

(3s.) **v. 38** 1 (2020): 185–195. ISSN-00378712 in press doi:10.5269/bspm.v38i1.37662

On Primitive \mathbb{Z}_p -algebra

Ameer Jaber

ABSTRACT: Our main purpose is to provide for primitive associative \mathbb{Z}_p -algebras a structure theory analogous to that for algebras and superalgebras [1,7,8,9,10] and to classify primitive \mathbb{Z}_p -rings having a minimal one sided \mathbb{Z}_p -ideal.

Key Words: Primitive \mathbb{Z}_p -algebras, Division \mathbb{Z}_p -algebras, \mathbb{Z}_p -rings.

Contents

L	Introduction	185
2	Examples of \mathbb{Z}_p -algebras	186

3 Primitive \mathbb{Z}_p -rings

1. Introduction

The group grading on associative algebras was described by many authors such as Y. A. Bahturin, A. Giambruno, S. Sehgal, M. Zaicev and I. Shestakov, see [12,13,14,15]. They described all group gradings by an arbitrary finite group G on non-simple finite-dimensional superinvolution simple associative superalgebras over an algebraically closed field F of characteristic 0.

The existence of superinvolution on associative superalgebras was studied by many authors, for example Michel Racine in [9] and A.Elduque and O. Villa in [1] studied superalgebras, which are \mathbb{Z}_2 -graded algebras, and existence of superinvolutions on finite dimensional central simple superalgebras, and they found that non-trivial central division superalgebras are never endowed with superinvolution of the first kind, but they prove the graded version of the classical Albert and Albert-Riehm Theorem of existence of superinvolution of the second kind.

Continuing on the studying of superalgebras, in [2,3,4] we developed the theory of existence of pseudo-superinvolutions of the first kind and superinvolutions of the first and second kinds on finite dimensional central simple associative superalgebras over a field K of characteristic not 2. We proved that a central division superalgebra \mathcal{D} , over a field K of characteristic not 2, of even type has a pseudo-superinvolution of the first kind if and only if \mathcal{D} is of order 2 in the Brauer-Wall group BW(K).

Moreover we proved that if \mathcal{D} is of type, then \mathcal{D} has a pseudo-superinvolution of the first kind if and only if $\sqrt{-1} \in K$ and \mathcal{D} is of order 2 in the Brauer-Wall group BW(K).

In this paper we generalize the above work about superalgebras to introduce the

Typeset by ℬ^Sℋstyle. ⓒ Soc. Paran. de Mat.

²⁰¹⁰ Mathematics Subject Classification: 16W10.

Submitted June 15, 2017. Published August 14, 2017

following article about primitive associative \mathbb{Z}_p -algebras with \mathbb{Z}_p -involution, and the purpose of this article is to provide a structure theory analogous to that for algebras and superalgebras [1,7,8,9,10] and to classify primitive \mathbb{Z}_p -rings having a minimal one sided \mathbb{Z}_p -ideal.

In section 2 we introduced some examples of associative \mathbb{Z}_p -algebras, and in section 3 we proved that artinian simple associative \mathbb{Z}_p -ring is isomorphic to $M_n(\mathcal{D})$, where \mathcal{D} is an associative division \mathbb{Z}_p -algebra.

2. Examples of \mathbb{Z}_p -algebras

Let p be any prime number. An associative \mathbb{Z}_p -ring $R = \bigoplus_{i=0}^{p-1} R_i$ is nothing but a $(\mathbb{Z}/p\mathbb{Z})$ -graded associative ring. A $(\mathbb{Z}/p\mathbb{Z})$ -graded ideal $I = \bigoplus_{i=0}^{p-1} I_i$ of an associative \mathbb{Z}_p -ring R is called a \mathbb{Z}_p -ideal of R. An associative \mathbb{Z}_p -ring R is simple if it has no non-trivial \mathbb{Z}_p -ideals. An associative \mathbb{Z}_p -ring R is a commutative \mathbb{Z}_p -ring if

$$a_{\alpha}b_{\beta} = (-1)^{\alpha\beta}b_{\beta}a_{\alpha} \quad \forall a_{\alpha} \in R_{\alpha}, \ b_{\beta} \in R_{\beta},$$

where the product $\alpha\beta$ is taken modulo p. We will say that such elements \mathbb{Z}_p -commute.

Let R be an associative \mathbb{Z}_p -ring with $1 \in R_0$, then R is said to be a *division* \mathbb{Z}_p -ring if all nonzero homogeneous elements are invertible, i.e., every $0 \neq r_\alpha \in R_\alpha$ has an inverse r_α^{-1} , necessarily in $R_{p-\alpha}$, where the subscript $p-\alpha$ is taken modulo p.

Let K be a field of characteristic 0. An associative $(\mathbb{Z}/p\mathbb{Z})$ -graded K-algebra $\mathcal{A} = \bigoplus_{i=0}^{p-1} \mathcal{A}_i$ is a finite dimensional central simple \mathbb{Z}_p -algebra over a field K, if $Z(\mathcal{A}) \cap \mathcal{A}_0 = K$, where $Z(\mathcal{A}) = \{a \in \mathcal{A} \mid ab = ba \forall b \in \mathcal{A}\}$ is the center of \mathcal{A} , and the only \mathbb{Z}_p -ideals of \mathcal{A} are (0) and \mathcal{A} itself.

Example 2.1. Let $\mathcal{A} = K(\sqrt[3]{a})$ be an algebraic field extension of the field K of degree 3, that is $[\mathcal{A} : K] = 3$. We can make \mathcal{A} into a \mathbb{Z}_3 -algebra by setting

$$\mathcal{A}_0 = K, \ \mathcal{A}_1 = K.\sqrt[3]{a}, \ \mathcal{A}_2 = K.\sqrt[3]{a^2}.$$

Note that \mathcal{A} is a central simple \mathbb{Z}_3 -algebra, since \mathcal{A} is a field and $\mathcal{A} \cap \mathcal{A}_0 = K$.

Example 2.2. Let p be any prime number. A \mathbb{Z}_p -space over a field K is a left K-vector space V which is \mathbb{Z}_p -graded $V = \bigoplus_{i=0}^{p-1} V_i$. The associative algebra $\operatorname{End}_K V = \bigoplus_{i=0}^{p-1} \operatorname{End}_i V$, where

 $\operatorname{End}_i V := \{ a \in \operatorname{End}_K V : v_j a \in V_{i+j} \},\$

is an associative \mathbb{Z}_p -algebra.

Example 2.3. Let p be any prime number. Let $\mathcal{D} = \bigoplus_{i=0}^{p-1} \mathcal{D}_i$ be a division \mathbb{Z}_p -algebra, then $\mathcal{A} = M_k(\mathcal{D})$ can be made into a \mathbb{Z}_p -algebra by setting

$$\mathcal{A}_0 = M_k(\mathcal{D}_0), \ \mathcal{A}_1 = M_k(\mathcal{D}_1), \cdots, \mathcal{A}_{p-1} = M_k(\mathcal{D}_{p-1}).$$

Example 2.4. Let p be any prime number. Let ω be a fixed primitive p-th root of unity. For $a, b \in K^{\times}$, let $\mathcal{A} = \langle a, b \rangle_{\omega}$ be the K-algebra which is generated by $\{i, j\}$ which satisfy

$$\{i^p = a , j^p = b , ij = \omega ji\}$$

Then \mathcal{A} is a vector space over K with basis

$$\{i^r j^s : 0 \le r, s < p\}.$$

So \mathcal{A} has dimension p^2 as a K-algebra. (See [11, section 15.4] and [6, Exercise 4.28]). This is a generalization of the quaternion algebras. We can make \mathcal{A} into \mathbb{Z}_p -algebra by setting

$$\mathcal{A}_l = \langle i^k j^m : k + m \equiv l \pmod{p} >_K.$$

Example 2.5. Let \mathcal{D} be a central division algebra over K and let $\mathcal{A} = M_3(\mathcal{D})$. If

$$\mathcal{A}_0 = \begin{pmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{pmatrix}, \mathcal{A}_1 = \begin{pmatrix} 0 & 0 & * \\ * & 0 & 0 \\ 0 & * & 0 \end{pmatrix}, \mathcal{A}_2 = \begin{pmatrix} 0 & * & 0 \\ 0 & 0 & * \\ * & 0 & 0 \end{pmatrix}.$$

Then \mathcal{A} is a \mathbb{Z}_3 -algebra, written by $\mathcal{A} = M_{1+1+1}(\mathcal{D})$, since $\mathcal{A} = \mathcal{A}_0 + \mathcal{A}_1 + \mathcal{A}_2$ and $\mathcal{A}_i \mathcal{A}_j \subseteq \mathcal{A}_{i+j}$ where the subscripts are taken modulo 3.

In the last example we can generalize the above example as follows, where p is any prime number.

Example 2.6. Let p be any prime number. Let \mathcal{D} be a central division algebra over a field K and let $\mathcal{A} = M_p(\mathcal{D})$, then \mathcal{A} can be made into \mathbb{Z}_p -algebra by setting

$$\mathcal{A}_{0} = \begin{bmatrix} * & & & \\ & \ddots & & \\ & & & * \end{bmatrix}, \ \mathcal{A}_{1} = \begin{bmatrix} 0 & \cdots & \cdots & 0 & * \\ * & 0 & \cdots & \cdots & 0 \\ 0 & * & 0 & \cdots & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & * & 0 \\ 0 & * & 0 & 0 & \cdots & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & * & 0 & 0 \end{bmatrix}, \cdots \cdots , \ \mathcal{A}_{p-1} = \begin{bmatrix} 0 & * & 0 & \cdots & 0 \\ \vdots & 0 & * & \ddots & \vdots \\ \vdots & \vdots & 0 & \ddots & 0 \\ 0 & \vdots & \vdots & \ddots & * \\ * & 0 & 0 & \cdots & 0 \end{bmatrix}$$

In the next theorem we give an example of a simple associative \mathbb{Z}_3 -algebra but not simple as an algebra.

Theorem 2.7. Let R be a simple associative algebra, then the associative \mathbb{Z}_3 algebra

$$\mathcal{A} = \left\{ \begin{pmatrix} a & y & x \\ x & a & y \\ y & x & a \end{pmatrix} : a, x, y \in R \right\}$$

is simple as a \mathbb{Z}_3 -algebra but not as an algebra.

Proof: Let $J \neq 0$ be a \mathbb{Z}_3 -ideal in \mathcal{A} . Then there exists $\begin{pmatrix} x & y & x \\ x & a & y \\ y & x & a \end{pmatrix} \neq 0 \in J$, which implies that $a \neq 0$ or $y \neq 0$ or $x \neq 0$. If $a \neq 0$, then $\begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix} \neq 0 \in J_0$ which implies that the identity matrix I_3 is in J_0 and hence $J = \mathcal{A}$. similarly, if $x \neq 0$ (or $y \neq 0$), then $\begin{pmatrix} 0 & 0 & x \\ x & 0 & 0 \\ 0 & x & 0 \end{pmatrix} \neq 0 \in J_1$ (or $\begin{pmatrix} 0 & y & 0 \\ 0 & 0 & y \\ y & 0 & 0 \end{pmatrix} \neq 0 \in J_2$) and $\begin{pmatrix} 0 & \frac{1}{x} & 0 \\ 0 & 0 & \frac{1}{x} \\ \frac{1}{x} & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & x \\ x & 0 & 0 \\ 0 & x & 0 \end{pmatrix} = I_3$ $\left(\operatorname{or} \begin{pmatrix} 0 & 0 & \frac{1}{y} \\ \frac{1}{y} & 0 & 0 \\ 0 & \frac{1}{y} & 0 \end{pmatrix} \begin{pmatrix} 0 & y & 0 \\ 0 & 0 & y \\ y & 0 & 0 \end{pmatrix} = I_3\right) \text{ which implies that the identity matrix } I_3 \text{ is in } J_0 \text{ and}$ hence $J = \mathcal{A}$. Therefore \mathcal{A} is simple \mathbb{Z}_3 -algebra.

Let $J = \{ \begin{pmatrix} a & a & a \\ a & a & a \\ a & a & a \end{pmatrix} : a \in R \}$, then $J \neq \mathcal{A}$ is an ideal in \mathcal{A} , which implies that \mathcal{A} is not simple as an algebra.

3. Primitive \mathbb{Z}_p -rings

We first start by establishing the elementary results for Primitive \mathbb{Z}_p -rings analogous to those for rings [10, Chaps. II and III]. If $R = \bigoplus_{i=0}^{p-1} R_i$ is an associative \mathbb{Z}_p -ring, a (right) \mathbb{Z}_p -module M over R is a right *R*-module with grading $M = \bigoplus_{i=0}^{p-1} M_i$ as R_0 -modules such that

 $m_i r_j \in M_{i+j}$ for any $m_i \in M_i, r_j \in R_j, i, j \in \mathbb{Z}_p$.

If $N = \bigoplus_{i=0}^{p-1} N_i$ is also a \mathbb{Z}_p -module over R, then a \mathbb{Z}_p -module homomorphism over R from M to N is an R_0 -module homomorphism $h_j, j \in \mathbb{Z}_p$, such that

$$M_i h_j \subseteq N_{i+j}$$

Given a \mathbb{Z}_p -module M over R, $\operatorname{End}(M)$ (action of $\operatorname{End}(M)$ on the right), the ring of \mathbb{Z}_p -module endomorphism of M over R, is a \mathbb{Z}_p -ring. For $i \in \mathbb{Z}_p$, let

$$\operatorname{End}_i(M) := \{h \in \operatorname{End}(M) : M_j h \subseteq M_{i+j}\}$$

The Commuting \mathbb{Z}_p -ring \mathfrak{C} of R on M is defined to be $\mathfrak{C} = \bigoplus_{i=0}^{p-1} \mathfrak{C}_i$, where

$$\mathcal{C}_k := \{ c_k \in \text{End}_k(M) : c_k r_i = (-1)^{ik} r_i c_k, \ i \in \mathbb{Z}_p \}.$$

189

Thus the elements of \mathcal{C} are \mathbb{Z}_p -commuting with those of R acting on M.

A \mathbb{Z}_p -module M over R is *irreducible* if $MR \neq \{0\}$ and M has no proper \mathbb{Z}_p -submodule. The next two results are standard and are included for complete-ness'sake.

Lemma 3.1 (Generalized Schur's Lemma). Let $M = \bigoplus_{i=0}^{p-1} M_i$, $N = \bigoplus_{i=0}^{p-1} N_i$ be irreducible \mathbb{Z}_p -modules over $R = \bigoplus_{i=0}^{p-1} R_i$ and let f_j be a \mathbb{Z}_p -module homomorphism of M into N. If $f_j \neq 0$, then f_j is invertible.

Proof: Since $f_j \neq 0$, $Mf_j = \bigoplus_{i=0}^{p-1} (M_i f_j)$ is a nonzero \mathbb{Z}_p -submodule of N. By the irreducibility of N, $Mf_j = N$. Let $\ker_i(f_j) = \{m_i \in M_i : m_i f_j = 0\}$. Then $\ker(f_j) = \bigoplus_{i=0}^{p-1} \ker_i(f_j)$ is a \mathbb{Z}_p -submodule of M properly contained in M $(f_j \neq 0)$. By irreducibility of M, $\ker(f_j) = \{0\}$ and f_j is invertible. \Box

Corollary 3.2. Let $M = \bigoplus_{i=0}^{p-1} M_i$ be an irreducible \mathbb{Z}_p -module over $R = \bigoplus_{i=0}^{p-1} R_i$. Then the commuting \mathbb{Z}_p -ring \mathbb{C} of R on M is a division \mathbb{Z}_p -ring.

Proof: If $c_j \neq 0 \in \mathcal{C}_j$, then $m_i c_j \neq 0$ for some $m_i \in M_i$. By generalized Schur's Lemma, c_j is invertible in End(M) and hence in \mathcal{C} . Thus \mathcal{C} is a division \mathbb{Z}_p -ring.

The following lemma is the key to the proof of the density theorem for associative \mathbb{Z}_p -algebras.

Lemma 3.3. Let $M = \bigoplus_{i=0}^{p-1} M_i$ be an irreducible \mathbb{Z}_p -module over the \mathbb{Z}_p -ring $R = \bigoplus_{i=0}^{p-1} R_i$. If $M_i \neq \{0\}$, then M_i is an irreducible R_0 -module and for any nonzero $m_i \in M_i$, $m_i R_j = M_{i+j}$. If $M_k \neq \{0\}$ for all $0 \le k \le p-1$, then the commuting ring of R_0 on M_k can be identified with \mathfrak{C}_0 , the zero part of the commuting \mathbb{Z}_p -ring \mathfrak{C} of R on M.

Proof: If N_i is a nonzero R_0 -submodule of M_i , then $N_i + \sum_{j=1}^{p-1} N_i R_j$ is a nonzero \mathbb{Z}_p -submodule of M. Therefore $N_i + \sum_{j=1}^{p-1} N_i R_j = M$. So $N_i = M_i$ and M_i is an irreducible R_0 -module.

If $m_i R_0 = \{0\}$ for some $m_i \neq 0 \in M_i$, let $N_i = \{n_i \in M_i : n_i R_0 = \{0\}\}$. Since N_i is a nonzero R_0 -submodule of M_i , $N_i = M_i$. So $M_i R_0 = \{0\}$. If $M_i R_\alpha = N_i R_0 = \{0\}$.

 $\{0\} \ \forall \alpha \in \mathbb{Z}_p, \ \text{then} \ M_i R = \{0\} \ \text{and hence} \ M_i \ \text{is a proper} \ \mathbb{Z}_p\text{-submodule of} \ M, \ \text{a contradiction.} \ \text{Therefore} \ M_i R_\alpha \neq \{0\} \ \text{for some} \ \alpha \in \mathbb{Z}_p \ \text{which implies that} \ \sum_{j=1}^{p-1} M_i R_j \ \text{is a proper} \ \mathbb{Z}_p\text{-submodule of} \ M, \ \text{a contradiction.} \ \text{Hence if} \ m_i \neq 0, \ \text{then} \ m_i R_0 \neq \{0\} \ \text{and} \ m_i R_0 = M_i. \ \text{Also} \ m_i R_j \supseteq m_i R_0 R_j = M_i R_j \ \text{is an} \ R_0\text{-submodule} \ \text{of} \ M_{i+j}, \ \text{for} \ 1 \leq j \leq p-1. \ \text{Now let} \ H = \{\alpha \in \mathbb{Z}_p \ : \ M_i R_\alpha = 0\}. \ \text{Then} \ M_i + \sum_{\substack{1 \leq j \leq p-1 \notin H}} M_i R_j \ \text{is a proper} \ \mathbb{Z}_p\text{-submodule of} \ M \ \text{over} \ R, \ \text{a contradiction.} \ \text{Therefore} \ m_i R_j = M_i R_j = M_{i+j} \ \text{and} \ \forall j \in \mathbb{Z}_p. \ \text{Let} \ \mathcal{D} \ \text{be the commuting ring of} \ R_0 \ \text{on} \ M_k \ \text{considered an} \ R_0\text{-module.} \ \text{So for all} \ d \in \mathcal{D}, \ r_0 \in R_0, \ \text{and} \ m_k \in M_k, \ \$

$$m_k r_0 d = m_k dr_0$$

Given $d \in \mathcal{D}$ we wish to extend it's action to $M_{k+\alpha}$ for each $1 \leq \alpha \leq p-1$. Fix a nonzero $m_k \in M_k$. Since $m_k R_\alpha = M_{k+\alpha}$ for each $1 \leq \alpha \leq p-1$, define an action of \mathcal{D} on $M_{k+\alpha}$ by

 $m_k r_{\alpha} d := m_k dr_{\alpha}$ for any $d \in \mathcal{D}$ and $r_{\alpha} \in R_{\alpha}, 1 \leq \alpha \leq p-1$.

We must show that this action is well-defined, namely, that if $m_k r_j = 0$, then $n_{k+j} = m_k dr_j = 0$ where $1 \le j \le p - 1$. If $n_{k+j} \ne 0$ for some $1 \le j \le p - 1$, then

$$n_{k+i}R_{\alpha} = M_{k+i+\alpha}$$
 for each $1 \leq \alpha \leq p-1$

Now let $1 \leq j \leq p-1$ with $m_k r_j = 0$, then $n_{k+j}R_{p-j} = M_k$ and $m_k = n_{k+j}s_{p-j}$ for some $s_{p-j} \in R_{p-j}$. Therefore $m_k = n_{k+j}s_{p-j} = (m_k dr_j)s_{p-j} = m_k(r_j s_{p-j})d = (m_k r_j)s_{p-j}d = 0$, a contradiction. Thus the action is well-defined. Note that the computation (for $1 \leq j \leq p-1$) shows that d commutes with all $s_{p-j} \in R_{p-j}$ on M_{k+j} . To complete the proof we show that d commutes with R_{α} on M_{k+j} for any $\alpha \neq p-j$. By definition, d commutes with all of R_{α} on M_k for all $1 \leq \alpha \leq p-1$. First we prove that d commutes with R_0 on M_{k+j} . For all $r_0 \in R_0$, $r_j \in R_j$, and $d \in \mathcal{D}$

$$(m_k r_j) dr_0 = (m_k r_j d) r_0 = (m_k d) (r_j r_0) = m_k (r_j r_0) d = (m_k r_j) r_0 d,$$

so d commutes with R_0 on M_{k+j} , and for all $r'_{\alpha} \in R_{\alpha}$, $r_j \in R_j$, and $d \in \mathcal{D}$ where $\alpha \neq p-j$ we have

$$(m_k r_j) dr'_{\alpha} = (m_k r_j d) r'_{\alpha} = (m_k d) (r_j r'_{\alpha})$$
$$= m_k (r_j r'_{\alpha}) d$$
$$= (m_k r_j) r'_{\alpha} d,$$

so also d commutes with all of R_{α} on M_{k+j} for any $\alpha \neq p-j$, and hence \mathcal{D} commutes with R on M. Thus we can identify \mathcal{D} with \mathcal{C}_0 . \Box

Following [10] we prefer to have the commuting \mathbb{Z}_p -ring act on the left and the endomorphism \mathbb{Z}_p -ring act on the right. We do this by letting the opposite \mathbb{Z}_p -ring of \mathcal{C} (\mathcal{C}^{op}) act on the left via

$$c_i v_k = (-1)^{ik} v_k c_i.$$

Let M be a \mathbb{Z}_p -module over a \mathbb{Z}_p -ring R, then the annihilator of M over R, which is denoted by $\operatorname{Ann}_R M$, is $\operatorname{Ann}_R M = \{r \in R : Mr = 0\}$. One can easily check that $\operatorname{Ann}_R M$ is a \mathbb{Z}_p -ideal of R.

Definition 3.4. Let M be a \mathbb{Z}_p -module over a \mathbb{Z}_p -ring R, then M is a faithful module over R if $\operatorname{Ann}_R M = \{0\}$.

The \mathbb{Z}_p -ring R is a (right) primitive if it has a faithful irreducible \mathbb{Z}_p -module. If M is a faithful irreducible (right) \mathbb{Z}_p -module over R, we may consider M as a left \mathbb{Z}_p -module over $\Delta = \operatorname{End}_R M$, then $\Delta \cong \mathbb{C}^{op}$, where \mathbb{C} is the commuting \mathbb{Z}_p -ring of R on M. Now R is said to be dense on M if for every positive integer n and choice of $v_{(1,i)}, v_{(2,i)}, \cdots, v_{(n,i)} \in M_i$ linearly independent over Δ and $w_{(1,k)}, w_{(2,k)}, \cdots, w_{(n,k)} \in M_k$ there is an element $r_{(p-1)i+k} \in R_{(p-1)i+k}$ such that $v_{(l,i)}r_{(p-1)i+k} = w_{(l,k)}$ for all l = 1, 2, ..., n.

Lemma 3.5. Let $R = \bigoplus_{i=0}^{p-1} R_i$ be a primitive \mathbb{Z}_p -ring, let $M = \bigoplus_{i=0}^{p-1} M_i$ be a faithful irreducible \mathbb{Z}_p -module over R, let $\Delta = \operatorname{End}_R M$ (action of Δ on the left). Then for any Δ -linearly independent elements $v_{(1,i)}, v_{(2,i)}, \cdots, v_{(n,i)} \in M_i$ there is a homogeneous element $r \in R$ such that $v_{(1,i)}r \neq 0$, $v_{(2,i)}r = \cdots = v_{(n,i)}r = 0$.

Proof: We prove it by induction on n, the case n = 1 is trivial. Assuming the result is proven for n - 1, let $J = \{r \in R : v_{(3,i)}r = \cdots = v_{(n,i)}r = 0\}$ be the right annihilator of $v_{(3,i)}, \ldots, v_{(n,i)}$. By induction hypothesis $v_{(1,i)}J \neq 0$ and $v_{(2,i)}J \neq 0$, and by irreducibility of M, $M = v_{(1,i)}J = v_{(2,i)}J$. If there is an homogeneous element $r \in J$ with $v_{(2,i)}r = 0 \neq v_{(1,i)}r$, we are done. Otherwise, the map $\Psi : M = v_{(2,i)}J \rightarrow Mv_{(1,i)}J$ such that $\Psi(v_{(2,i)}r) = v_{(1,i)}r$ for any $r \in J$ is well defined and belongs to Δ , so that $\Psi = d$ for some homogeneous element $d \in \Delta$. Then $(v_{(1,i)} - dv_{(2,i)})J = 0$, so by induction hypothesis, $v_{(1,i)} - dv_{(2,i)} \in \Delta v_{(3,i)} + \cdots + \Delta v_{(n,i)}$, a contradiction.

Corollary 3.6. (DENSITY THEOREM) Let $R = \bigoplus_{i=0}^{p-1} R_i$ be a primitive \mathbb{Z}_p -ring, let $M = \bigoplus_{i=0}^{p-1} M_i$ be a faithful irreducible \mathbb{Z}_p -module over R, let $\Delta = \operatorname{End}_R M$ (action of Δ on the left). Then for any Δ -linearly independent elements $v_{(1,i)}, v_{(2,i)}, \cdots, v_{(n,i)} \in M_i$ and for any elements

$$w_{(1,k)}, w_{(2,k)}, \cdots, w_{(n,k)} \in M_k$$

there is an element $r_{(p-1)i+k} \in R_{(p-1)i+k}$ such that $v_{(q,i)}r_{(p-1)i+k} = w_{(q,k)}$ for all q = 1, 2, ..., n.

A (right) \mathbb{Z}_p -ideal is a (right) \mathbb{Z}_p -submodule of the \mathbb{Z}_p -ring R considered as a (right) \mathbb{Z}_p -submodule over R. An associative \mathbb{Z}_p -ring is (right) Artinian if it satisfies the descending condition on right \mathbb{Z}_p -ideals. Now, we have the following result about Artinian simple associative \mathbb{Z}_p -rings.

Theorem 3.7. If $\mathcal{A} = \bigoplus_{i=0}^{p-1} \mathcal{A}_i$ is an artinian simple associative \mathbb{Z}_p -ring, then (as a \mathbb{Z}_p -ring) $\mathcal{A} \cong \operatorname{End}_{\mathcal{D}} V$, where V is a finite dimensional \mathbb{Z}_p -space over an associative \mathbb{Z}_p -algebra \mathcal{D} .

Proof: Let $I = \bigoplus_{i=0}^{p-1} I_i$ be a nonzero minimal right \mathbb{Z}_p -ideal of \mathcal{A} . By minimality, I is an irreducible \mathbb{Z}_p -module of \mathcal{A} , that is $I\mathcal{A} = I$. Since \mathcal{A} is simple, I is a faithful \mathbb{Z}_p -module over \mathcal{A} . Therefore \mathcal{A} is a primitive \mathbb{Z}_p -ring with faithful irreducible \mathbb{Z}_p -module M = I. M is a left \mathbb{Z}_p -module over $\mathcal{D} = \mathbb{C}^{op} \cong \operatorname{End}_{\mathcal{A}} \mathcal{M}$, where \mathbb{C} is the commuting \mathbb{Z}_p -ring of \mathcal{A} on M. Thus by DENSITY THEOREM, \mathcal{A} is isomorphic to a dense \mathbb{Z}_p -subring of the \mathbb{Z}_p -ring $\operatorname{End}_{\mathcal{D}} \mathcal{M}$. If M is infinite dimensional over \mathcal{D}_0 , then so must M_i for at least one $i \in \mathbb{Z}_p$. Let $v_{(1,i)}, v_{(2,i)}, \dots, v_{(n,i)}, \dots$ be an infinite sequence of linearly independent elements of M_i . For $V_j = \sum_{k=1}^j \mathcal{D}v_{(k,i)}$ the annihilators $\operatorname{Ann}_V_j = \bigoplus_{k=0}^{p-1} \operatorname{Ann}_k V_j$, where $\operatorname{Ann}_k V_j = \{b_k \in \mathcal{A}_k : V_j b_k = 0\}$, form a properly infinite descending chain of right \mathbb{Z}_p -ideals of \mathcal{A} , a contradiction. Therefore dim $_{\mathcal{D}_0} M$ is finite, say n, and, by density theorem, $\mathcal{A} \cong \operatorname{End}_{\mathcal{D}} M = \bigoplus_{i=0}^{p-1} \operatorname{End}_i M$. \Box

So by Theorem 3.7, if \mathcal{A} is an artinian simple associative \mathbb{Z}_p -ring, then (as a ring) $\mathcal{A} \cong M_n(\mathcal{D})$, where \mathcal{D} is an associative division \mathbb{Z}_p -algebra.

In the next theorem we show that any two faithful irreducible (right) \mathbb{Z}_p -modules over a primitive \mathbb{Z}_p -ring R are isomorphic.

Theorem 3.8. Let R be a primitive \mathbb{Z}_p -ring having a minimal right \mathbb{Z}_p -ideal. Then any two faithful irreducible (right) \mathbb{Z}_p -modules over R are isomorphic.

Proof: Let I be a minimal right \mathbb{Z}_p -ideal of R and let M be a faithful irreducible \mathbb{Z}_p -module over R, then the faithfulness of M ensures that $m_i I \neq \{0\}$ for some $m_i \in M_i$. Since $m_i I$ is a nonzero \mathbb{Z}_p -submodule of the irreducible \mathbb{Z}_p -module M, it must be all of M. Since the annihilator of m_i in I is a right \mathbb{Z}_p -ideal of R properly contained in I, it is $\{0\}$ and the map $b \mapsto m_i b, b \in I$, is a \mathbb{Z}_p -isomorphism over R of I onto M. Thus every faithful irreducible \mathbb{Z}_p -module over R is isomorphic to I.

Note that by [15, Theorem 4], if $\mathcal{A} \cong M_n(\mathcal{D})$, then n and \mathcal{D} are unique up to isomorphism.

We say that a \mathbb{Z}_p -ring R is *semiprime* if it has no nonzero nilpotent \mathbb{Z}_p -ideals, and that it is *prime* if for any nonzero \mathbb{Z}_p -ideals I, J, the product $IJ \neq \{0\}$. Easy computations imply the following lemma.

Lemma 3.9. Let R be a \mathbb{Z}_p -ring, and let $i, j \in \mathbb{Z}_p$. Then

- (1) If R is a primitive, then R is a prime.
- (2) If R is a prime with a minimal one sided \mathbb{Z}_p -ideal, then it is a primitive.
- (3) R is semiprime if and only if $a_i Ra_i \neq \{0\}$ for all $0 \neq a_i \in R_i$.
- (4) R is prime if and only if $a_i Rb_j \neq \{0\}$ for all $0 \neq a_i \in R_i$, $0 \neq b_j \in R_j$.

Now, we have the following result about primitive \mathbb{Z}_p -rings with a minimal one sided \mathbb{Z}_p -ideal.

Theorem 3.10. Let R be a semiprime \mathbb{Z}_p -ring. Then

(i) If I is a minimal right \mathbb{Z}_p -ideal of R, then there is an idempotent $e \in I_0$ such that I = eR. Moreover, for any homogeneous element $x \in I$ with $xI \neq \{0\}$, there exists an idempotent $e = e^2 \in I_0$ such that I = eR and ex = xe = x.

(ii) If e is a nonzero idempotent element of R_0 and eR = I is a minimal right \mathbb{Z}_p -ideal of R, then eRe is a division \mathbb{Z}_p -ring, which is isomorphic to the \mathbb{Z}_p -algebra $\Delta = \operatorname{End}_R I$ (acting from the left).

(iii) If e is a nonzero idempotent element of R_0 such that eRe is a division \mathbb{Z}_p -ring, then eR is a minimal right \mathbb{Z}_p -ideal of R.

(iv) If a is a homogeneous element in R such that aR is a minimal right \mathbb{Z}_p -ideal of R, then Ra is a minimal left \mathbb{Z}_p -ideal of R.

Proof: (i) Since R is semiprime $I^2 \neq \{0\}$, so by minimality $I^2 = I$ and there is a nonzero homogeneous element x in I such that $xI \neq \{0\}$. Again, since I is minimal xI = I, and hence there is an element $e \in I_0$ such that x = xe. Take $J = \{a \in I : xa = 0\}$. Then J is a right \mathbb{Z}_p -ideal of R strictly contained in I, so $J = \{0\}$. Since $e^2 - e \in J$, we conclude that e is a nonzero idempotent of I_0 , and since $0 \neq eI \subseteq I$, the minimality of I forces I = eI, as desired. In particular ey = y for any $y \in I$. That is I = eR.

(ii) Note that if x is an homogeneous element of R such that $exe \neq 0$, then $0 \neq exeR \subseteq eR$ so exeR = eR by minimality. Therefore there exists an homogeneous element $y \in R$ such that exey = e, so (exe)(eye) = e, which is the unity of the \mathbb{Z}_p -algebra eRe. Therefore, any nonzero homogeneous element of eRe has a right inverse. This is enough to insure that eRe is a division \mathbb{Z}_p -algebra. Besides, the linear map $eRe \to \operatorname{End}_R(I)$ given by $exe \mapsto \lambda_{exe}$, where $\lambda_{exe} : I \to I$ is defined by $\lambda_{exe}(z) = exez$ for any $z \in I$, is easily shown to be a \mathbb{Z}_p -isomorphism, since for any homogeneous element f in $\operatorname{End}_R(I)$, $ea = f(e) = f(e^2) = eae$ for some homogeneous element $a \in R$, and so for any $z = ez \in I$, $f(z) = f(ez) = f(e)z = eaez = \lambda_{eae}(z)$. Note that this is valid even if R is not semiprime.

(iii) Suppose $e = e^2 \in R_0$ such that eRe is a division \mathbb{Z}_p -algebra, and let I be a nonzero right \mathbb{Z}_p -ideal contained in eR. Let x be a nonzero homogeneous element of I, so x = ex. Let $y \in R$ such that $exye \neq 0$ (note that if $exRe = \{0\}$, then $(RexR)^2 = \{0\}$, contradicting the semiprimeness of R), since eRe is a division

 \mathbb{Z}_p -algebra, there is another homogeneous element z such that xyeze = exyeze = (exye)(eze) = e. In particular, $e \in xR$ and $eR \subseteq xR \subseteq I$, so I = eR. This shows that eR is a minimal right \mathbb{Z}_p -ideal.

(iv) Suppose that a is an homogeneous element such that aR is a minimal right \mathbb{Z}_p -ideal. As in (i), let e be an idempotent such that ae = ea = a and aR = eR. By (ii) eRe is a division \mathbb{Z}_p -algebra, and by symmetry, item (iii) shows that Re is a minimal left \mathbb{Z}_p -ideal. But $R^2a \neq \{0\}$, and Ra = (Re)a is a homomorphic image of the irreducible left \mathbb{Z}_p -module Re, so it is irreducible too. That is, Ra is a minimal left \mathbb{Z}_p -ideal. \Box

Corollary 3.11. Let R be a semiprime \mathbb{Z}_p -ring, and let a be a homogeneous element in R. Then aR is a minimal right \mathbb{Z}_p -ideal of R if and only if Ra is a minimal left \mathbb{Z}_p -ideal of R.

A \mathbb{Z}_p -involution of a central simple associative \mathbb{Z}_p -algebra \mathcal{A} is a graded additive map $* : \mathcal{A} \to \mathcal{A}$ such that

$$a^{**} = a$$
 and $(a_{\alpha}b_{\beta})^* = (-1)^{\alpha\beta}b_{\beta}^*a_{\alpha}^* \quad \forall a_{\alpha} \in \mathcal{A}_{\alpha}, \ b_{\beta} \in \mathcal{A}_{\beta}.$

In [5] we classified the properties of \mathbb{Z}_p -involution defined on primitive \mathbb{Z}_p -algebras having a minimal one sided \mathbb{Z}_p -ideal.

References

- A. Elduque, O. Villa, The existence of superinvolutions, Journal of Algebra 319, 4338-4359, (2008).
- A. Jaber, Existence of Pseudo-Superinvolutions of The First Kind, International Journal of Mathematics and Mathematical Sciences Volume 2008 (2008), Article ID 386468, 12 pages doi:10.1155/2008/386468.
- 3. A. Jaber, Central simple superalgebras with superantiautomorphism of order two of the second kind, Turkish Journal of Mathematics, 35, 11-21, (2011).
- A. Jaber, Central simple superalgebras with anti-automorphisms of order two of the first kind, J. Algebra, Volume 323, 7, 1849–1859, (2010).
- A. Jaber, On Z_p-Involution, International Journal of Pure and Applied Mathematics, Volume 112, 4, 763-775, (2017).
- B. Far, R.K. Dennis, *Noncommutative Algebra*, Springer-Verlag (Graduate Texts in Mathematics, 144), New York, 1993.
- I. N. Herstein, *Rings with Involution*, Chicago Lectures in Math., Univ. of Chicago Press, Chicago, 1976.
- 8. L. H. Rowen, Rings Theory, Vol. I, Academic Press, San Diego/London, 1988.
- M. L. Racine, *Primitive superalgebras with superinvolution*, Journal of Algebra, 206, 588-614, (1998).
- N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloq. Publ., Vol. 37, Amer. Math. Soc., Providence, RI, 1956. Freeman and Company, San Francisco, 1974.
- R. Pierce, Associative Algebras, Springer-Verlag (Graduate Texts in Mathematics, 88), New York, 1982.
- Y. A. Bahturin, A. Giambruno, Group Gradings on associative algebras with involution, DOI:10.4153/CMB-2008-020-7, Canad. Math. Bull., 51, 182-194, (2008).

- 13. Y. A. Bahturin, I. Shestakov, *Group Gradings on associative superalgebras*, Contemporary Mathematics, 420, 1-13, (2006).
- Y. A. Bahturin, I. Shestakov, M. Zaicev, Gradings on Simple Jordan and Lie algebras, Journal of Algebra, 283, 849-868, (2005).
- Y. A. Bahturin, S. Sehgal, M. Zaicev, Group Gradings on Associative Algebras, Journal of Algebra, 241, 677-698, (2001).

Ameer Jaber, Department of Mathematics, The Hashemite University, Zarqa 13115, Jordan. E-mail address: ameerj@hu.edu.jo