1, 2, ....n

and set W = W0 ∩ (
n
∩
i=1

W (yi)). Then W is an open neighbourhood of y0 with

W∩( ∪
β∈I

Uβ) = ∅, which implies that W ∩Int(Cl( ∪
β∈I

Uβ)) = ∅. By the upper almost

I continuity of F , there exists U ∈ SIO(X, x0) such that F (U) ⊂ Int(Cl( ∪
β∈I

Uβ)).

It follows that (U ×W ) ∩G(F ) = ∅. Therefore, the graph G(F ) is a semi-I-closed
graph in X × Y . ✷

Let {Xα : α ∈ ▽} and {Yα : α ∈ ▽} be any two families of topological spaces
with same index set ▽. For each α ∈ ▽, let Fα : Xα → Yα be a multifunction.
The product space Π{Xα : α ∈ ▽} will be denoted by ΠXα and the product
multifunction ΠFα : ΠXα → ΠYα, defined by F (x) = Π{Fα(xα) : α ∈ ▽} for each
x = {xα} ∈ ΠXα, is simply denoted by F : ΠXα → Yα.

Theorem 3.33. Let Fα : (X, τ , I) → (Y, σ)α be a multifunction for each α ∈ ▽ and
F : X → ΠYα a multifunction defined by F (x) = Π{Fα(x) : α ∈ ▽} for each x ∈ X.
If F is upper almost semi-I-continuous (resp. lower almost semi-I-continuous),
then Fα is upper almost semi-I-continuous (resp. lower almost semi-I-continuous)
for each α ∈ ▽.

Proof. Let x ∈ X , α ∈ ▽ and Vα any regular open set of Yα containing Fα(x).
Then P−1

α (Vα) = Vα × Π{Yβ : β ∈ ▽ and β 6= α} is a regular open set of ΠYα

containing F (x), where Pα is the natural projection of ΠYα onto Yα. Since F is
upper almost semi-I-continuous, there exists U ∈ SIO(X, x) such that F (U) ⊂
p−1
α (Vα). Therefore, we obtain Fα(U) ⊂ Pα(F (U)) ⊂ Pα(P

−1
α (Vα)) = Vα. This

shows that Fα : (X, τ , I) → (Y, σ)α is upper almost semi-I-continuous for each
α ∈ ▽. The proof for lower almost semi-I-continuous is similar and is thus omitted.
✷

Theorem 3.34. If (Y, σ) is a Hausdorff space and F,G : (X, τ, I) → (Y, σ) are
multifunctions such that

1. F (x) and G(x) are compact for each x ∈ X,

2. G is upper weakly semi-I-continuous,

3. F is upper almost semi-I-continuous,
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then the set A = {x ∈ X : F (x) ∩G(x) 6= ∅} is semi-I-closed in X.

Proof. Let x ∈ X\A. Then F (x)∩G(x) = ∅. Since F (x) and G(x) are compact in
a Hausdorff space (Y, σ), there exist disjoint regular open sets V and W of Y such
that F (x) ⊂ V , G(x) ⊂ W and V ∩ Cl(W ) = ∅. Since F is upper almost semi-I-
continuous, there exists U1 ∈ SIO(X, x) such that F (U1) ⊂ V . Since G is upper
weakly semi-I-continuous, there exists U2 ∈ SIO(X, x) such that G(U2) ⊂ Cl(W ).
Put U = U1∩U2, then U ∈ SIO(X, x) and F (U)∩G(U) = ∅. Therefore, we obtain
U ∩ A = ∅ and x ∈ X\sICl(A). Hence A is semi-I-closed in X . ✷

Theorem 3.35. If F : (X, τ, I) → (Y, σ) is an upper almost semi-I-continuous
multifunction such that F (x) is α-nearly paracompact for each x ∈ X and Y is
Hausdorff, then for each (x, y) ∈ X × Y \G(F ), there exist U ∈ SIO(X, x) and an
open set V containing y such that (U × Cl(V )) ∩G(F ) = ∅.

Proof. Let (x, y) ∈ X × Y \G(F ), then y ∈ Y \F (x). Since Y is Hausdorff, for each
a ∈ F (X) there exist open sets V (a) and W (a) containing a and y, respectively,
such that V (a) ∩ W (a) = ∅, hence Int(Cl(V (a))) ∩ W (a) = ∅. The family V =
{Int(Cl(V (a))) : a ∈ F (x)} is a cover of F (x) by regular open sets of Y and F (x) is
α-nearly paracompact. There exists a locally finite open refinement H = {Hα : α ∈
▽} of V such that F (x) ⊂ ∪{Hα : α ∈ ▽} . Since H is locally finite, there exists
an open neighborhood W0 of Y and a finite subset ▽0 of ▽ such that W0 ∩Hα = ∅
for every α ∈ ▽\▽0. For each α ∈ ▽0, there exists a(α) ∈ F (x) such that Hα ⊂
V (a(α)). Now, put W = W0 ∩ (∩{W (a(α)) : α ∈ ▽0}) and H = ∪{Hα : α ∈ ▽}.
Then W is an open neighborhood of y, H is open in Y and W ∩H = ∅. Therefore,
we obtain F (x) ⊂ H and Cl(W ) ∩H = ∅ an hence F (x) ⊂ Y \Cl(W ). Since W is
open, Y \Cl(W ) is regular open in Y . Since F is upper almost semi-I-continuous,
there exists U ∈ SIO(X, x) such that F (U) ⊂ Y \Cl(W ), hence F (U)∩Cl(W ) = ∅.
Therefore, we obtain (U × Cl(V )) ∩G(F ) = ∅. ✷

Corollary 3.36. If F : (X, τ, I) → (Y, σ) is an upper almost semi-I-continuous
multifunction such that F (x) is compact for each x ∈ X and Y is Hausdorff, then
for each (x, y) ∈ X × Y \G(F ), there exist U ∈ SIO(X, x) and an open set V
containing y such that (U × Cl(V )) ∩G(F ) = ∅.

Corollary 3.37. If f : (X, τ, I) → (Y, σ) is a semi-I-continuous function into a
Hausdorff space Y , then G(f) is semi-I-closed.

Theorem 3.38. Suppose that (X, τ ) and (Xα, τα) are topological spaces, where
α ∈ J . Let F : X → Π

α∈J
Xα be a multifunction from X to the product space

Π
α∈J

Xα and let Pα : Π
α∈J

Xα → Xα be the projection for each α ∈ J . If F is upper

(lower) almost semi-I-continuous multifunction, then Pα ◦F is upper (resp. lower)
almost semi-I-continuous multifunction for each α ∈ J .

Proof. Take any α0 ∈ J . Let Vα0
be an open set in (Xα0

, τα0
). Then (Pα0

◦
F )+(Int(Cl(Vα0

))) = F+(P+
α0
(Int(Cl(Vα0

)))) = F+(Int(Cl(Vα0
))) × Π

α6=α0

Xα (resp.
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(Pα0
◦F )−(Int(Cl(Vα0

))) = F−(P−
α0
(Int(Cl(Vα0

)))) = F−(Int(Cl(Vα0
))× Π

α6=α0

Xα)).

Since F is upper (resp. lower) almost semi-I-continuous multifunction and since
Int(Cl(Vα0

)) × Π
α6=α0

Xα is a regular open set, it follows that F+(Int(Cl(Vα0
)) ×

Π
α6=α0

Xα) (resp. F−(Int(Cl(Vα0
)) × Π

α6=α0

Xα)) is semi-I-open in (X, τ). It shows

that Pα0
◦ F is upper (lower) almost semi-I-continuous multifunction. Hence, we

obtain that Pα ◦F is upper (lower) almost semi-I-continuous multifunction for each
α ∈ J . ✷

Theorem 3.39. Suppose that for each α ∈ J , (Xα, τα), (Yα, σα) are topological
spaces. Let Fα : Xα → Yα be a multifunction for each α ∈ J and let F : Π

α∈J
Xα →

Π
α∈J

Yα be defined by F ((xα)) = Π
α∈J

Fα(xα) from the product space Π
α∈J

Xα to the

product space Π
α∈J

Yα. If F is upper (lower) almost semi-I-continuous multifunction,

then each Fα is upper (resp. lower) almost semi-I-continuous multifunction for
each α ∈ J .

Proof. Let Vα ⊆ Yα be an open set. Then Int(Cl(Vα)) × Π
α6=β

Yβ is a regular open

set. Since F is upper (lower) almost semi-I-continuous multifunction, it follows that
F+(Int(Cl(Vα)) × Π

α6=β
Yβ) = F+

α (Int(Cl(Vα))) × Π
α6=β

Xβ (resp. F−(Int(Cl(Vα)) ×

Π
α6=β

Yβ) = F−
α (Int(Cl(Vα)))× Π

α 6=β
Xβ) is a semi-I-open set. Consequently, we obtain

that F+
α (Int(Cl(Vα))) (resp. F

−
α (Int(Cl(Vα)))) is a semi-I-open set. Thus, we show

that Fα is upper (resp. lower) almost semi-I-continuous multifunction. ✷

Theorem 3.40. Suppose that (X, τ ), (Y, σ), (Z, η) are topological spaces and F1 :
(X, τ , I) → (Y, σ), F2 : (X, τ ) → (Z, η) are multifunctions. Let F1×F2 : (X, τ, I) →
(Y, σ)×Z be a multifunction which is defined by (F1 ×F2)(x) = F1(x)× F2(x) for
each x ∈ X. If F1 × F2 is upper (lower) almost semi-I-continuous multifunction,
then F1 and F2 are upper (resp. lower) almost semi-I-continuous multifunctions.

Proof. Let x ∈ X and let K ⊂ Y , H ⊂ Z be open sets such that x ∈ F+
1 (K)

and x ∈ F+
2 (H). Then we obtain that F1(x) ⊂ K and F2(x) ⊂ H and so F1(x) ×

F2(x) = (F1 × F2)(x) ⊂ K ×H . We have x ∈ (F1 × F2)
+(K ×H).Since F1 × F2

is upper almost semi-I-continuous multifunction, there exists a semi-I-open set
U containing x such that U ⊂ (F1 × F2)

+(Int(Cl(K × H))). We obtain that
U ⊂ F+

1 (Int(Cl(K))) and U ⊂ F+
2 (Int(Cl(H))). Thus, we obtain that F1 and F2

are upper almost semi-I-continuous multifunctions. The proof of the lower almost
I continuity of F1 and F2 is similar to the above. ✷

Lemma 3.41. [5] Let A and B be subsets of an ideal topological space (X, τ , I).
Then

1. If A ∈ SIO(X) and B ∈ τ , then A ∩B ∈ SIO(B);
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2. If A ∈ SIO(B) and B ∈ SIO(X), then A ∈ SIO(X).

Lemma 3.42. If F : (X, τ, I) → (Y, σ) is an upper almost semi-I-continuous
(lower almost semi-I-continuous) multifunction and U ∈ τ , then F|U : (U, τU , IU ) →
(Y, σ) is upper almost semi-I-continuous (lower almost semi-I-continuous).

Proof. Suppose that V is an open subset of Y . Let x ∈ U and let x ∈ (F|U )
−(V ).

Since F is lower almost semi-I-continuous multifunction, there exists a semi-I-
open set G such that x ∈ G ⊂ F−(Int(Cl(V ))). By Lemma 3.41, we obtain that
x ∈ G ∩ U ∈ SIO(U) and G ∩U ⊂ (F|U )

−(Int(Cl(V ))). Hence F|U is lower almost
semi-I-continuous. The proof of the upper almost semi-I-continuity of F|U is similar
to the above. ✷

Theorem 3.43. Let {Uα : α ∈ Λ} be an open cover of a space (X, τ ). Then a
multifunction F : (X, τ , I) → (Y, σ) is upper almost semi-I-continuous (resp. lower
almost semi-I-continuous) if and only if the restriction F|Uα

: (Uα, τα) → (Y, σ)
is upper almost semi-I-continuous (resp. lower almost semi-I-continuous) for each
α ∈ Λ.

Proof. We prove only the case for F upper almost semi-I-continuous, the proof for
F lower almost semi-I-continuous being analogous. Let α ∈ Λ and V be any open
set of Y . Since F is upper almost semi-I-continuous, F+(Int(Cl(V ))) is semi-I-open
in X . By Lemma 3.41, (F|Uα

)+(Int(Cl(V ))) = F+(Int(Cl(V )))∩Uα is semi-I-open
in Uα and hence F|Uα

is upper almost semi-I-continuous. Conversely, let V be
any open set of Y . Since F|Uα

is upper almost semi-I-continuous for each α ∈ Λ,
(F|Uα

)+(Int(Cl(V ))) = F+(Int(Cl(V ))) ∩ Uα is semi-I-open in Uλ. By Lemma
3.41, (F|Uα

)+(Int(Cl(V ))) is semi-I-open in X for each α ∈ Λ. We obtain that
F+(Int(Cl(V ))) = ∪

α∈Λ
(F|Uα

)+(Int(Cl(V ))) is semi-I-open in X . Hence F is upper

almost semi-I-continuous. ✷

Recall that a multifunction F : (X, τ ) → (Y, σ) is said to be punctually con-
nected if for each x ∈ X , F (x) is connected.

Definition 3.44. [13] An ideal topological space (X, τ, I) is called semi-I-connected
provided that X is not the union of two nonempty disjoint semi-I-open sets.

Theorem 3.45. Let F be a multifunction from a semi-I-connected topological space
(X, τ ) onto a topological space (Y, σ) such that F is punctually connected. If F is
an upper almost semi-I-continuous multifunction, then Y is a connected space.

Proof. Let F : (X, τ, I) → (Y, σ) be an upper almost semi-I-continuous multifunc-
tion from an I connected topological space X onto a topological space Y . Sup-
pose that Y is not connected and let Y = H ∪ K be a partition of Y . Then
both H and K are open and closed subsets of Y . Since F is upper almost
semi-I-continuous, F+(H) and F+(K) are semi-I-open subsets of X . In view of
the fact that F+(H), F+(K) are disjoint and F is punctually connected, X =
F+(H) ∪ F+(K) is a partition of X . This is contrary to the semi-I-connectedness
of X . Hence, it is obtained that Y is a connected space. ✷
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Recall that a multifunction F : (X, τ) → (Y, σ) is said to be punctually closed
if for each x ∈ X,F (x) is closed.

Theorem 3.46. Let F be an upper almost semi-I-continuous punctually closed
multifunction and G be an upper almost continuous punctually closed multifunction
from a space (X, τ ) to a normal space (Y, σ). Then the set K = {x ∈ X : F (x) ∩
G(x) 6= ∅} is semi-I-closed in X.

Proof. Let x ∈ X\K. Then F (x)∩G(x) = ∅. Since F and G are punctually closed
multifunctions and Y is a normal space, there exists disjoint open sets U and V
containing F (x) and G(x), respectively. Since F and G are upper almost semi-
I-continuous and upper almost continuous, respectively the sets F+(Int(Cl(U)))
and G+(Int(Cl(V ))) are semi-I-open and open sets, respectively containing x. Let
H = F+(Int(Cl(U))) ∩G+(Int(Cl(V ))). Then H is a semi-I-open set containing x
and H ∩K = ∅. Hence, K is I closed in X . ✷

Definition 3.47. An ideal topological space (X, τ, I) is said to be semi-I-T2 [13] if
for each pair of distinct points x and y in X, there exist disjoint semi-I-open sets
U and V in X such that x ∈ U and y ∈ V .

Theorem 3.48. Let F : (X, τ , I) → (Y, σ) be an upper almost semi-I-continuous
multifunction and punctually closed from a topological space (X, τ ) to a normal
topological space (Y, σ) and let F (x) ∩ F (y) = ∅ for each distinct pair x, y ∈ X.
Then X is a semi-I-T2 space.

Proof. Let x and y be any two distinct points in X . Then we have F (x)∩F (y) = ∅.
Since (Y, σ) is a normal space, it follows that there exist disjoints open sets U and V
containing F (x) and F (y), respectively. Thus F+(Int(Cl(U))) and F+(Int(Cl(V )))
are disjoint semi-I-open sets containing x and y, respectively. Thus, it is obtained
that (X, τ ) is semi-I-T2. ✷

Definition 3.49. The semi-I-frontier of a subset A of a space (X, τ ), denoted by
sIFr(A), is defined by sIFr(A) = sICl(A) ∩ sICl(X\A) = sICl(A)\I Int(A).

Theorem 3.50. The set all points of X at which a multifunction F : (X, τ, I) →
(Y, σ) is not upper almost semi-I-continuous (lower almost semi-I-continuous) is
identical with the union of the semi-I-frontier of the upper (lower) inverse images
of regular open sets containing (meeting) F (x).

Proof. Let x ∈ X at which F is not upper almost semi-I-continuous. Then there
exists a regular open set V of Y containing F (x) such that U ∩ (X\F+(V )) 6= ∅ for
every U ∈ SIO(X, x). Therefore, we have x ∈ sICl(X\F+(V )) = X\I Int(F+(V ))
and x ∈ F+(V ). Thus, we obtain x ∈ sIFr(F+(V )). Conversely, suppose that
V is a regular open set of Y containing F (x) such that x ∈ IFr(F+(V )). If F is
upper almost semi-I-continuous at x, then there exists U ∈ SIO(X, x) such that
U ⊂ F+(V ); hence x ∈ sI Int(F+(V )). This is a contradiction and hence F is not
upper almost semi-I-continuous at x.
The case for lower almost semi-I-continuous is similarly shown. ✷
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In the following (D,>) is a directed set, (Fλ) is a net of multifunction Fλ :
(X, τ , I) → (Y, σ) for every λ ∈ D and F is a multifunction from X into Y .

Definition 3.51. [3] Let (Fλ)λ∈D be a net of multifunctions from X to Y . A
multifunction F ⋆ : (X, τ, I) → (Y, σ) is defined as follows: for each x ∈ X, F ⋆(x) =
{y ∈ Y : for each open neighborhood V of y and each µ ∈ D, there exists λ ∈ D
such that λ > µ and V ∩ Fλ(x) 6= ∅} is called the upper topological limit of the net
(Fλ)λ∈D.

Definition 3.52. A net (Fλ)λ∈D is said to be equally upper almost semi-I-continu-
ous at x0 ∈ X if for every open set V containing Fλ(x0), there exists a semi-I-open
set U containing x0 such that Fλ(U) ⊂ Int(Cl(Vλ)) for all λ ∈ D.

Theorem 3.53. Let (Fλ)λ∈D be a net of multifunctions from a topological space
(X, τ ) into a compact space (Y, σ). If the following are satisfied:

1. ∪{Fµ(x) : µ > λ} is closed in Y for each λ ∈ D and each x ∈ X;

2. (Fλ)λ∈D is equally upper almost semi-I-continuous on X, then F ⋆ is upper
almost semi-I-continuous on X, then F ⋆ is upper almost semi-I-continuous
on X.

Proof. We have F ⋆(x) = ∩{(∪{Fµ(x) : µ > λ}) : λ ∈ D}. Since the net (∪{Fµ(x) :
µ > λ})λ∈D is a family of closed sets having the finite intersection property and
Y is compact, F ⋆(x) 6= ∅ for each x ∈ X . Now, let x0 ∈ X and let V be a
proper open subset of Y such that F ⋆(x0) ⊂ V . Since F ⋆(x0) ∩ (Y \V ) = ∅,
F ⋆(x0) 6= ∅ and Y \V 6= ∅, ∩{(∪{Fµ(x0) : µ > λ}) : λ ∈ D}∩ (Y \V ) = ∅ and hence
∩{(∪{Fµ(x0) ∩ (Y \V ) : µ > λ}) : λ ∈ D} = ∅. Since Y is compact and the family
{(∪{Fµ(x0) ∩ (Y \V ) : µ > λ}) : λ ∈ D} is a family of closed sets with the empty
intersection, there exists λ ∈ D such that Fµ(x0) ∩ (Y \V ) = ∅ for each µ ∈ D
with µ > λ. Since the net (Fλ)λ∈D is equally upper almost semi-I-continuous on
X , there exists a semi-I-open set U containing x0 such that Fµ(U) ⊂ Int(Cl(V ))
for each µ > λ, that is, Fµ(x) ∩ (Y \ Int(Cl(V ))) = ∅ for each x ∈ U . Then we
have ∪{Fµ(x) ∩ (Y \ Int(Cl(V ))) : µ > λ} = ∅ and hence ∩{∪{Fµ(x) : µ > λ} : λ ∈
D}∩(Y \ Int(Cl(V ))) = ∅. This implies that F ∗(U) ⊂ Int(Cl(V )). If V = Y , then it
is clear that for each semi-I-open set U containing x0 we have F ⋆(U) ⊂ Int(Cl(V )).
Hence F ⋆ is upper almost semi-I-continuous at x0. Since x0 is arbitrary, the proof
completes. ✷
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