
Bol. Soc. Paran. Mat. (3s.) v. 38 1 (2020): 41–53.
c©SPM –ISSN-2175-1188 on line ISSN-00378712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v38i1.36907

Approximation Properties of Modified Srivastava-Gupta Operators

Based on Certain Parameter
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abstract: In the present article, we give a modified form of generalized Srivastava-
Gupta operators based on certain parameter which preserve the constant as well
as linear functions. First, we estimate moments of the operators and then prove
Voronovskaja type theorem. Next, direct approximation theorem, rate of conver-
gence and weighted approximation by these operators in terms of modulus of con-
tinuity are studied. Then, we obtain point-wise estimate using the Lipschitz type
maximal function. Finaly, we study the A-statistical convergence of these operators.
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1. Introduction

The approximation of functions by linear positive operators is an important
research topic in general mathematics and it also provides powerful tools to ap-
plication areas such as computer-aided geometric design, numerical analysis, and
solutions of differential equations.
In order to approximate Lebesgue integrable functions on [0,∞), Srivastava and
Gupta [31] introduced a general family of summation-integral type operators which
includes some well-known operators as special cases. They obtained the rate of con-
vergence for functions of bounded variation. After that several researchers studied
different approximation properties of these operators (see [1], [3], [12], [14], [22],
[34], [35]).
For f ∈ Cγ [0,∞) := {f ∈ C[0,∞) : f(t) = O(tγ), γ > 0}, Verma [33] define the
following generalization of Srivastava-Gupta operators based on certain parameter
ρ > 0 as:

Ln,ρ(f ;x) =

∞∑

k=1

pn,k(x, c)

∫ ∞

0

Θρ
n,k(t, c)f(t)dt+ pn,0(x, c)f(0), (1.1)
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where

pn,k(x, c) =
(−x)k

k!
φ(k)
n,c(x), (1.2)

Θρ
n,k(t, c) =

{ nρ
Γ(kρ)e

−nρt(nρt)kρ−1, c = 0,
Γ(nρ

c
+kρ)

Γ(kρ)Γ(nρ
c
)

ckρtkρ−1

(1+ct)
nρ
c

+kρ
, c ∈ N .

and

φn,c(x) =

{
e−nx, c = 0,
(1 + cx)−n/c, c ∈ N .

For the properties of φn,c(x), we refer the readers to [31]. For ρ = 1 the operators
(1.1) reduced to the Srivastava-Gupta operators [31]. In [33], Verma studied some
results in simultaneous approximation by the operators Ln,ρ.

It is observed that the operators (1.1) reproduce only constant functions. So here
we modify the operators (1.1) so that they may be capable to reproduce constant
as well as linear function. King [20] gave an approach for modification of the
classical Bernstein polynomials and he achieved better approximation. Here we
give some alternate approach and we propose the modification of the operators
(1.1) as follows:

L∗
n,ρ(f ;x) =

∞∑

k=1

pn,k(x, c)

∫ ∞

0

Θρ
n,k(t, c)f

(
(nρ− c)t

nρ

)
dt+ pn,0(x, c)f(0). (1.3)

In the present paper, we study the basic convergence theorem, Voronovskaja type
asymptotic formula, local approximation, rate of convergence, weighted approxi-
mation, pointwise estimation and A-statistical convergence of the operators (1.3).

2. Preliminaries

In this section we collect some results about the operators L∗
n,ρ useful in the

sequel.

Lemma 2.1. [33] For Ln,ρ(t
m;x), m = 0, 1, 2, we have

1. Ln,ρ(1;x) = 1;

2. Ln,ρ(t;x) =
nρx

(nρ−c) ;

3. Ln,ρ(t
2;x) = n(n+c)ρ2x2+nρ(1+ρ)x

(nρ−c)(nρ−2c) .

Lemma 2.2. For the operators L∗
n,ρ(f ;x) as defined in (1.3), the following equal-

ities holds for nρ > 2c

1. L∗
n,ρ(1;x) = 1;

2. L∗
n,ρ(t;x) = x;

3. L∗
n,ρ(t

2;x) =
{

(nρ−c)(n+c)
n(nρ−2c)

}
x2 +

{
(nρ−c)(1+ρ)
nρ(nρ−2c)

}
x.
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Proof: For x ∈ [0,∞), in view of Lemma 2.1, we have

L∗
n,ρ(1;x) = 1.

Next, for f(t) = t, we get

L∗
n,ρ(t;x) =

∞∑

k=1

pn,k(x, c)

∫ ∞

0

Θρ
n,k(t, c)

(nρ− c)t

nρ
dt =

(nρ− c)

nρ
Ln,ρ(t, x) = x.

Proceeding similarly, we have

L∗
n,ρ(t

2;x) =

∞∑

k=1

pn,k(x, c)

∫ ∞

0

Θρ
n,k(t, c)

(
(nρ− c)t

nρ

)2

dt

=

(
nρ− c

nρ

)2

Ln,ρ(t
2, x)

=

{
(nρ− c)(n+ c)

n(nρ− 2c)

}
x2 +

{
(nρ− c)(1 + ρ)

nρ(nρ− 2c)

}
x.

✷

Remark 2.3. For every x ∈ [0,∞) and nρ > 2c, we have

L∗
n,ρ ((t− x);x) = 0

and

L∗
n,ρ

(
(t− x)2;x

)
=

{
nρc+ nc− c2

n(nρ− 2c)

}
x2 +

{
(nρ− c)(1 + ρ)

nρ(nρ− 2c)

}
x = ξn,ρ(x), (say).

Lemma 2.4. For f ∈ CB [0,∞) (space of all real valued bounded and uniformly
continuous functions on [0,∞) endowed with norm ‖ f ‖CB [0,∞)= sup

x∈[0,∞)

|f(x)|),

‖ L∗
n,ρ(f ;x) ‖≤‖ f ‖ .

Proof: In view of (1.3) and Lemma 2.2, the proof of this lemma easily follows. ✷

For CB[0,∞), let us define the following Peetre’s K-functional:

K2(f, δ) = inf
g∈W 2

{‖ f − g ‖CB [0,∞) +δ ‖ g′′ ‖CB[0,∞)},

where δ > 0 and W 2 = {g ∈ CB[0,∞) : g′, g′′ ∈ CB [0,∞)}. By, p. 177, Theorem
2.4 in [4], there exists an absolute constant M > 0 such that

K2(f, δ) ≤ Mω2(f,
√
δ), (2.1)
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where
ω2(f,

√
δ) = sup

0<|h|≤
√
δ

sup
x∈[0,∞)

| f(x+ 2h)− 2f(x+ h) + f(x) |

is the second order modulus of smoothness of f . By

ω(f, δ) = sup
0<|h|≤δ

sup
x∈[0,∞)

| f(x+ h)− f(x) |,

we denote the usual modulus of continuity of f ∈ CB [0,∞).

3. Main results

In this section we establish some approximation properties in several settings.

Theorem 3.1. (Voronovskaja type theorem) Let f be bounded and integrable on
[0,∞) , second derivative of f exists at a fixed point x ∈ [0,∞), then

lim
n→∞

n
(
L∗
n,ρ(f ;x)− f(x)

)
=

x(1 + cx)

2

(
1 +

1

ρ

)
f ′′(x).

Proof: Using Taylor’s theorem, we have

f(t) = f(x) + (t− x)f ′(x) +
1

2
f ′′(x)(t− x)2 + r(t, x)(t − x)2, (3.1)

where r(t, x) is the remainder term and lim
t→x

r(t, x) = 0.

Applying L∗
n,ρ(f, x) to (3.1), we get

n
(
L∗
n,ρ(f ;x)− f(x)

)
= nf ′(x)L∗

n,ρ ((t− x);x) +
1

2
nf ′′(x)L∗

n,ρ

(
(t− x)2;x

)

+nL∗
n,ρ

(
r(t, x)(t − x)2;x

)
.

In view of Remark 2.3, we have

lim
n→∞

nL∗
n,ρ ((t− x);x) = 0 (3.2)

and

lim
n→∞

nL∗
n,ρ

(
(t− x)2;x

)
= x(1 + cx)

(
1 +

1

ρ

)
. (3.3)

Now, we shall show that

lim
n→∞

nL∗
n,ρ

(
r(t, x)(t − x)2;x

)
= 0.

Applying the Cauchy-Schwarz inequality, we have

L∗
n,ρ

(
r(t, x)(t − x)2;x

)
≤

√
L∗
n,ρ(r

2(t, x);x)
√
L∗
n,ρ((t− x)4;x). (3.4)
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We observe that r2(x, x) = 0 and r2(., x) ∈ CB[0,∞). Then, it follows that

lim
n→∞

L∗
n,ρ(r

2(t, x);x) = r2(x, x) = 0, (3.5)

in view of fact that L∗
n,ρ((t − x)4;x) = O

(
1

n2

)
. Now, from (3.4) and (3.5) we

obtain
lim
n→∞

nL∗
n,ρ

(
r(t, x)(t − x)2;x

)
= 0. (3.6)

From (3.2), (3.3) and (3.6), we get the required result. ✷

Theorem 3.2. For every x ∈ [0,∞) and f ∈ CB [0,∞), there exist an absolute
constant M such that

| L∗
n,ρ (f ;x)− f(x) |≤ Mω2

(
f,
√
ξn,ρ(x)

)
,

Proof: Let g ∈ W 2 and x, t ∈ [0,∞). Using Taylor’s series, we have

g(t) = g(x) + g′(x)(t− x) +

∫ t

x

(t− v)g′′(v)dv.

Applying L∗
n,ρ on both sides and using Lemma 2.2, we get

L∗
n,ρ(g;x)− g(x) = L∗

n,ρ

(∫ t

x

(t− v)g′′(v)dv;x

)
.

Obviously, we have

∣∣∣∣
∫ t

x

(t− v)g′′(v)dv

∣∣∣∣ ≤ (t− x)2‖g′′‖.
Therefore

| L∗
n,ρ(g;x)− g(x) |≤ L∗

n,ρ((t− x)2;x) ‖ g′′ ‖= ξn,ρ(x) ‖ g′′ ‖ .

Since | L∗
n,ρ(f ;x) |≤ ‖f‖, we have

| L∗
n,ρ(f ;x)− f(x) | ≤ | L∗

n,ρ(f − g;x) | + | (f − g)(x) | + | L∗
n,ρ(g;x)− g(x) |

≤ 2‖f − g‖+ ξn,ρ(x)‖g′′‖.

Finally, taking the infimum over all g ∈ W 2 and using (2.1) we obtain

| L∗
n,ρ(f ;x)− f(x) |≤ Mω2

(
f,
√
ξn,ρ(x)

)
,

which proves the theorem. ✷

Definition 3.3. The modulus of continuity of f on the closed interval [0, b], b > 0
is denoted by ωb(f, δ) and defined as

ωb(f, δ) = sup
|t−x|≤δ

sup
x,t∈[0,b]

|f(t)− f(x)|.

We observe that for a function f ∈ CB [0,∞), the modulus of continuity ωb(f, δ)
tends to zero.
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Now, we give a rate of convergence theorem for the operators L∗
n,ρ.

Theorem 3.4. Let f ∈ CB [0,∞) and ωb+1(f, δ) be its modulus of continuity on
the finite interval [0, b+ 1] ⊂ [0,∞), where b > 0. Then, we have

|L∗
n,ρ(f ;x)− f(x)| ≤ 6Mf(1 + b2)ξn,ρ(b) + 2ωb+1

(
f,
√
ξn,ρ(b)

)
,

where ξn,ρ(b) is defined in Remark 2.3 and Mf is a constant depending only on f .

Proof: For x ∈ [0, b] and t > b+ 1. Since t− x > 1, we have

|f(t)−f(x)| ≤ Mf (2+x2+t2) ≤ Mf(t−x)2(2+3x2+2(t−x)2) ≤ 6Mf(1+b2)(t−x)2.

For x ∈ [0, b] and t ≤ b+ 1, we have

|f(t)− f(x)| ≤ ωb+1(f, |t− x|) ≤
(
1 +

|t− x|
δ

)
ωb+1(f, δ)

with δ > 0.
From the above, we have

|f(t)− f(x)| ≤ 6Mf(1 + b2)(t− x)2 +

(
1 +

|t− x|
δ

)
ωb+1(f, δ),

for x ∈ [0, b] and t ≥ 0.
Applying Cauchy-Schwarz inequality, we have
|L∗

n,ρ(f ;x)− f(x)|

≤ 6Mf(1 + b2)(L∗
n,ρ(t− x)2;x) + ωb+1(f, δ)

(
1 +

1

δ
(L∗

n,ρ(t− x)2;x)
1
2

)

≤ 6Mf(1 + b2)ξn,ρ(b) + 2ωb+1

(
f,
√
ξn,ρ(b)

)
,

on choosing δ =
√
ξn,ρ(b). This completes the proof of the theorem. ✷

Next, we obtain the Korovkin type weighted approximation by the operators
defined in (1.3). The weighted Korovkin-type theorems were proved by Gadzhiev
[5].

Definition 3.5. A real function ν(x) = 1 + x2 is called a weight function if it is
continuous on R and lim

|x|→∞
ν(x) = ∞, ν(x) ≥ 1 for all x ∈ R.

Let Bν(R) denote the weighted space of real-valued functions f defined on R

with the property |f(x)| ≤ Mfν(x) for all x ∈ R, whereMf is a constant depending
on the function f . We also consider the weighted subspace Cν(R) of Bν(R) given
by Cν(R) = {f ∈ Bν(R) : f is continuous on R} and C∗

ν [0,∞) denotes the subspace

of all functions f ∈ Cν [0,∞) for which lim
|x|→∞

f(x)

ν(x)
exists finitely.
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Theorem 3.6. For each f ∈ C∗
ν [0,∞), we have

lim
n→∞

‖ L∗
n,ρ(f)− f ‖ν= 0.

Proof: From [5], we know that it is sufficient to verify the following three condi-
tions

lim
n→∞

‖ L∗
n,ρ(t

k;x)− xk ‖ν= 0, k = 0, 1, 2. (3.7)

Since L∗
n,ρ(1;x) = 1, the condition in (3.7) holds for k = 0.

By Lemma 2.2, we have

‖ L∗
n,ρ(t;x)− x ‖ν= sup

x∈[0,∞)

|L∗
n,ρ(t;x)− x|
1 + x2

= 0

which implies that the condition in (3.7) holds for k = 1.
Similarly, we can write for nρ > 2c

‖ L∗
n,ρ(t

2;x)− x2 ‖ν = sup
x∈[0,∞)

|L∗
n,ρ(t

2;x)− x2|
1 + x2

≤
∣∣∣∣
nρc+ nc− c2

n(nρ− 2c)

∣∣∣∣+
∣∣∣∣
(nρ− c)(1 + ρ)

nρ(nρ− 2c)

∣∣∣∣,

which implies that lim
n→∞

‖ L∗
n,ρ(t

2;x)−x2 ‖ν= 0, the equation (3.7) holds for k = 2.

This completes the proof of theorem. ✷

Now we give the following theorem to approximate all functions in C∗
ν . Such

type of results are given in [6] for locally integrable functions.

Theorem 3.7. For each f ∈ C∗
ν and α > 0, we have

lim
n→∞

sup
x∈[0,∞)

|L∗
n,ρ(f ;x)− f(x)|
(1 + x2)1+α

= 0.

Proof: For any fixed x0 > 0,

sup
x∈[0,∞)

|L∗
n,ρ(f ;x)− f(x)|
(1 + x2)1+α

= sup
x≤x0

|L∗
n,ρ(f ;x)− f(x)|
(1 + x2)1+α

+ sup
x>x0

|L∗
n,ρ(f ;x)− f(x)|
(1 + x2)1+α

sup
x∈[0,∞)

|L∗
n,ρ(f ;x)− f(x)|
(1 + x2)1+α

≤‖ L∗
n,ρ(f)− f ‖C[0,x0] + ‖ f ‖ν sup

x>x0

|L∗
n,ρ(1 + t2;x)|
(1 + x2)1+α

+ sup
x>x0

|f(x)|
(1 + x2)1+α

.
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The first term of the above inequality tends to zero from Theorem 3.4. By Lemma
2.2, for any fixed x0 > 0, it is easily prove that

sup
x>x0

|L∗
n,ρ(1 + t2;x)|
(1 + x2)1+α

→ 0

as n → ∞. We can choose x0 > 0 so large that the last part of the above inequality
can be small.
Hence the proof is completed. ✷

Definition 3.8. A function f ∈ CB[0,∞) is in LipM (η) on E, η ∈ (0, 1], E⊂ [0,∞)
if it satisfies the condition

|f(t)− f(x)| ≤ M |t− x|η, t ∈ [0,∞) and x ∈ E,

where M is a constant depending only on η and f .

Now, we obtain some pointwise estimates of the operators L∗
n,ρ.

Theorem 3.9. Let f ∈ CB [0,∞)∩LipM (η), E ⊂ [0,∞) and 0 < η ≤ 1. Then, we
have

|L∗
n,ρ(f ;x)− f(x)| ≤ M

((
ξn,ρ(x)

)η/2
+ 2(d(x,E))η

)
, x ∈ [0,∞),

where M is a constant depending on η and f and d(x,E) is the distance between x
and E defined as

d(x,E) = inf{|t− x|; t ∈ E}.

Proof: Let E be the closure of E in [0,∞). Then, there exists at least one point
t0 ∈ E such that

d(x,E) = |x− t0|.
By our hypothesis and the monotonicity of L∗

n,ρ, we get

|L∗
n,ρ(f ;x)− f(x)| ≤ L∗

n,ρ(|f(t)− f(t0)|;x) + L∗
n,ρ(|f(x) − f(t0)|;x)

≤ M
(
L∗
n,ρ(|t− t0|η;x) + |x− t0|η

)

≤ M
(
L∗
n,ρ(|t− x|η;x) + 2|x− t0|η

)
.

Now, applying Hölder’s inequality with p =
2

η
and q =

2

2− η
, we obtain

|L∗
n,ρ((f ;x) − f(x)| ≤ M

(
(L∗

n,ρ(|t− x|2;x))η/2 + 2(d(x,E))η
)
,

from which the desired result immediate. ✷
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Next, we obtain a local direct estimate of the operators defined in (1.3), using
the Lipschitz-type maximal function of order η introduced by B. Lenze [21] as

ω̃η(f, x) = sup
t6=x, t∈[0,∞)

|f(t)− f(x)|
|t− x|η , x ∈ [0,∞) and η ∈ (0, 1]. (3.8)

Theorem 3.10. Let f ∈ CB [0,∞) and 0 < η ≤ 1, then for all x ∈ [0,∞) we have

|L∗
n,ρ(f ;x)− f(x)| ≤ ω̃η(f, x)

(
ξn,ρ(x)

)η/2
.

Proof: From the equation (3.8), we have

|L∗
n,ρ(f ;x)− f(x)| ≤ L∗

n,ρ(|f(t)− f(x)|;x) ≤ ω̃η(f, x)L
∗
n,ρ(|t− x|η;x).

Now, using the Hölder’s inequality with p =
2

η
and

1

q
= 1− 1

p
, we obtain

|L∗
n,ρ(f ;x)− f(x)| ≤ ω̃η(f, x)L

∗
n,ρ((t− x)2;x)

η
2 ≤ ω̃η(f, x)

(
ξn,ρ(x)

)η/2
.

Thus, the proof is completed. ✷

For a, b > 0, Özarslan and Aktuğlu [30] consider the Lipschitz-type space with
two parameters:

Lip
(a,b)
M (η) =

(
f ∈ C[0,∞) : |f(t)− f(x)| ≤ M

|t− x|η
(t+ ax2 + bx)η/2

; x, t ∈ [0,∞)

)
,

where M is any positive constant and 0 < η ≤ 1.

Theorem 3.11. For f ∈ Lip
(a,b)
M (η). Then, for all x > 0, we have

|L∗
n,ρ(f ;x)− f(x)| ≤ M

(
ξn,ρ(x)

ax2 + bx

)η/2

.

Proof: First we prove the theorem for η = 1. Then, for f ∈ Lip
(a,b)
M (1) and

x ∈ [0,∞), we have

|L∗
n,ρ(f ;x)− f(x)| ≤ L∗

n,ρ(|f(t)− f(x)|;x)

≤ ML∗
n,ρ

( |t− x|
(t+ ax2 + bx)1/2

;x

)

≤ M

(ax2 + bx)1/2
L∗
n,ρ(|t− x|;x).

Applying Cauchy-Schwarz inequality, we get

|L∗
n,ρ(f ;x)− f(x)| ≤ M

(ax2 + bx)1/2
(
L∗
n,ρ((t− x)2;x)

)1/2 ≤ M

(
ξn,ρ(x)

ax2 + bx

)1/2

.
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Thus, the result holds for η = 1.

Now, we prove that the result is true for 0 < η < 1. Then, for f ∈ Lip
(a,b)
M (η) and

x ∈ [0,∞), we get

|L∗
n,ρ(f ;x)− f(x)| ≤ M

(ax2 + bx)η/2
L∗
n,ρ(|t− x|η;x).

Taking p = 1
η and q = p

p−1 , applying the Hölders inequality, we have

|L∗
n,ρ(f ;x)− f(x)| ≤ M

(ax2 + bx)η/2
(
L∗
n,ρ(|t− x|;x)

)η
.

Finally by Cauchy-Schwarz inequality, we get

|L∗
n,ρ(f ;x)− f(x)| ≤ M

(
ξn,ρ(x)

ax2 + bx

)η/2

.

Thus, the proof is completed. ✷

Definition 3.12. Let A = (ank) be a non-negative infinite summability matrix.
For a given sequence x := (x)n, the A-transform of x denoted by Ax : (Ax)n is
defined as

(Ax)n =

∞∑

k=1

ankxk

provided the series converges to each n. A is said to be regular if lim
n
(Ax)n = L

whenever lim
n
(x)n = L. Then x = (x)n is said to be A- statistically convergent to

L i.e. stA − lim
n
(x)n = L if for every ǫ > 0, lim

n

∑

k:|xk−L|≥ǫ

ank = 0. If we replace

A by C1 then A is a Cesáro matrix of order one and A- statistical convergence is
reduced to the statistical convergence. Similarly, if A = I, the identity matrix, then
A- statistical convergence coincides with the ordinary convergence.

Many researchers have investigated the statistical convergence properties for
several sequences and classes of linear positive operators (see [2], [7], [13], [19],
[26]). In the following result we prove a weighted Korovkin theorem viaA-statistical
convergence.
Throughout this section, let us assume that ei(t) = ti, i = 0, 1, 2.

Theorem 3.13. Let (ank) be a non-negative regular infinite summability matrix
and x ∈ [0,∞). Let νς ≥ 1 be a continuous function such that

lim
x→∞

ν(x)

νς(x)
= 0.

Then, for all f ∈ C∗
ν [0,∞), we have

stA − lim
n

‖ L∗
n,ρ(f)− f ‖νς

= 0.
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Proof: From ( [7] p. 195, Th. 6), it is enough to show that

stA − lim
n

‖ L∗
n,ρ(ei)− ei ‖ν= 0.

Using Lemma 2.2, obviously for i = 0, 1, we have

stA − lim
n

‖ L∗
n,ρ(ei)− ei ‖ν= 0.

Now

‖ L∗
n,ρ(e2)− e2 ‖ν ≤ (nρc+ nc− c2)

n(nρ− 2c)
sup

x∈[0,∞)

x

1 + x2

+
(nρ− c)(1 + ρ)

nρ(nρ− 2c)
sup

x∈[0,∞)

1

1 + x2

≤ (nρ2 + nρ− cρ)(c+ 1)

nρ(nρ− 2c)
+

c

nρ(nρ− 2c)
.

Now, we define the following sets:

S :=
{
n :‖ L∗

n,ρ(e2)− e2 ‖ν≥ ǫ
}
,

S1 :=

{
n :

(nρ2 + nρ− cρ)(c+ 1)

nρ(nρ− 2c)
≥ ǫ

2

}

and

S2 :=

{
n :

c

nρ(nρ− 2c)
≥ ǫ

2

}
.

Then, we get S ⊆ S1 ∪ S2 which implies that

∑

k∈S

ank ≤
∑

k∈S1

ank +
∑

k∈S2

ank

and hence

stA − lim
n

‖ L∗
n,ρ(e2)− e2 ‖ν= 0.

This completes the proof of the theorem. ✷
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