

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 38** 2 (2020): 115–123. ISSN-00378712 IN PRESS doi:10.5269/bspm.v38i2.34192

New Characterization of \mathbb{D} - Focal Curves in Minkowski 3-space

Talat Körpinar, Selçuk Baş and Vedat Asil

ABSTRACT: In this paper, we study new \mathcal{D} -focal curves in the Minkowski 3-space with Darboux frame. Moreover, we obtain some integral equations which they are characterizations for a space curve to be a \mathcal{D} -focal curve. Finally, we give some characterizations about \mathcal{D} -focal curves in the Minkowski 3-space \mathbb{M}^3_1 .

Key Words: Darboux frame, Minkowski 3-space, Focal curve, Normal curvature, Geodesic Curvature, Geodesic torsion.

Contents

1 The basic knowledge of curves and surfaces

- 115
- 2 D-Focal Curves According To Darboux Frame In M₁³

118

1. The basic knowledge of curves and surfaces

In differential geometry, especially the theory of space curves, the Darboux vector is the areal velocity vector of the Frenet frame of a space curve. It is named after Gaston Darboux who discovered it. It is also called angular momentum vector, because it is directly proportional to angular momentum.

Note that the arc-length parameterization $\mathbf{r}: s \to \mathbf{r}(s)$ of a curve satisfies $\|\mathbf{r}'(s)\| = 1$ and $\mathbf{r}'(s) \perp \mathbf{r}''(s)$ for all s. However, in this paper, a general parameterization $\mathbf{r}: t \to \mathbf{r}(t)$ is often used in the surface construction problem. The parameters of functions may sometimes be omitted when no confusion arises.

With each point $\mathbf{r}(s)$ of a curve satisfying $\mathbf{r}''(s) \neq 0$, we associate the Serret-Frenet frame $(\mathbf{T}(s), \mathbf{N}(s), \mathbf{b}(s))$ where $\mathbf{T}(s) = \mathbf{r}'(s), \mathbf{N}(s) = \mathbf{r}''(s) / \|\mathbf{r}''(s)\|$, and $\mathbf{b}(s) = \mathbf{T}(s) \times \mathbf{N}(s)$ are, respectively, the unit tangent, principal normal, and binormal vectors of the curve at the point $\mathbf{r}(s)$.

Case 1. If \mathbf{r} is a timelike curve, then derivative of the Serret–Frenet frame is governed by the relations

$$\frac{d}{ds} \begin{bmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \\ \mathbf{b}(s) \end{bmatrix} = \begin{bmatrix} 0 & \kappa(s) & 0 \\ \kappa(s) & 0 & \tau(s) \\ 0 & -\tau(s) & 0 \end{bmatrix} \begin{bmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \\ \mathbf{b}(s) \end{bmatrix},$$
(1.2)

2010 Mathematics Subject Classification: 53A04, 53A10. Submitted November 10, 2016. Published October 04, 2017 where

$$\begin{split} \langle \mathbf{T}, \mathbf{T} \rangle &= -1, \langle \mathbf{N}, \mathbf{N} \rangle = 1, \langle \mathbf{b}, \mathbf{b} \rangle = 1, \\ \langle \mathbf{T}, \mathbf{N} \rangle &= \langle \mathbf{T}, \mathbf{b} \rangle = \langle \mathbf{N}, \mathbf{b} \rangle = 0. \end{split}$$

Case 2. If **r** is a spacelike curve with a spacelike binormal **b**;

$$\frac{d}{ds} \begin{bmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \\ \mathbf{b}(s) \end{bmatrix} = \begin{bmatrix} 0 & \kappa(s) & 0 \\ \kappa(s) & 0 & \tau(s) \\ 0 & \tau(s) & 0 \end{bmatrix} \begin{bmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \\ \mathbf{b}(s) \end{bmatrix},$$

where

$$\begin{split} \langle \mathbf{T}, \mathbf{T} \rangle &=& 1, \langle \mathbf{N}, \mathbf{N} \rangle = -1, \langle \mathbf{b}, \mathbf{b} \rangle = 1, \\ \langle \mathbf{T}, \mathbf{N} \rangle &=& \langle \mathbf{T}, \mathbf{b} \rangle = \langle \mathbf{N}, \mathbf{b} \rangle = 0. \end{split}$$

Case 3. If \mathbf{r} is a spacelike curve with a spacelike principal normal \mathbf{N} ;

$$\frac{d}{ds} \begin{bmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \\ \mathbf{b}(s) \end{bmatrix} = \begin{bmatrix} 0 & \kappa(s) & 0 \\ -\kappa(s) & 0 & \tau(s) \\ 0 & \tau(s) & 0 \end{bmatrix} \begin{bmatrix} \mathbf{T}(s) \\ \mathbf{N}(s) \\ \mathbf{b}(s) \end{bmatrix},$$

where

$$\begin{split} \langle \mathbf{T}, \mathbf{T} \rangle &=& 1, \langle \mathbf{N}, \mathbf{N} \rangle = 1, \langle \mathbf{b}, \mathbf{b} \rangle = -1, \\ \langle \mathbf{T}, \mathbf{N} \rangle &=& \langle \mathbf{T}, \mathbf{b} \rangle = \langle \mathbf{N}, \mathbf{b} \rangle = 0. \end{split}$$

The osculating plane at each curve point $\mathbf{r}(s)$ is spanned by the two vectors $\mathbf{T}(s)$, $\mathbf{N}(s)$ and does not depend on the curve parameterization. If $\kappa(s) = 0$ for some s, then $\mathbf{r}''(s) = 0$ and the normal vector $\mathbf{n}(s)$ and osculating plane are undefined at that point. This condition identifies an *inflection* of the curve, [8].

On a regular oriented surface $(u, v) \to \mathbf{R}(u, v)$, the unit normal is defined at each point in terms of the partial derivatives $\mathbf{R}_u = \partial \mathbf{R}/\partial u$, $\mathbf{R}_v = \partial \mathbf{R}/\partial v$ by

$$\mathbf{n}(u,v) = \frac{\mathbf{R}_u(u,v) \times \mathbf{R}_v(u,v)}{\|\mathbf{R}_u(u,v) \times \mathbf{R}_v(u,v)\|}.$$

Consider a curve $\mathbf{r}(s) = \mathbf{R}((u(s), v(s)))$ on a surface $\mathbf{R}(u, v)$, where s denotes arc length for the space curve $\mathbf{r}(s)$, but not necessarily for the plane curve defined by $s \to ((u(s), v(s)))$. With each point $\mathbf{r}(s)$ we associate the *Darboux frame* $(\mathbf{T}(s), \mathbf{P}(s), \mathbf{n}(s))$ where $\mathbf{T}(s)$ is the unit tangent vector of the curve. $\mathbf{n}(s)$ is the unit normal vector of the surface at the point $\mathbf{R}((u(s), v(s))) = \mathbf{r}(s)$, and

 $\mathbf{P}(s) = \mathbf{n}(s) \times \mathbf{T}(s)$. The arc-length derivative of the Darboux frame is given by the relations

In case of $\mathbf{r}(s)$ is a time-like curve, the derivative formula of the Darboux frame of $\mathbf{r}(s)$ is in the following form:

$$\frac{d}{ds} \begin{bmatrix} \mathbf{T}(s) \\ \mathbf{P}(s) \\ \mathbf{n}(s) \end{bmatrix} = \begin{bmatrix} 0 & \kappa_g(s) & \kappa_n(s) \\ \kappa_g(s) & 0 & -\tau_g(s) \\ \kappa_n(s) & \tau_g(s) & 0 \end{bmatrix} \begin{bmatrix} \mathbf{T}(s) \\ \mathbf{P}(s) \\ \mathbf{n}(s) \end{bmatrix},$$

where $\mathbf{T}, \mathbf{P}, \mathbf{n}$ satisfy the following properties:

$$<$$
 T,T>=-1, $<$ n,n>=1, $<$ P,P>=1, $<$ T,n>= $<$ T,P>= $<$ n,P>=0.

In case of $\mathbf{r}(s)$ is a spacelike curve, the derivative formula of the Darboux frame of $\mathbf{r}(s)$ is in the following form:

$$\frac{d}{ds} \begin{bmatrix} \mathbf{T}(s) \\ \mathbf{P}(s) \\ \mathbf{n}(s) \end{bmatrix} = \begin{bmatrix} 0 & \kappa_g(s) & \kappa_n(s) \\ -\kappa_g(s) & 0 & \tau_g(s) \\ \kappa_n(s) & \tau_g(s) & 0 \end{bmatrix} \begin{bmatrix} \mathbf{T}(s) \\ \mathbf{P}(s) \\ \mathbf{n}(s) \end{bmatrix},$$

where $\mathbf{T}, \mathbf{P}, \mathbf{n}$ satisfy the following properties:

$$<$$
 T,T>=1, $<$ n,n>=-1, $<$ P,P>=1, $<$ T,n>= $<$ T,P>= $<$ n.P>=0.

In case of $\mathbf{r}(s)$ is a spacelike curve, the derivative formula of the Darboux frame of $\mathbf{r}(s)$ is in the following form:

$$\frac{d}{ds} \begin{bmatrix} \mathbf{T}(s) \\ \mathbf{P}(s) \\ \mathbf{n}(s) \end{bmatrix} = \begin{bmatrix} 0 & \kappa_g(s) & -\kappa_n(s) \\ \kappa_g(s) & 0 & \tau_g(s) \\ \kappa_n(s) & \tau_g(s) & 0 \end{bmatrix} \begin{bmatrix} \mathbf{T}(s) \\ \mathbf{P}(s) \\ \mathbf{n}(s) \end{bmatrix},$$

where T, P, n satisfy the following properties:

$$<$$
 T, T > = 1, $<$ n, n > = 1, $<$ P, P >= -1 $<$ T, n > = $<$ T, P > = $<$ n, P > = 0.

Define the normal curvature $\kappa_n(s)$, the geodesic curvature $\kappa_g(s)$, and the geodesic torsion $\tau_g(s)$ at each point of the curve $\mathbf{r}(s)$ as

$$\kappa_n = \left\langle \frac{d\mathbf{T}}{ds}, \mathbf{n} \right\rangle, \quad \kappa_g = \left\langle \frac{d\mathbf{T}}{ds}, \mathbf{P} \right\rangle, \quad \tau_g = \left\langle \frac{d\mathbf{T}}{ds}, \mathbf{n} \right\rangle.$$

A regular curve $t \to \mathbf{r}(t)$ is a geodesic on the surface $\mathbf{R}(u,v)$ if and only if

- (D1) the geodesic curvature of $\mathbf{r}(t)$ is identically zero;
- (D2) the principal normal at each non-inflection point of $\mathbf{r}(t)$ is orthogonal to the surface tangent plane at the point $\mathbf{R}((u(t), v(t))) = \mathbf{r}(t)$;
- (D3) the osculating plane at each non-inflection point of $\mathbf{r}(t)$ is orthogonal to the surface tangent plane at the point $\mathbf{R}((u(t), v(t)) = \mathbf{r}(t))$.

2. \mathcal{D} -Focal Curves According To Darboux Frame In \mathbb{M}^3_1

Denoting the focal curve by \mathfrak{D}_{γ} , we can write

$$\mathfrak{D}_{\gamma}(s) = (\gamma + \mathfrak{f}_{1}^{\mathfrak{D}} \mathbf{P} + \mathfrak{f}_{2}^{\mathfrak{D}} \mathbf{n})(s), \tag{2.1}$$

where the coefficients $\mathfrak{f}_1^{\mathfrak{D}}$, $\mathfrak{f}_2^{\mathfrak{D}}$ are smooth functions of the parameter of the curve γ , called the first and second focal curvatures of γ , respectively.

To separate a focal curve according to Darboux frame from that of Frenet-Serret frame, in the rest of the paper, we shall use notation for the focal curve defined above as \mathcal{D} -focal curve.

Case 1. If γ is a timelike curve, then we have

Theorem 2.1. Let $\gamma: I \longrightarrow \mathbb{M}^3_1$ be a unit speed timelike curve and \mathfrak{D}_{γ} its focal curve on \mathbb{M}^3_1 . Then,

$$\mathfrak{D}_{\gamma}^{\mathfrak{D}}(s) = \gamma(s) + e^{-\int \frac{\tau_g \kappa_g}{\kappa_n} ds} [\mathfrak{C} - \int \frac{\tau_g}{\kappa_n} e^{\int \frac{\tau_g \kappa_g}{\kappa_n} ds} ds] \mathbf{P}$$

$$+ \left[\frac{1}{\kappa_n} - \frac{\kappa_g}{\kappa_n} e^{-\int \frac{\tau_g \kappa_g}{\kappa_n} ds} [\mathfrak{C} + \int \frac{\tau_g}{\kappa_n} e^{\int \frac{\tau_g \kappa_g}{\kappa_n} ds} ds] \right] \mathbf{n},$$
(2.2)

where \mathfrak{C} is a constant of integration.

Proof. Assume that γ is a unit speed curve and \mathfrak{D}_{γ} its focal curve on \mathbb{M}_{1}^{3} . By differentiating the formula (2.1), we get

$$\mathfrak{D}_{\gamma}^{\mathcal{D}}(s)' = (1 + \mathfrak{f}_{1}^{\mathcal{D}}\kappa_{g} + \mathfrak{f}_{2}^{\mathcal{D}}\kappa_{n})\mathbf{T} + ((\mathfrak{f}_{1}^{\mathcal{D}})' + \mathfrak{f}_{2}^{\mathcal{D}}\tau_{g})\mathbf{P} + ((\mathfrak{f}_{2}^{\mathcal{D}})' - \mathfrak{f}_{1}^{\mathcal{D}}\tau_{g})\mathbf{n},$$
 (2.3)

where the coefficients $\mathfrak{f}_1^{\mathfrak{D}}$, $\mathfrak{f}_2^{\mathfrak{D}}$ are smooth functions of the parameter of the curve γ . Using above equation, the first 2 components vanish, we get

$$\begin{array}{rcl} \mathfrak{f}_1^{\mathcal{D}} \kappa_g + \mathfrak{f}_2^{\mathcal{D}} \kappa_n & = & -1, \\ \left(\mathfrak{f}_1^{\mathcal{D}}\right)' + \mathfrak{f}_2^{\mathcal{D}} \tau_g & = & 0. \end{array}$$

Considering first equation of above system, we have

$$\mathfrak{f}_1^{\mathcal{D}} = \frac{-1 - \mathfrak{f}_2^{\mathcal{D}} \kappa_n}{\kappa_g} \text{ and } \mathfrak{f}_2^{\mathcal{D}} = \frac{-1 - \mathfrak{f}_1^{\mathcal{D}} \kappa_g}{\kappa_n}$$

Putting in the second equation we have

$$\left(\mathfrak{f}_{1}^{\mathcal{D}} \right)' - \tau_{g} \left(\frac{-1 - \mathfrak{f}_{1}^{\mathcal{D}} \kappa_{g}}{\kappa_{n}} \right) = 0,$$

$$\left(\mathfrak{f}_{1}^{\mathcal{D}} \right)' + \mathfrak{f}_{1}^{\mathcal{D}} \left(\frac{\tau_{g} \kappa_{g}}{\kappa_{n}} \right) = -\frac{\tau_{g}}{\kappa_{n}}.$$

By means of obtained equations, we express (2.2). This completes the proof.

Corollary 2.2. Let $\gamma: I \longrightarrow \mathbb{M}^3_1$ be a unit speed timelike curve and \mathfrak{D}_{γ} its focal curve on \mathbb{M}^3_1 . Then, the focal curvatures of \mathfrak{F}_{γ} are

$$\mathfrak{f}_{1}^{\mathcal{D}} = e^{-\int \frac{\tau_{g}\kappa_{g}}{\kappa_{n}} ds} [\mathfrak{C} - \int \frac{\tau_{g}}{\kappa_{n}} e^{\int \frac{\tau_{g}\kappa_{g}}{\kappa_{n}} ds} ds],$$

$$\mathfrak{f}_{2}^{\mathcal{D}} = \left[-\frac{1}{\kappa_{n}} - \frac{\kappa_{g}}{\kappa_{n}} e^{-\int \frac{\tau_{g}\kappa_{g}}{\kappa_{n}} ds} [\mathfrak{C} - \int \frac{\tau_{g}}{\kappa_{n}} e^{\int \frac{\tau_{g}\kappa_{g}}{\kappa_{n}} ds} ds] \right],$$

where \mathfrak{C} is a constant of integration.

In the light of Theorem 2.1, we express the following corollary without proof:

Lemma 2.3. Let $\gamma: I \longrightarrow \mathbb{M}^3_1$ be a unit speed curve and \mathfrak{F}_{γ} its focal curve on \mathbb{M}^3_1 . If κ_n and κ_g are constants then, the focal curvatures of \mathfrak{F}_{γ} are

$$\mathfrak{f}_1^{\mathcal{D}} = -\frac{1}{\kappa_g} - \mathfrak{Q}e^{\frac{\tau_g \kappa_g}{\kappa_n} s}$$

$$\mathfrak{f}_2^{\mathfrak{D}} = -\frac{1}{\kappa_n} - \frac{\kappa_g}{\kappa_n} \left[-\frac{1}{\kappa_g} - \mathfrak{Q}e^{\frac{\tau_g \kappa_g}{\kappa_n} s} \right],$$

where \mathfrak{Q} is a constant of integration.

Theorem 2.4. Let $\gamma: I \longrightarrow \mathbb{M}_1^3$ be a unit speed curve and \mathfrak{F}_{γ} its focal curve on \mathbb{M}_1^3 . If κ_n and κ_g are constants then,

$$\mathfrak{D}_{\gamma}^{\mathcal{D}}(s) = \gamma(s) + \left[-\frac{1}{\kappa_q} - \mathfrak{Q}e^{\frac{\tau_g\kappa_g}{\kappa_n}s} \right] \mathbf{P} + \left[-\frac{1}{\kappa_n} - \frac{\kappa_g}{\kappa_n} \left[-\frac{1}{\kappa_q} - \mathfrak{Q}e^{\frac{\tau_g\kappa_g}{\kappa_n}s} \right] \right] \mathbf{n},$$

where \mathfrak{Q} is a constant of integration.

Corollary 2.5. Let $\gamma: I \longrightarrow \mathbb{M}^3_1$ be a unit speed curve and \mathfrak{F}_{γ} its focal curve on \mathbb{M}^3_1 . If γ is a principal line then,

$$\mathfrak{D}_{\gamma}^{\mathcal{D}}(s) = \gamma(s) + \mathfrak{A}\mathbf{P} + \left[\frac{-1 - \mathfrak{A}\kappa_g}{\kappa_g}\right]\mathbf{n},$$

where \mathfrak{A} is a constant of integration.

Case 2. If γ is a spacelike curve with timelike **n**, then we have

Theorem 2.6. Let $\gamma: I \longrightarrow \mathbb{M}_1^3$ be a unit speed spacelike curve with timelike \mathbf{n} and \mathfrak{D}_{γ} its focal curve on \mathbb{M}_1^3 . Then,

$$\mathfrak{D}_{\gamma}^{\mathcal{D}}(s) = \gamma(s) + e^{-\int \frac{\tau_g \kappa_g}{\kappa_n} ds} [\mathfrak{C} + \int \frac{\tau_g}{\kappa_n} e^{\int \frac{\tau_g \kappa_g}{\kappa_n} ds} ds] \mathbf{P}$$
$$+ \left[\frac{1}{\kappa_n} - \frac{\kappa_g}{\kappa_n} e^{-\int \frac{\tau_g \kappa_g}{\kappa_n} ds} [\mathfrak{C} + \int \frac{\tau_g}{\kappa_n} e^{\int \frac{\tau_g \kappa_g}{\kappa_n} ds} ds] \right] \mathbf{n},$$

where \mathfrak{C} is a constant of integration.

Corollary 2.7. Let $\gamma: I \longrightarrow \mathbb{M}^3$ be a unit speed curve and \mathfrak{D}_{γ} its focal curve on \mathbb{M}^3 . Then, the focal curvatures of \mathfrak{F}_{γ} are

$$\mathfrak{f}_{1}^{\mathcal{D}} = e^{-\int \frac{\tau_{g}\kappa_{g}}{\kappa_{n}} ds} [\mathfrak{C} + \int \frac{\tau_{g}}{\kappa_{n}} e^{\int \frac{\tau_{g}\kappa_{g}}{\kappa_{n}} ds} ds],$$

$$\mathfrak{f}_{2}^{\mathcal{D}} = \left[\frac{1}{\kappa_{n}} - \frac{\kappa_{g}}{\kappa_{n}} e^{-\int \frac{\tau_{g}\kappa_{g}}{\kappa_{n}} ds} [\mathfrak{C} + \int \frac{\tau_{g}}{\kappa_{n}} e^{\int \frac{\tau_{g}\kappa_{g}}{\kappa_{n}} ds} ds]\right],$$

where \mathfrak{C} is a constant of integration.

In the light of Theorem 2.6, we express the following corollary without proof:

Lemma 2.8. Let $\gamma: I \longrightarrow \mathbb{M}^3$ be a unit speed spacelike curve with timelike \mathbf{n} and \mathfrak{F}_{γ} its focal curve on \mathbb{M}^3 . If κ_n and κ_g are constant then, the focal curvatures of \mathfrak{F}_{γ} are

$$\begin{split} & \mathbf{f}_1^{\mathcal{D}} = -\frac{1}{\kappa_g} + \mathfrak{Q} e^{\frac{\tau_g \kappa_g}{\kappa_n} s} \\ & \mathbf{f}_2^{\mathcal{D}} = \frac{1}{\kappa_n} - \frac{\kappa_g}{\kappa_n} [-\frac{1}{\kappa_g} + \mathfrak{Q} e^{\frac{\tau_g \kappa_g}{\kappa_n} s}], \end{split}$$

where \mathfrak{Q} is a constant of integration.

Theorem 2.9. Let $\gamma: I \longrightarrow \mathbb{M}^3$ be a unit speed curve and \mathfrak{F}_{γ} its focal curve on \mathbb{M}^3 . If κ_n and κ_q are constants then,

$$\mathfrak{D}_{\gamma}^{\mathcal{D}}(s) = \gamma(s) + [-\frac{1}{\kappa_q} + Qe^{\frac{\tau_g\kappa_g}{\kappa_n}s}]\mathbf{P} + [\frac{1}{\kappa_n} - \frac{\kappa_g}{\kappa_n}[-\frac{1}{\kappa_q} + Qe^{\frac{\tau_g\kappa_g}{\kappa_n}s}]]\mathbf{n},$$

where \mathfrak{Q} is a constant of integration.

Corollary 2.10. Let $\gamma: I \longrightarrow \mathbb{M}^3$ be a unit speed spacelike curve with timelike \mathbf{n} and \mathfrak{F}_{γ} its focal curve on \mathbb{M}^3 . If γ is a principal line then,

$$\mathfrak{D}_{\gamma}^{\mathfrak{D}}(s) = \gamma(s) + \mathfrak{A}\mathbf{P} + \left[\frac{1 - \mathfrak{A}\kappa_g}{\kappa_n}\right]\mathbf{n},$$

where \mathfrak{A} is a constant of integration.

Case 3. If γ is a spacelike curve with timelike **P**, then we have

Theorem 2.11. Let $\gamma: I \longrightarrow \mathbb{M}^3$ be a unit speed spacelike curve with timelike \mathbf{P} and \mathfrak{D}_{γ} its focal curve on \mathbb{M}^3 . Then,

$$\mathfrak{D}_{\gamma}^{\mathcal{D}}(s) = \gamma(s) + e^{-\int \frac{\tau_g \kappa_g}{\kappa_n} ds} [\mathfrak{C} - \int \frac{\tau_g}{\kappa_n} e^{\int \frac{\tau_g \kappa_g}{\kappa_n} ds} ds] \mathbf{P}$$

$$+ [-\frac{1}{\kappa_n} - \frac{\kappa_g}{\kappa_n} e^{-\int \frac{\tau_g \kappa_g}{\kappa_n} ds} [\mathfrak{C} - \int \frac{\tau_g}{\kappa_n} e^{\int \frac{\tau_g \kappa_g}{\kappa_n} ds} ds]] \mathbf{n},$$

where \mathfrak{C} is a constant of integration.

Corollary 2.12. Let $\gamma: I \longrightarrow \mathbb{M}^3$ be a unit speed spacelike curve with timelike \mathbf{P} and \mathfrak{D}_{γ} its focal curve on \mathbb{M}^3 . Then, the focal curvatures of \mathfrak{F}_{γ} are

$$\begin{split} \mathfrak{f}_1^{\mathbb{D}} &= e^{-\int \frac{\tau_g \kappa_g}{\kappa_n} ds} [\mathfrak{C} - \int \frac{\tau_g}{\kappa_n} e^{\int \frac{\tau_g \kappa_g}{\kappa_n} ds} ds], \\ \mathfrak{f}_2^{\mathbb{D}} &= [-\frac{1}{\kappa_n} - \frac{\kappa_g}{\kappa_n} e^{-\int \frac{\tau_g \kappa_g}{\kappa_n} ds} [\mathfrak{C} - \int \frac{\tau_g}{\kappa_n} e^{\int \frac{\tau_g \kappa_g}{\kappa_n} ds} ds]], \end{split}$$

where \mathfrak{C} is a constant of integration.

In the light of Theorem 2.11, we express the following corollary without proof:

Lemma 2.13. Let $\gamma: I \longrightarrow \mathbb{M}^3$ be a unit speed spacelike curve with timelike \mathbf{P} and \mathfrak{F}_{γ} its focal curve on \mathbb{M}^3 . If κ_n and κ_g are constants then, the focal curvatures of \mathfrak{F}_{γ} are

$$\begin{split} & \mathbf{f}_1^{\mathcal{D}} = -\frac{1}{\kappa_g} - \mathfrak{Q} e^{\frac{\tau_g \kappa_g}{\kappa_n} s} \\ & \mathbf{f}_2^{\mathcal{D}} = -\frac{1}{\kappa_n} - \frac{\kappa_g}{\kappa_n} [-\frac{1}{\kappa_g} - \mathfrak{Q} e^{\frac{\tau_g \kappa_g}{\kappa_n} s}], \end{split}$$

where \mathfrak{Q} is a constant of integration.

References

- P. Alegre , K. Arslan, A. Carriazo , C. Murathan and G. Öztürk: Some Special Types of Developable Ruled Surface, Hacettepe Journal of Mathematics and Statistics, 39 (3) (2010), 319 – 325.
- 2. V. Asil, S. Bas and T. Körpınar: On construction of D-focal curves in Euclidean 3-space M³, Bol. Soc. Paran. Mat. 31 (2) (2013), 9−17.
- Ö. Bektaş, M., S. Yüce: Smarandache Curves According to Darboux Frame in Euclidean 3-Space. arXiv: 1203.4830v1.
- 4. D. E. Blair: Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Springer-Verlag 509, Berlin-New York, 1976.

- J.P.Cleave: The form of the tangent developable at points of zero torsion on space curves, Math. Proc. Camb. Phil. 88 (1980), 403–407.
- 6. N. Ekmekci and K. Ilarslan: Null general helices and submanifolds, Bol. Soc. Mat. Mexicana 9 (2) (2003), 279-286.
- 7. A. A. Ergin: Timelike Darboux curves on a timelike surface $\mathbb{M} \subset \mathbb{M}^3_1$, Hadronic Journal 24(6) (2001) 701–712.
- 8. R.T. Farouki, N. Szafran, L. Biard: Existence conditions for Coons patches interpolating geodesic boundary curves. Computer-Aided Design, 26 (2009), 599–614.
- O. Gursoy: Some results on closed ruled surfaces and closed space curves, Mech. Mach. Theory 27 (1990), 323–330.
- 10. D. J. Struik: Lectures on Classical Differential Geometry, Dover, New-York, 1988.
- 11. T. Körpınar and E. Turhan: On Spacelike Biharmonic Slant Helices According to Bishop Frame in the Lorentzian Group of Rigid Motions E(1, 1), Bol. Soc. Paran. Mat. 30 (2) (2012), 91–100
- 12. L. Kula and Y. Yayli: On slant helix and its spherical indicatrix, Applied Mathematics and Computation. 169 (2005), 600-607.
- 13. M. Khalifa Saad, H. S. Abdel-Aziz, G. Weiss, M. Solimman: Relations among Darboux Frames of Null Bertrand Curves in Pseudo-Euclidean Space. 1st Int. WLGK11, April 25-30, Paphos, Cyprus, 2011.
- M. A. Lancret: Memoire sur les courbes 'a double courbure, Memoires presentes alInstitut 1 (1806), 416-454.
- 15. E. Loubeau and S. Montaldo: Biminimal immersions in space forms, preprint, 2004, math.DG/0405320 v1.
- A. W. Nutbourne and R. R. Martin, Differential Geometry Applied to the Design of Curves and Surfaces, Ellis Horwood, Chichester, UK, 1988.
- 17. Y. Ou and Z. Wang: Linear Biharmonic Maps into Sol, Nil and Heisenberg Spaces, Mediterr. j. math. 5 (2008), 379–394.
- 18. N. Rahmani and S. Rahmani: Lorentzian Geometry of the Heisenberg Group, Geometriae Dedicata 118 (1) (2006) 133–140.
- E. Turhan and T. Körpınar: Parametric equations of general helices in the sol space Sol³, Bol. Soc. Paran. Mat. 31 (1) (2013), 99–104.
- R. Uribe-Vargas: On vertices, focal curvatures and differential geometry of space curves, Bull. Brazilian Math. Soc. 36 (3) (2005), 285–307.

Talat Körpinar, Muş Alparslan University, Department of Mathematics, 49250, Muş, TURKEY.
E-mail address: talatkorpinar@gmail.com

and

Selçuk BAŞr, Muş Alparslan University, Department of Mathematics, 49250, Muş, TURKEY. $E\text{-}mail\ address: \verb|selcukbas79@gmail.com||$

and

Vedat Asil, $First\ University,$ $Department\ of\ Mathematics,$ 23119, Elazığ, TURKEY. E-mail address: vedatasil@gmail.comn