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Invariants of First Order Partial Differential Equations ∗

Lizandro Sanchez Challapa

abstract: In this paper we introduce the concepts of multiplicity and index of
first order partial differential equations. In particular, the concept of multiplicity
coincides with the multiplicity of implicit differential equations given by Bruce and
Tari in [2]. We also show that these concepts are invariants by smooth equivalences.
Following the work [10] on implicit differential equations with first integrals, we
introduce a definition of multiplicity for this class of equations.
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1. Introduction

Let F (x1, ..., xn, y, p1, ..., pn) = 0 be a first order partial differential equation
(first order PDE), where F is a smooth function on R

2n+1 (here smooth means
C∞). A classical solution of this equation is a smooth function f : U ⊂ R

n −→ R

such that y = f(x1, ..., xn) and pi =
∂f
∂xi

. If ∂F
∂pi

(q0) 6= 0 at q0 ∈ R
2n+1 for some

i ∈ {1, ..., n}, the first order PDE defines a family of classical solutions near q0
(see [15]). The locus points where F = ∂F

∂p1
= ... = ∂F

∂pn
= 0, denoted by Σ(F ),

are called π-singular points. At such points, the notion of first order PDE with a
singular solution was introduced in [12]. It was shown in [13] that the local normal
form of such equation is y = 0, up to contactomorphism. In [11] Izumiya studied
singularities of the first order PDEs, describing the singularities appearing in an
open dense set in the space of all functions F with the Whitney C∞-topology. At
a π-singular point the first order PDE generically have no singular solution and
the set Σ(F ) consists of isolated singular points.
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When n = 1, the first order PDE is called implicit differential equation (IDE).
A natural way to study IDEs is to lift the multi-valued direction field determined
by the IDE to a single field on the surface F−1(0). In [6], Davydov classified
(following the work of Dara [5]) generic IDE’s when the discriminant is a regular
curve and showed that the topological normal form of the IDE acquires moduli
when the discriminant is a cusp.

Bruce and Tari introduced in [2] the multiplicity of an IDE, at a singular
point, as the maximum number of singular points of the IDE which emerge when
perturbing the equation F . In [3] the author defined the index of an IDE and
showed that this index is invariant by smooth equivalences.

In this work we introduce the concepts of multiplicity and index of a first
order PDE at an isolated singular point. We shall use results in [7], where the
authors defined the multiplicity and index of a 1-form on an isolated complete
intersection singularity (ICIS). This concept of multiplicity extends the definition
of multiplicity of an IDE given in [2]. The invariance of the multiplicity and index
by smooth equivalences is proven in Section 3. We also define an invariant of first
order PDEs by contactomorphism. Following the work [10] on implicit differential
equations with first integrals, we introduce a definition of multiplicity for this class
of equations (see Section 4). In the last section we give examples to distinguish
normal forms given in [10] and [17].

2. Multiplicity and index of first order PDE

As mentioned in the introduction, a first order partial differential equation is
an equation of the form

F (x1, ..., xn, y, p1, ..., pn) = 0, (2.1)

where F is a smooth function on R
2n+1. Consider the projection π : R2n+1 −→

R
n+1 given by π(x1, ..., xn, y, p1, ..., pn) = (x1, ..., xn, y). The set of critical points

of the restriction of π to F−1(0) is called the criminant of the first order PDE and
is given by the equations F = Fp1 = ... = Fpn = 0, where Fpi =

∂F
∂pi

. These points

are called π-singular points and their locus is denoted by Σ(F ). The image of Σ(F )
by the projection π is called discriminant of the first order PDE.

Let ω = dy −
∑n

i=1 pidxi be the canonical contact 1-form on R
2n+1. Since

we will only study local properties, a solution of the first order PDE (2.1) is a
submanifold germ (L, q0) ⊂ R

2n+1 such that L ⊂ F−1(0), dim(L) = n and ω|L = 0,
where ω|L is the restriction of the 1-form ω to L. Let (L, q0) be a solution of
the first order PDE, then (L, q0) is said to be classical solution if there exist a
function germ f : (Rn, x0) −→ R such that (j1f(Rn), j1f(x0)) = (L, q0), where
j1f : Rn −→ R

2n+1 is the jet extension map. It is not difficult to show that (L, q0)
is a classical solution if and only if q0 is a regular point of the map π|L .

The notion of a singular solution is defined as follows. If the set Σ(F ) is a
solution of the first order PDE, then we call it a singular solution of the first order



Invariants of First Order Partial Differential Equations 137

PDE. The zeros of the 1-form ω|
F−1(0)

correspond to zeros of the vector field

ξ =

n
∑

i=1

Fpi
∂

∂xi
+ (

n
∑

i=1

piFpi)
∂

∂y
−

n
∑

i=1

(Fxi
+ piFy)

∂

∂pi

on F−1(0). These zeros are called contact singular points. We shall denote by
Σ2(F ) the set of critical points of π|Σ(F )

. This set is given by the equations F =
Fp1 = ... = Fpn = det(Fpipj ) = 0.

Definition 2.1. We say that q0 ∈ R
2n+1 is a singular point or a zero of the first

order PDE (2.1) if q0 is a contact singular point or a zero of the 1-form ω on
Σ2(F ).

This definition coincides with Definition 2.3 given in [2] when the first order
PDE is an implicit differential equation. Note that, by definition, the singular
points of the first order PDE lie on the criminat of F . We denote by (F, q0)
the germ of the first order PDE (2.1) at an isolated singular point q0. If F is
a real analytic function we say that (F, q0) is an analytic germ. The concept of
multiplicity of an IDE given in [2] motivates the following definition.

Definition 2.2. Let (F, q0) be an analytic germ of first order PDE. The multi-
plicity M(F, q0) of (F, q0) is the maximum number of zeros that can appear in a
deformation of the equation F = 0 (including complex zeros).

Note that the multiplicity is not defined if the 1-form ω vanishes identically
on both Σ2(F ) and F−1(0). The general problem of computing the multiplicity
and index of the zero of a 1-form on an isolated complete intersection singularity
(ICIS) has been considered by Ebeling and Gusein-Zade in [8]. They also give an
algebraic formula for computing the multiplicity of a 1-form. We use this algebraic
formula to define the following ideal.

Definition 2.3. Let θ =
∑n

i=1 aidxi be a smooth 1-form on R
n and let f =

(f1, ..., fk) : (Rn, 0) −→ R
k be a smooth map germ, where n ≥ k + 1. We define

I(f−1(0), θ) as the ideal generated by f1, ..., fk and the (k + 1)× (k + 1)-minors of
the matrix











∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fk
∂x1

. . . ∂fk
∂xn

a1 . . . an











(2.2)

Remark 2.4. The following holds for a function germ λ : (Rn, 0) −→ R with
λ(0) 6= 0:

I(f−1(0), θ) = I(f−1(0), λθ).

The next lemma characterizes the zeros of the 1-form θ on f−1(0) that are
regular points of f−1(0).
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Lemma 2.5. Let 0 be a regular value of f . Then, x0 ∈ R
n is a zero of the 1-form

θ on f−1(0) if and only if g(x0) = 0 for all g ∈ I(f−1(0), θ).

Proof: We denote by A the matrix (2.2). Let x0 ∈ R
n be a zero of the 1-form θ on

f−1(0). Then, dim(ker A) ≥ n− k. As dim(ker A)+rank(A) = n, we obtain that
k ≥ rank(A). Then, g(x0) = 0 for all g ∈ I(f−1(0), θ). Conversely, if g(x0) = 0
for all g ∈ I(f−1(0), θ) then k ≥ rank(A). Then, the vector (a1, ..., an) is a linear
combination of∇f1, ...,∇fk. Therefore, x0 ∈ R

n is a zero of the 1-form θ on f−1(0).
✷

It is not difficult to show that if x0 ∈ f−1(0) is a singular point of f , then
g(x0) = 0 for all g ∈ I(f−1(0), θ). These points are also called the zeros of the
1-form θ on f−1(0) (see [8]). From Lemma 2.5, we obtain that x0 ∈ R

n is a zero of
the 1-form θ on f−1(0) if and only if g(x0) = 0 for all g ∈ I(f−1(0), θ). We denote
by En the ring of function germs on R

n at 0. We set I(f−1(0), θ) = 〈g1, ..., gl〉 and
denote by g = (g1, ..., gl).

Lemma 2.6. Let 0 be an isolated zero of the 1-form θ on f−1(0). Suppose that
l = n. Then, dimR En/(I(f

−1(0), θ) = 1 if and only if 0 is a regular value of g.

Proof: Since dimR En/(I(f
−1(0), θ) coincides with the multiplicity of the ideal

I(f−1(0), θ) at 0, the result follows from Proposition 2.1 in [4]. ✷

Lemma 2.7. Let (F, 0) be a germ of first order PDE. Suppose that I(Σ2(F ), ω)
is generated by 2n + 1 elements. Then there exists a smooth family of functions
Ft : R

2n+1 −→ R, t ∈ R, with F0 = F such that

dimR E
pt
2n+1/I(Σ

2(Ft), ω) = 1 and dimR E
qt
2n+1/(I(F

−1
t (0), ω) = 1,

for t 6= 0 sufficiently close to zero, where pt and qt are isolated zeros of the 1-form
ω on Σ2(Ft) and F−1

t (0), respectively, and E
pt
n (resp. E

qt
n ) the ring of function

germs on R
n at pt (resp. qt).

Proof: Note that I(F−1(0), ω) = 〈F, Fp1 , ..., Fpn , Fx1 + p1Fy , ..., Fxn
+ pnFy〉 is

generated by 2n + 1 elements. Using Thom’s transversality Theorem, we obtain
a smooth family of mapping Ft with F0 = F such that 0 is a regular value of
(Ft, Ftp1 , ..., Ftpn , Ftx1

+p1Fty, ..., Ftxn
+pnFty), for t 6= 0 sufficiently close to zero.

From Lemma 2.6, we get dimR E
qt
2n+1/(I(F

−1
t (0), ω) = 1. Analogously one proves

the other equality. ✷

We can state the following consequences from previous results.

Proposition 2.1. Let (F, 0) be an analytic germ of first order PDE. Suppose that
the ideal I(Σ2(F ), ω) is generated by 2n+ 1 elements. Then:

(a) If det(Fpipj )(0) 6= 0, then the multiplicity of the germ of first order PDE
(F, 0) is given by M1(F, 0) = dimR E2n+1/I(F

−1(0), ω).
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(b) If 0 is not a contact singular point, then the multiplicity of (F, 0) is given by
M2(F, 0) = dimR E2n+1/I(Σ

2(F ), ω).

(c) If 0 is a contact singular point and det(Fpipj )(0) = 0, then the multiplicity of
(F, 0) is the sum of the numbers holding in (a) and (b).

Proof: Lemmas 2.6 and 2.7 remain valid in the complex analytic case. The result
follows by complexifying the algebras E2n+1/I(F

−1(0), ω) and E2n+1/I(Σ
2(F ), ω).

✷

From Proposition 2.1, the multiplicity of the germ of first order PDE is invariant
by deformations of the complexification of F . It is not true that M1(F, 0) and
M2(F, 0) are invariants by real deformations of F . We denote by deg0(f) the
degree of f : (Rn, 0) −→ (Rn, 0) at 0 (see [9] for more details).

Definition 2.8. Let (F, 0) be a germ of first order PDE. We define the index of
(F, 0) as the integer

ind0(F ) = deg0(FFy, Fp1 , ..., Fpn , Fx1 + p1Fy, ..., Fxn
+ pnFy).

Proposition 2.2. Let 0 be a regular value of F . If Ft : R
2n+1 −→ R is a smooth

family of functions with F0 = F , then

ind0(F ) =

s
∑

i=1

indqi(Ft),

for t 6= 0 sufficiently close to zero, where qi are the contact singular points of the
first order partial differential equation Ft.

Proof: The proof follows from Proposition 2.2 in [4]. ✷

Let h : (Rn+1, (x0, y0)) −→ (Rn+1, (x1, y1)) be a germ of diffeomorphism. The

germ of diffeomorphism ĥ : (R2n+1, q0) −→ (R2n+1, q1) is said to be the canonical
contact lift of h if

ĥ∗(ω) ∧ ω = 0 and h ◦ π = π ◦ ĥ,

where ω = dy−
∑n

i=1 pidxi is the canonical contact 1-form on R
2n+1 and ĥ∗ is the

pull-back of ĥ.

Remark 2.9. If ĥ : (R2n+1, q0) −→ (R2n+1, q1) is the canonical contact lift of h,
then there exists a function germ λ : (R2n+1, q0) −→ R such that λ(q0) 6= 0 and

ĥ∗(ω) = λω. Using this equality and h ◦ π = π ◦ ĥ, we get

∂ĥn+1

∂xi
−

n
∑

j=1

∂ĥj
∂xi

ĥn+1+j = −piλ (2.3)

∂ĥn+1

∂y
−

n
∑

j=1

∂ĥj
∂y

ĥn+1+j = λ (2.4)
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∂ĥs
∂pi

= 0, (2.5)

where i ∈ {1, ..., n}, s ∈ {1, ..., n+ 1} and ĥ = (ĥ1, ĥ2, ..., ĥ2n+1).

Definition 2.10. We say that (F, q0) and (G, q1) are equivalent if there exist a
germ of diffeomorphism h : (Rn+1, π(q0)) −→ (Rn+1, π(q1)) and a function germ

γ : (R2n+1, q0) −→ R, γ(q0) 6= 0 such that F = γ(G ◦ ĥ).

A diffeomorphism H : R2n+1 −→ R
2n+1 is said to be a contactomorphism (or

contact diffeomorphism ) ifH∗(ω) = λω for some nowhere zero function λ. Another
equivalence relation of germs of first order PDEs is introduced in [15]. This relation
is defined as follows.

Definition 2.11. We say that (F, q0) and (G, q1) are contact equivalent if there
exists a germ of contactomorphism H : (R2n+1, q0) −→ (R2n+1, q1) and a function
germ γ : (R2n+1, q0) −→ R, γ(q0) 6= 0 such that F = γ(G ◦H).

It is clear that equivalence of germs of first order PDEs implies contact equiv-
alent. The converse is not true in general.

Theorem 2.12. Let f, g : (Rn, 0) −→ R
k be smooth map germs. Let h : (Rn, 0) −→

(Rn, 0) be a germ of diffeomorphism and let C : (Rn, 0) −→ GL(Rk) be a map germ
with C(g ◦ h−1) = f . If θ is a 1-form on R

n, then

h∗(I(f−1(0), θ)) = I(g−1(0), h∗(θ)).

Proof: We set g ◦ h−1 = g̃ and write θ =
∑n
i=1 aidxi. Since Cg̃ = f , then the

ideals 〈f1, ..., fn〉 and 〈g̃1, ..., g̃n〉 are equal. Also,
(

∂C
∂xi1

g̃ . . . ∂C
∂xik

g̃
)

+ C
(

∂g̃
∂xi1

. . . ∂g̃
∂xik

)

=
(

∂f
∂xi1

. . . ∂f
∂xik

)

(2.6)

where i1, ..., ik ∈ {1, ..., n}. Note that every (k + 1) × (k + 1)-minor of the matrix
(2.2) is of the form

k+1
∑

s=1

(−1)k+1+isaisdet
(

∂f
∂xi1

. . . ∂̂f
∂xis

. . . ∂f
∂xik+1

)

,

where the above matrix is obtained from
(

∂f
∂xi1

. . . ∂f
∂xik+1

)

by cancelling the

s-th column. Using (2.6), we deduce I(f−1(0), θ) ⊂ I(g̃−1(0), θ). The opposite
inclusion follows by applying the same argument to C−1f = g̃. Therefore,

I(f−1(0), θ) = I(g̃−1(0), θ). (2.7)

We write h∗(θ) =
∑n

i=1 bidyi. Using g = g̃ ◦ h, we get

(

∂g
∂yi1

. . . ∂g
∂yik+1

bi1 . . . bik+1

)

=





∑n
j=1(

∂g̃
∂xj
◦h)

∂hj

∂yi1
. . .

∑n
j=1(

∂g̃
∂xj
◦h)

∂hj

∂yik+1
∑n
j=1(aj◦h)

∂hj

∂yi1
. . .

∑n
j=1(aj◦h)

∂hj

∂yik+1



 .
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Since the determinant is linear in each row, we deduce from the above equality that
I(g−1(0), h∗(θ)) ⊂ h∗(I(g̃−1(0), θ)). The opposite inclusion follows from g̃ = g◦h−1

and the result follows from Equation (2.7). ✷

Let f : (Rn, 0) −→ R
k be a map germ. We denote by ind0(θ|f ) the index of the

1-form θ on f−1(0) at 0, introduced by Ebeling and Gusein-Zade in [8]. We also
denote by B(r) ⊂ R

n the open ball of radius r centered at 0.

Lemma 2.13. Let f, g : (Rn, 0) −→ R
k be smooth map germs. Let h : (Rn, 0) −→

(Rn, 0) be a germ of diffeomorphism with g ◦h−1 = f . If θ is a 1-form on R
n, then

ind0(θ|f ) = ind0(h
∗(θ)|g).

Proof: By Definition 1 in [8] we have that ind0(θ|f ) = 1 +
∑

q∈B(r) indq(θ̃|f ),

where θ̃ is a smooth 1-form on B(r) which coincides with θ near the boundary
∂B(r) and with a radial 1-form θrad on B(s), s < r, and has only isolated singular
points. It is not difficult to show that h∗(θrad) is a radial 1-form on h−1(B(s)) and
indh−1(q)(h

∗(θ̃)|g ) = indq(θ̃|f ). As h
∗(θ̃) coincides with h∗(θ) near the boundary

∂h−1(B(r)) and with h∗(θrad) on h
−1(B(s)), the result follows. ✷

Let A ⊂ R
n. We denote by χ(A) the Euler characteristic of A.

Lemma 2.14. Let f : (Rn, 0) −→ R
k be a smooth map germ and let λ : (Rn, 0) −→

R be a function germ with λ(0) 6= 0. If θ is a 1-form on R
n, then

(a) ind0(θ|λf
) = ind0(θ|f ).

(b) If λ(0) > 0, then ind0(λθ)|f = ind0(θ|f ).

(c) If λ(0) < 0, then

ind0(λθ)|f = (−1)n−k(ind0(θ|f )− 1)− χ(f−1(0) ∩ ∂B(r))) + 1.

Proof: The proof follows from Definition 1 in [8]. ✷

3. Invariance of the index and multiplicity

Let (F, 0) and (G, 0) be two equivalent germs of first order PDEs as in Definition
2.10. From Remark 2.9 we get







Fp1
...
Fpn






= (G◦ĥ)







γp1
...
γpn






+ γ









∂ĥn+2

∂p1
. . . ∂ĥ2n+1

∂p1
...

...
∂ĥn+2

∂pn
. . . ∂ĥ2n+1

∂pn















Gp1◦ĥ
...

Gpn◦ĥ






(3.1)

and the determinant of the Jacobian matrix of ĥ is

J(ĥ) = J(h) det(
∂ĥn+1+i

∂pj
). (3.2)
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Proposition 3.1. Let (F, 0) and (G, 0) be the germs of first order PDEs. If (F, 0)
and (G, 0) are equivalent, then M2(F, 0) =M2(G, 0).

Proof: We denote by N = det(∂ĥn+1+i

∂pj
). Using Equations (3.1), we can write

det(Fpipj ) = k0(G◦ĥ) +
n
∑

s=1

ks(Gps◦ĥ) + γN2[det(Gpipj )◦ĥ], (3.3)

where k0, k1, ..., kn are smooth functions on R
2n+1. From Equations (3.1) and (3.3),

we obtain the following system of equations

















γ 0 . . . 0 0

γp1 γ ∂ĥn+2

∂p1
. . . γ ∂ĥ2n+1

∂p1
0

...
...

... 0

γpn γ ∂ĥn+2

∂pn
. . . γ ∂ĥ2n+1

∂pn
0

k0 k1 . . . kn γN2

































G◦ĥ

Gp1◦ĥ
...

Gpn◦ĥ

det(Gpipj )◦ĥ

















=















F
Fp1
...

Fpn
det(Fpipj )















By Remark 2.9 we have (ĥ−1)∗(ω) = 1
λ
ω. From Theorem 2.12 and Remark 2.4,

we obtain that (ĥ−1)∗(I(Σ2(F ), ω)) = I(Σ2(G), ω). Since ĥ is a diffeomorphism,
the result follows. ✷

Proposition 3.2. Let (F, 0) and (G, 0) be the germs of first order PDEs. If (F, 0)
and (G, 0) are equivalent, then M1(F, 0) =M1(G, 0)

Proof: Note that γ(G ◦ ĥ) = F and (ĥ−1)∗(ω) = 1
λ
ω. By Theorem 2.12 and Re-

mark 2.4 this implies that (ĥ−1)∗(I(F−1(0), ω)) = I(G−1(0), ω) and result follows.
✷

Lemma 3.1. Let (F, 0) be the germ of first order PDE. Then

ind0(ω|F ) = deg0(FFy , Fp1 , ..., Fpn , Fx1 + p1Fy , ..., Fxn
+ pnFy).

Proof: We denote by Fx+pFy = (Fx1+p1Fy, ..., Fxn
+pnFy) and Fp = (Fp1 , ..., Fpn).

Let (FFy− tFy, Fp, Fx+pFy) be a perturbation of T = (FFy , Fp, Fx+pFy). Then,
by Proposition 2.2 in [4],

deg0T =
∑

qi∈Vt

sign [Fy(qi)]degqi(F − t, Fp, Fx + pFy)− sign [t]deg0∇F.

It is not difficult to show that indqi(ω|Vt
) = sign [Fy(qi)]degqi(F − t, Fp, Fx + pFy),

for all qi ∈ Vt, where Vt = F−1(t) ∩ B(r). From [14] it follows that χ(Vt) − 1 =
sign [t]deg0∇F . The result follows by Theorem 3 in [8]. ✷



Invariants of First Order Partial Differential Equations 143

Theorem 3.2. Let (F, 0) and (G, 0) be the germs of first order PDEs. If (F, 0)
and (G, 0) are equivalent, then ind0(F ) = ind0(G).

Proof: Since (F, 0) and (G, 0) are equivalent, γ(G ◦ ĥ) = F and (ĥ−1)∗(ω) = 1
λ
ω.

Using Lemma 2.13, we get ind0(ω|F ) = ind0((
1
λ
ω)|γ̃G

), where γ̃ = γ◦ĥ−1. Note that
the dimension of F−1(0) is 2n. By Lemma 2.14, we have that ind0(ω|F ) = ind0(ω|G)
and the result follows from Lemma 3.1. ✷

Proposition 3.3. Let (F, 0) and (G, 0) be the germs of first order PDEs. If (F, 0)
and (G, 0) are contact equivalent, then

M1(F, 0) =M1(G, 0) and ind0(F ) = ind0(G).

Proof: It follows from the hypothesis that there exist a germ of contact diffeomor-
phism H : (R2n+1, 0) −→ (R2n+1, 0) and a germ of function γ : (R2n+1, 0) −→ R,
γ(0) 6= 0 such that γ(G ◦ H) = F. Note that (H−1)∗(ω) = λω for some smooth
function λ with λ(0) 6= 0. By Theorem 2.12 and Remark 2.4 this implies that
(H−1)∗(I(F−1(0), ω)) = I(G−1(0), ω). So, M1(F, 0) = M1(G, 0). Following the
same argument in the proof of Theorem 2.12, we obtain the equality of the indices.

✷

Theorem 3.3. Let (F, 0) be a germ of first order PDE. Then,

|ind0(F )| ≤M1(F ) + dimR E2n+1/∇F.

Proof: The proof follows by using the formula of Eisenbud and Levine [9]. ✷

4. First order PDEs with first integral

When n = 1, the first order PDE is called implicit differential equation (IDE).
At points where the partial derivative Fy 6= 0, the IDE is locally the image of a
germ of an immersion (R2, 0) −→ (R3, 0). Conversely, the image of every germ
of an immersion f : (R2, 0) −→ (R3, 0) define an germ of IDE and is denoted by
(Rf , 0).

Definition 4.1. Let (Rf , 0) be a germ of IDE. We say that (Rf , 0) is a dif-
ferential equation germ with first integral if there exists a germ of a submersion
µ : (R2, 0) −→ (R, 0) such that dµ ∧ f∗(ω) = 0.

We call µ a first integral of f and the pair (f, µ) : (R2, 0) −→ (R3 × R, 0) is
called a germ of IDE with first integral. Note that the solutions of the IDE with
first integrals in the plane are the images under π ◦ f of the level sets of µ.

Definition 4.2. Let (g, µ) be a pair of a map germ g : (R2, 0) −→ (R2, 0) and a
germ of a submersion µ : (R2, 0) −→ (R, 0). Then the diagram

(R, 0)
µ
←− (R2, 0)

g
−→ (R2, 0),

or briefly (g, µ), is called an integral diagram if there exists a germ of an immersion
f : (R2, 0) −→ (R3, 0) such that dµ ∧ f∗(ω) = 0 and g = π ◦ f .
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It is not hard to see that if the critical set of g is nowhere dense, then f is
uniquely determined by (g, µ).

Definition 4.3. Let (g, µ) and (g′, µ′) be integral diagrams. Then (g, µ) is called
equivalent to (g′, µ′) if the diagram

(R, 0)

k

��

(R2, 0)

ψ

��

µ
oo

g
// (R2, 0)

φ

��

(R, 0) (R2, 0)
µ′

oo
g′

// (R2, 0)

commutes for some germs of diffeomorphisms k, ψ and φ.

The following proposition reduces the equivalence problem for IDEs, which
admit independent first integral, to that for the corresponding induced integral
diagrams.

Theorem 4.4. ( [10], Proposition 2.8) Let (f, µ) and (f ′, µ′) : (R2, 0) −→ (R3 ×
R, 0) be germs of IDEs with first integral. Assume that the sets of critical points
of π ◦ f and π ◦ f ′ are nowhere dense. Then (Rf , 0) and (Rf ′ , 0) are equivalent if
and only if (π ◦ f, µ) and (π ◦ f ′, µ′) are equivalent as integral diagrams.

Let (g, µ) be an integral diagram. We denote by

m(g, µ) = dimR E2/I(J(g)
−1(0), dµ),

where J(g) is the determinant of the jacobian matrix of g.

Theorem 4.5. Let (g, µ) and (g′, µ′) be integral diagrams. If (g, µ) and (g′, µ′)
are equivalent then

m(g, µ) = m(g′, µ′).

Proof: It follows from the hypothesis that there exist germs of diffeomorphims k,
ψ and φ such that φ ◦ g = g′ ◦ ψ and k ◦ µ = µ′ ◦ ψ. Differentiating this equations,
we obtain

1

J(ψ)
[J(φ) ◦ g]J(g) = J(g′) ◦ ψ and ψ∗(dµ′) = (

dk

dt
◦ µ)dµ.

From Theorem 2.12 and Remark 2.4, we obtain that ψ∗(I(J(g′)−1(0), dµ′)) =
I(J(g)−1(0), dµ). Thus, m(g, µ) = m(g′, µ′). ✷

Let (f, µ) : (R2, 0) −→ (R3 × R, 0) be a germ of IDE with first integral. We
denote by M(f, µ) = dimR E2/I(J(π ◦ f)

−1(0), dµ).

Corollary 4.6. Let (f, µ) and (f ′, µ′) : (R2, 0) −→ (R3 × R, 0) be germs of IDEs
with first integral. If (Rf , 0) and (Rf ′ , 0) are equivalent then

M(f, µ) =M(f ′, µ′).

Proof: The proof follows from Theorems 4.4 and 4.5. ✷
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5. The cases n=1 and n=2

In this section we give examples to distinguish normal forms given in [10] and
[17]. When n=1, we have M1(F, 0) = dimR E3/〈F, Fp, Fx + pFy〉 and M2(F, 0) =
dimR E3/〈F, Fp, Fpp〉. This shows that the multiplicity of (F, 0) coincides with the
multiplicity introduced by Bruce and Tari in [2]. A particular class of implicit
differential equations that have been most intensively studied are the IDEs that
define at most two directions in the plane. This class of equations are called binary
differential equations and are of the form

F (x, y, p) = p2 − δ(x, y) = 0. (5.1)

In this case, M1(F, 0) = dimR E2/(δ, δx), M2(F, 0) = 0, ind(F, 0) = deg0(δδy, δx).
In [17], Tari studied the singularities of codimension 2 of binary differential equa-
tions. He also obtained the topological normal forms of these singularities. We
calculate in Table 1 the index and multiplicity of this class of equations.

Table 1: Normal forms for codimension 2 singularities.
Normal forms of δ ind(F, 0) M1(F, 0)

−y + x4 -1 3
−y − x4 1 3
xy + x3 0 3
x2 + y3 -1 3
−x2 + y3 1 3

When n = 2, we haveM2(F, 0) = dimR E5/〈F, Fp1 , Fp2 , R, det(B)〉 andM1(F, 0)
= dimR E5/〈F, Fp1 , Fp2 , Fx1 + p1Fy , Fx2 + p2Fy〉, where R = det(Fpipj ) and

B =









Fx1 + p1Fy Fx2 + p2Fy 0 0
Fp1x1 + p1Fp1y Fp1x2 + p2Fp1y Fp1p1 Fp1p2
Fp2x1 + p1Fp2y Fp2x2 + p2Fp2y Fp2p1 Fp2p2

0 0 Rp1 Rp2









. (5.2)

Generically F−1(0) ⊂ R
5 is a 4-manifold and π|

F−1(0)
has only fold, cusp and

swallowtail singularities (see [1]).

Theorem 5.1. Let (F, 0) be an analytic germ of first order PDE. If n = 2 and 0 is
not a zero of the 1-form ω on Σ(F ), then the multiplicity of (F, 0) is the maximum
number of swallowtail points that appear in a generic deformation of π|

F−1(0)
.

Proof: By Lemma 2.5 we have that 0 is a zero of the 1-form ω on Σ(F ) if and
only if F (0) = Fp1(0) = Fp2(0) = det(R1)(0) = det(R2)(0) = 0, where

R1 =





Fx1 Fx2 0
Fp1x1 Fp1x2 Fp1p1
Fp2x1 Fp2x2 Fp2p1



 and R2 =





Fx1 Fx2 0
Fp1x1 Fp1x2 Fp1p2
Fp2x1 Fp2x2 Fp2p2



 .
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Using (5.2) we get M1(F, 0) = 0 and M2(F, 0) = dimR E5/〈F, Fp1 , Fp2 , R, C1, C2〉,
where C1 = Rp2Fp2p1−Rp1Fp2p2 and C2 = Rp2Fp1p1−Rp1Fp1p2 . The result follows
from Theorem 5.1 in [16]. ✷

In [10] is studied the classification of generic implicit differential equation with
first integral. This problem is reduced to the classification of generic integral di-
agrams. Normal forms of generic integral diagram also are given in [10]. We
calculate the multiplicity this normal forms and present them in Table 2 .

Table 2: Normal forms for integral diagram (g, µ).
g µ m(g, µ)

(u2, v) v − 1
3u

3 0
(u, v2) v − 1

2u 0
(u3 + uv, v) 3

4u
4 + 1

2u
2v + v 1

(u, v3 + uv) v 0

(u, v3 + uv2) 1
2v

2 + u 2
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