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1. Introduction and Preliminaries

In order to describe the definition of the local fractional derivative and local
fractional integral, recently, one has introduced to define the following sets (see,
e.g., [15,19]; see also [2]): For 0 < a <1,

(i) the a-type set of integers Z® is defined by
Z° :={0"}U{+m" : m € N};
(ii) the a-type set of rational numbers Q* is defined by
m [e3
Q% := {q“ : qe@}:{(z) : meZ,neN};
(iii) the a-type set of irrational numbers J* is defined by
m [e3
Jo = {r* : TGJ}Z{TO‘# (z) : mEZ,nEN};

(iv) the a-type set of real line numbers R® is defined by R® := Q~ U J«.
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Here and in the following, let R, R™, Q, Z and N be the sets of real and positive
real numbers, rational numbers, integers and positive integers, respectively, and

J:=R\Q and Ng:=NuU{0},

and, whenever the a-type set R® of real line numbers is involved, the a is assumed
to be tacitly 0 < o < 1.

One has also defined two binary operations the addition + and the multiplica-
tion - (which is conventionally omitted) on the a-type set R* of real line numbers
as follows (see, e.g., [15,19]; see also [2]): For a®, b* € R,

a®+b% :=(a+b)" and a”-b* =a"d" := (ab)”. (1.1)
Then one finds that
e (R% +) is a commutative group: For a®, b, ¢* € R%,
) a®+b* e Ry
) a® 4+ b* =b* 4+ a%
Ag)  a®+ (0% +¢*) = (a® + b%) + ¢
) 0% is the identity for (R, 4+): For any a® € R*, a®*+0% = 0* 4+ a®* =

a/a?
(As)  For each a® € R, (—a)® is the inverse element of a® for (R*, +):

a® + (=a)* = (a+ (=a))* = 0%

e (R*\ {0*}, -) is a commutative group: For a®, b%, ¢* € R,

(M1)  a*b™ € R

(Msg)  a®d® = b*a®

(M) a2 (b%e) = (@ b) 2

(My) 1% is the identity for (R®, -): For any a® € R%, a®1¢ = 1%®* = a*;

(Ms)  Foreacha® € R*\{0%}, (1/a)® is the inverse element of a® for (R®, -):

a®(1/a)* = (a(1/a))™ = 1%

e Distributive law holds: a® (b® + ¢*) = a®b® + a®c®.
Furthermore we observe some additional properties for (R%, +, -) which are
stated in the following proposition (see [2]).
Proposition 1.1. FEach of the following statements holds true:
(i) Like the usual real number system (R, +, -), (R, +, -) is a field;

(ii) The additive identity 0% and the multiplicative identity 1% are unique, respec-
tively;
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(i) The additive inverse element and the multiplicative inverse element are unique,
respectively;

(iv) For each a® € R?, its inverse element (—a)® may be written as —a®; for each
b* € R* \ {07}, its inverse element (1/b)* may be written as 1% /b but not
as 1/b%;

(v) If the order < is defined on (R%, 4, -) as follows: a® < b in R* if and only
if a <binR, then (R*, +, -, <) is an ordered field like (R, +, -, <).

In order to introduce the local fractional calculus on R®, we begin with the
concept of the local fractional continuity as in Definition 1.1.

Definition 1.1. A non-differentiable function f:R — R*, x — f(x), is called to
be local fractional continuous at xq if for any € € RT, there exists 6 € RY such that

|f (@) = f(zo)| < &*

holds for |x — xo| < §. If a function f is local continuous on the interval (a,b),
we denote f € Cy(a,b).

Among several attempts to have defined local fractional derivative and local
fractional integral (see [14, Section 2.1]), we choose to recall the following defini-
tions of local fractional calculus (see, e.g., [3,14,15]):

Definition 1.2. The local fractional derivative of f(x) of order a at x = x is
defined by

@] A ) — fw)

e R (x — x0)”

F (wo) = 4y DS f () = :
where A® (f(x) — f(zo)) =I'(a + 1) (f(z) — f(zo)) and T is the familiar Gamma
function (see, e.g., [13, Section 1.1]).
k-+1 times
(a) _ o ; (k+1)a _ a )
Let f\%(x) = DS f(x). If there exists f () = Dy ...DSf(x) for any
x €I CR, then we denote f € Dq1)a(I) (k € No).

Definition 1.3. Let f € C,, [a,b]. Alsolet P = {tg, ..., tn} (N € N) be a partition
of the interval [a,b] which satisfiesa =ty < t; < -+ <tny_1 <ty = b. Further, for

this partition P, let At := [ ax At; where At :=tj41—t; {j=0,..., N —1}.
<jSN-—
Then the local fractional integral of f on the interval [a,b] of order a (denoted by

Ib(a)f) is defined by

(@) —
oy S (1) a+1 /f ) = a—|—1 Aliglozf (12)
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provided the limit exists (in fact, this limit exists if f € Cq [a,]).
Here, it follows that aléa)f =0ifa=0>band aléa)f = —,,Lﬁ“)f if a <b.
Ifalg(f‘)g exists for any x € [a,b] and a function g : [a, b] = R®, then we denote
ge ! [a,b].

We give some of the features related to the local fractional calculus that will be
required for our main results (see [15]).
Lemma 1.2. The following identities hold true:
(a) (la-local fractional derivative of x*%)

de gk I'l+k
x (14 ka) Lk=Da

dre  T(1+(k—1)a)

(b) (Local fractional integration is anti-differentiation)
Suppose that f(x) = g!*)(z) € Cy [a,b]. Then we have

olp f(z) = g(b) — g(a).

(¢) (Local fractional integration by parts)
Suppose that f(x),g(x) € Dy [a,b] and £ (z), ¢'®)(z) € Cy [a,b]. Then we
have

oI5 F(2)g' M (@) = f@)g(@)]y —a I £ (@)g().

(d) (Local fractional definite integrals of %)

1 b I'(1+ ka)
aldr)® = b(k—i—l)a (k1) L e R).
F(1+a)/ax (dz) F(1+(k+1)a)( “ ) (keR)
For further details on local fractional calculus, one may refer to [14]-[18].

Let I be an interval in R. A function f: I — R® is said to be convex on [ if
flla+ @ =t)y) <tf(x)+ 1 —1)f(y) (1.3)

holds for every z, y € I and t € [0,1].
If a function f: I C R — R (I an interval) is convex on I, then, for a, b € T

with a < b, we have

f<a+b)§ 1 /abf(x)deM (1.4)

2 b—a 2 ’
which is known as the Hermite-Hadamard inequality.

Mo et al. [8] introduced the following generalized convex function.
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Definition 1.4. Let f : I C R — R® (I an interval) be a function. If, for any
x1, 29 € I and X € [0,1], the following inequality

F O+ (1= Naz) A f(ar) + (1= N f(x2)
holds, then f is called a generalized convex function on I.

Here are two basic examples of generalized convex functions:
(1) f(z) =z (p > 1);

(2) g(x) = Bo (2%) (x € R), where E, (2%) := Y.3% )ty is the Mittag-
LefHler function.

Recently the fractal theory has received a significant attention (see, e.g., [,
3,6,7,9,10,11,12]). Mo et al. [8] proved the following analogue of the Hermite-
Hadamard inequality (1.4) for generalized convex functions: Let f (z) € I2 [a,]
be a generalized convex function on [a, b] with a < b. Then we have

at+b\ _T(+a) fla)+ f(b)
F(*57) = oty < HOELE), (1.5

Remark 1.3. The double inequality (1.5) is known in the literature as generalized
Hermite-Hadamard integral inequality for generalized convex functions. Some of
the classical inequalities for means can be derived from (1.5) with appropriate
selections of the mapping f. Both inequalities in (1.4) and (1.5) hold in the reverse
direction if f is concave and generalized concave, respectively. For some more
results which generalize, improve and extend the inequalities (1.5), one may refer
to the recent papers [1,6,7], [9]-[11] and references therein.

An analogue in the fractal set R* of the classical Holder’s inequality has been
established by Yang [15], which is asserted by the following lemma.

Lemma 1.4. Let f,g € C, [a,b], with % +% =1 (p, ¢ >1). Then we have

1 ’ o
T [ @) ) (1.6

1 b » N 1 b . N q
g(m | 1@ <dw>> (m | 1ata) <dw>> .

Here, in this paper, we establish certain generalized Hermite-Hadamard’s in-
equalities for generalized convex functions via local fractional integral. As special
cases of some of the results presented here, certain interesting inequalities involving
generalized arithmetic and logarithmic means are obtained.

=
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2. Main Results

Lemma 2.1. Let I C R be an interval, f: 1° — R (I° is interior of I) such that
f €Dy (I°) and [ € Cyla,b] for a,be I° with a <b. Then, for all z € [a,b],
the following identity holds true:

(b—2)f(0) + (z—a)*fla) 2°T(1+ )
J@)+ b_a)@ b—a)@

_ a1 /1 AN
 (b—a) T(1+a) ), \2 2
(x_a)2oz 1 /1 E Off(a) 1—t$+1+t
b—a) TQ1+a)t, \2 2
U /1 AR
(b—=z)* 1 /1 tN oy (1=t 1+t
T —ar ity \2) 7 7 T
Proof: Using the local fractional integration by parts, we have
(x—a)> 1 /1 t\Y ) (1t 1t N
G-ap Ta+a) ), \2) 7/ y vt e )
1
 (z—a)* e 1+t 1—t
= e |[moapl 2 et e i

Tl+ae) 1 )/Olf(ﬂx—i—l_ta)(dt)a

ol f(t)

(d)*.  (2.1)

2 2
_ lwzaty 4o 1 )/Olf<ﬁx+1ta>(dt)a

(b—a)> (z—a)*T(1+a 9 2
_ z—a\" x_2”‘1"(1+a) N
- (ba) f(z) Ooan wre I f (1) (2.2)

Similarly, we also get the following identities:
(x—a)> 1 /1 ENY oy (1=t 14t
G_ap T+ o \2) 7/ y vt e )
r—a\” 2°T(1 + «)
= —_— - JI%., , 2.
(5=2) s~ Zgon s s (2.3
(b—z)2 1 /1 EN oy (Lt 1t
— | — —0b | (dt)*
G_ap Ti+a) o \2) 7/ y vt b) ()

N (2_2) f(x)_%ﬂ@f(t), (2.4)
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and

e [ () (e

- (1=2) -5 e, (25)

By adding identities (2.2)—(2.5), we get the desired identity (2.1).

Theorem 2.2. Suppose that assumptions of Lemma 2.1 are satisfied. If |f(0‘)| 18
generalized convex on [a,b], then the following inequality holds:

b= fB) (e —a)"f() _2T(+a) f(t)}

}f(x” b—a) b—ap °
T(1+a) [(@—a) (\f(“>(:c)| + |f(“)(a)\>
- I'(1+2a)| (b—a)~ 2¢
(b—x)* ([f)] + [f )]
To—ap ( 5 (26)

for x € [a, b].

Proof: Using Lemma 2.1 and taking the modulus, we have

flay + L= (("b)_*;;”a ) 2(5(_”) o aIz?f(t)‘

i [ (5 o
e, () P (e e en
A e (e o

fle (%x + %bﬂ (dt)®.

" (fb—?;: r<11+a> / @

If we use generalized convexity of | I (0‘)| on [a,b], we get from the inequality
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(2.7) that

holds for all z € [a, b].

From Lemma 1.2, we have

ot [ 0 () = (e B2

and

1 LN 1=\ 1 [Tt (1+2
7/ DV () e = L[ B0t TAH209T ) )
T(1+a)), \2 2 40 |T(1+2a) T(1+3a)
If we substitute equalities (2.9) and (2.10) in the right-side of the inequality (2.8),
we get the desired inequality (2.6). This completes the proof.

O
In (2.6), if we set © = “TH’ and use the convexity of ‘f(o‘)‘, we obtain the
following inequality in (2.11).
Corollary 2.3. The following inequality holds true:
a+b fla)+ f(b 2°T(1 4+ « o
; @S0 2T
2 2 (b—a) (2.11)
rl+a) (b—a\” '
< (@) ‘ ‘ @) (p ‘ ,
_F(Hm)( - ) (|ro@]| + |fm))

Theorem 2.4. Suppose that assumptions of Lemma 2.1 are satisfied. If ’f(o‘)’q 18
generalized convex on [a,b] for some fixed ¢ > 1, then the following inequality holds
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true:
(b= ) 0) ¢z~ a)"f() _2T(+0)
Fo) + o 0]
) V[
bar

6" (w55 |
‘ +

+ B[ @) £ (z)’q +A

(B

< | (4] @) !

)]

(b — z)* YN o [7) SYC RUNCY
e | AC@] B0+ (BlrO@] + alfo o)) ]}
(2.12)
where
o T(1+ a) 1 I(+a
A= 7w " Tarz ™ P rara) T t20) (2.13)

for all x € [a,b].

Proof: From Lemma 2.1 and using generalized Holder integral inequality, we have

(b—2)*f(0) + (z—a)*fla) 2°T(A+a) .,
f(x) (b—a)o‘ (b—a)a aIb f(t)

< A(a;a,b) + B(asa,b) + C(a;a,b) + D(a;a,b),

B (i [ (2) )
t

(2.14)

where

(e | f(a)(lgt KON
oo =62 (o [ () w)
g (F(11+a)/0 A (12 Loy I;Lta> q(dt)a>",
o G e | () w)
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peel :(fb—i);: <r<11+a> /01 (é)p (dt>a>; 1
(rrar [ 1o (T 150) [ @)
for all z € [a, b].

Since ‘ fle ’q is generalized convex on [a, ], in view of Lemma 1.2, we have
1 ! T+t 11—t
- () (22 -
F(1+a)/0 ! ( 7 Tt “)
1 L7146\ a  [(1-t\"
< (@) ’ -t
<mora ), () el ()
1 1, I+ta)
20 \I'(1+a)  T(1+2a)

1 1 r(1+a)

Ton (F(l +a) T+ 2a))
f@ <Qz+ ﬂa)

Similarly,
1 1
m/o 2 )
_1 1 I'(l+a)
2 (F(1+a) a F(1+2a))
1 1 I'(1+a)
T (F(Ha) " F(1+2a))
# ! (a) ﬁx ﬁ
F(1+a)/0f (2 + 2b>
_1 1 I(1+a) RO
T 2o (F(1+a) * F(1+204)) ft )(33)‘ (2.17)

1 1 I'(1+a)
T (F(l +a) T +2a))

Y /01 7o (St )
B 2% (F(11+oe) - I“F((llj202)) @[

1 1 I'(l+a)
T <F(1 Ta) T 2a))

q

(dt)

f <“>(a)]] (dt)®
(2.15)

f(a)(x)‘q

q

f(a) (a)

q

(dt)*

f(a) (z)

\q (2.16)

q
’

@)

" ()

q
)

f(o‘)(b)

and

q

(dt)*

f(a) (b) ’q

(2.18)
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If we substitute the inequalities from (2.15) to (2.18) in the inequality (2.14), we
obtain the desired inequality (2.12). Note that we have also used the following

identity:
1 /1 £\ (o) = I'(1+ pa)
I(l+a)/, \2 C 29T (1+ (p+ 1)a)’
This completes the proof. O
Taking x = ‘IT“’ in the result in Theorem 2.4 and using the convexity of ‘f(o‘) ‘q,

we get an inequality asserted in Corollary 2.5.

Corollary 2.5. The following inequality holds true:

‘f (a;rb) N f(a); fo) 2‘25(_1;)3) alf‘f(t)‘ (2.19)

= (r(ff(xaf)w); (bia)a (%)H) |
Ll () mlrmal) (2l (2] alrora]')
e () soleowr) « (o () o))

()" (el ) (e

X [(A% + B +(A+2B)7 + (2A+B)%) (‘f(“) (a)’ + ‘f(“) (b)m ,

where A and B are given as in (2.13).

Remark 2.6. For the last part of the inequality (2.19), we used the following
known inequality (see, e.g. [5, p.54]):

Z(Uk +op)° <

k=1 k

() + > (vg)° (2.20)

(ug,vp >0, 1<k<n; 0<s<1).

If we take o = 1 in Corollary 2.5, the inequality (2.19) reduces to the inequality
(2.12) in [4].

Theorem 2.7. Suppose that assumptions of Lemma 2.1 are satisfied. If ’f(o‘)’q 18
generalized convez on [a,b] for some fixred ¢ > 1, then the following inequality holds
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true:

oy L= IO L0 RO (221)

o 1—% (1+%)a

< () ()
[l
+((bb:?): [(K

where

q)%
q);}

£ (a)

7 @[ + K

q)%+(L
,

)l

L] (a)

1 @[ + K] @)

1 @[ + o] )

|
}

(2.22)

[(l+a)  T(l+20) T(l+a) I(l+2)
T1+2a) T(1+3a) " " 7" Tl+2a) T[(1+3a)

Proof: Suppose that ¢ > 1. From Lemma 1.1 and using the well-known power-
mean inequality, we have

(b= ) f() + (z — @)*f(a) 2°T(1+0)
0+ b= an = o

< o (va [ (5) @)
(rra ) () I (e )
o (e [ (5) (d“a)lé
(rara ) () | (e 5)

R (e ) @) o)

(ravar ), (

i G ] G

(rava ) )

for all z € [a,b]. Since }f(o‘) }q is convex on [a, b], we have

alﬁ‘f(t)‘ (2.23)

. (dt)a) :

. (dt)a) :

1
1+t 1+t \]|? a
—_— —b dt)™
5 T+ 5 ) ( ))
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1 AA 1+t 1—t
b L () (£T1
i ), (2) / ( > "t )‘

i (O [(5 el (59 bl

1| T(1+a) T+ 2«
49 T(1+2a)  T(1+ 3«

‘ q

)
)

£ @)

1
4o

Nl4a) T(1+2«a

)
T(1+2a) I(I+3a)

_ K@ + L[ ()]
- = :

‘ q

7))

(2.24)

Similarly,

q

(dt)*

1t 1+t
f@ (T$+ %a)

1 L\
I‘(1+a)/0 (5)

L |F @ @)|" + K| £ (a)|*

< e ,

1 A 14t 1—t
b L () (LTt 11
r<1+a>/o (2) / < g )

(2.25)

q

- (dt)°

K O@[ L)
< -

1 AN 1—t 1+t
Lt v (N
e ), (3) 1 ()

_ L@+ K[ @)
< - |

(2.26)

and

" (drye

(2.27)

Substituting the inequalities (2.24)-(2.27) in (2.23), we get the inequality (2.23).
Hence the proof is complete.
O

In Theorem 2.7, if we take z = aTer and use a similar argument as in Corollary

2.5, we get the following inequality in Corollary 2.8.
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Corollary 2.8. The following inequality holds true:

}f <a;b) N f(a);f(b) B 2CEbF(_1a+);w) afé‘f(t)‘

O]

« (K% +Li+ (K +2L)7 + (L+2K)%) (’f(a)(a)’ + ’f(a)(b)D ’

where k and L are given as in (2.22).
Remark 2.9. The special case of (2.28) when a = 1 reduces to a known inequality
(2.15) in [4].

3. Applications

Here we apply some of the results in the previous section to the following gen-
eralized means (see [3,12]):

e (The generalized arithmetic mean)

e (The generalized logarithmic mean)

L, (a,b) :=

FUFS(Z Z?) ) (b(nﬂg = aaﬁm )] %

(neZ\{-1,0}; a,beR with a #b).

Choosing the function
flx)=a2"*(x€eR; neZ, |n|>2) (3.1)

in Corollaries 2.3, 2.5 and 2.8, we obtain the following inequalities asserted by
Propositions 3.1, 3.2 and 3.3, respectively. Here the constants A, B, K, and L are
given as in (2.13) and (2.22).

Proposition 3.1. Let a, b € R with a < b, 0 & [a,b], and n € N\ {1}. Then the
following inequality holds true:

|A™(a,b) + A(a”,0") = 2°T(1 + @) Ly (a, b)|

29T(1+a) (b—a\” T(1+na)
- TI(1+42a) < 4 ) 14 (n—-1)a)

A" Y ") . (3.2)
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Proposition 3.2. Let a, b € R with a < b, 0 & [a,b], and n € N\ {1}. Then, for
p, q > 1 with % + % =1, the following inequality holds true:

|A™(a,b) + A(a™,b") — 2°T(1 + ) L7 (a, b)|
1 0 I'(1+ pa) v I'(l+na)
= (2) (F(1+(p+1)a)) T+ (n—Da)

X (—b ; “) (A% + B+ (A+2B)7 + (24 + B)%) A(la["= 1 [p" 1)

Proposition 3.3. Let a, b € R with a < b, 0 & [a,b], and n € N\ {1}. Then, for
q > 1, the following inequality holds true:

|A™(a, b) + A(a™,b") — 2°T(1 + a)L"(a, b)|

= <FF<(11++262>)(1;)F<1T<KQ1 @)( >

y (K%+Lq 4 (K +2L)7 + (L+2K5 A(la[™1 B ).
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