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Linear Representation Of a Graph ∗

E. Montenegro V, E. Cabrera A., J. González C. and R. Manŕıquez P.

abstract: In this paper the linear representation of a graph is defined. A linear
representation of a graph is a subgroup of GL(p,R), the group of invertible matrices
of order p and real coefficients. It will be demonstrated that every graph admits a
linear representation. In this paper, simple and finite graphs will be used, framed
in the graphs theory’s area.
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Introduction

It is customary to define or to describe a graph by means of a diagram in which
each vertex is represented by a point and each edge e = uv is represented by a line
segment or curve joining the points corresponding to u and v. A graph G with
vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em} can also
be described by means of matrices. One such matrix is then n×n adjacency matrix
A(G) = (aij), where

aij =

{

1 if vivj ∈ E(G)

0 if vivj /∈ E(G).

Another matrix is the n×m incidence matrix B(G) = (bij), where

bij =

{

1 if vi and vj are incident

0 otherwise.

(See [2]).
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In computer science, a graph is an abstract data type that is meant to imple-
ment the undirected graph and directed graph. For the representation of graphs,
adjacency matrix, incidence matrix and Adjacency list are used. The latter, is a
collection of unordered lists used to represent a finite graph. Each list describes
the set of neighbours of a vertex in the graph. (See [3]).

1. Preliminaries

The organization of the following definitions is presented so as this article is self-
contained, for this reason we describe some basic concepts for the understanding
of our work.

1.1. Simples and finites Graphs

Definition 1.1. A graph G is a finite nonempty set of objects called vertices to-
gether with a set of unordered pairs of distinct vertices of G called edges.

The graphs to be considered will be simple and finite and with a nonempty set
of edges. For a graph G, V (G) denotes the set of vertices and E(G) denotes the set
of edges. The cardinality of V (G) is called order of G and the cardinality of E(G)
is called size of G. Other concepts used in this work and not defined explicitly can
be found in the reference [2], [4], [5].

Definition 1.2. An automorphism of a graph G is an isomorphism between G
and itself. Thus an automorphism de G is a permutation of V (G) that preserves
adjacency (and nonadjacency).

Remark 1.3. The set of all automorphisms of the graph G form a group under
the operation of composition, called the automorphism group or simply the group
of G and denoted by Aut(G).

See more [2], [6], [7], [8]

1.2. Pertmutation matrix

Definition 1.4. Let Sn = {f : {1, ..., n} → {1, ..., n} : f is bijective} be , the set of
permutations.

Remark 1.5. Sn form a group under the operation of composition, called sym-
metric group.

Definition 1.6. Let GL(p,R) = {X ∈ M(p,R) : det(X) 6= 0} be, with identity
element

Ip =

















e1
...
ei
...
ep

















,

where ei = [δij ] is the i-th row of Ip.
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Definition 1.7. Let ρ ∈ Sn be, we will say that Mρ ∈ GL(n,R) defined by

Mρ = [Ci] ,

is the permutation matrix of ρ, if only if, for all i = 1, ..., n,

Ci = etρ(i),

where Ci = [aij ] is the i-th column of Mρ.

Remark 1.8. From Definition 1.7: Mρ =
[

δjρ(i)
]

.

Example 1.1. If ρ = (123) ∈ S3, then M(123) =





0 0 1
1 0 0
0 1 0



 . Indeed,

eρ(1) = e2 = [δ2j ] =
[

0 1 0
]

⇒ C1 = et2 =





0
1
0



 = [δj2]

eρ(2) = e3 = [δ3j ] =
[

0 0 1
]

⇒ C2 = et3 =





0
0
1



 = [δj3]

eρ(1) = e1 = [δ1j ] =
[

1 0 0
]

⇒ C3 = et1 =





1
0
0



 = [δj1]

Lemma 1.9. If ρ, σ ∈ Sp, then MρMσ = Mσ◦ρ.

Proof: Let ρ, σ ∈ Sp be, such that Mρ =
[

δjρ(i)
]

and Mσ =
[

δjσ(i)
]

. Then
MρMσ = [cij ] , where

cij =

p
∑

k=1

δkρ(i)δjσ(k) =

{

1 if σ (ρ(i)) = j

0 if σ (ρ(i)) 6= j.
(1.1)

On the other hand, Mσ◦ρ =
[

δjσ(ρ(i))
]

, where

δjσ(ρ(i)) =

{

1 if σ (ρ(i)) = j

0 if σ (ρ(i)) 6= j.
(1.2)

Therefore, From (1.1) and (1.2) MρMσ = Mσ◦ρ. ✷

2. Linear Group

In this section, we introduce a fundamental definition for our research.

Definition 2.1. If H ≤ Sp, then M(H) = {Mρ/ρ ∈ H} it will be called linear
group of H.

Theorem 2.2. If H ≤ Sp, then M(H) ≤ GL(p,R).
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Proof:

(i) As H ≤ Sp, we have to 1Sp
∈ H , then M(1) ∈ M(H). Therefore M(H) 6= ∅.

(ii) ∀ρ, σ ∈ H : MρMσ−1 = Mσ−1◦ρ = Mν ∈ M(H)

From (i), and (ii), then M(H) ≤ GL(p,R). ✷

Theorem 2.3. If H ≤ Sp, then M(H) ∼= H.

Proof: Let f : H → M(H) be defined by f(ρ) = Mρ−1 .
If ρ, σ ∈ H then, f(ρ ◦ σ) = M(ρ◦σ)−1 = Mσ−1◦ρ−1 = Mρ−1Mσ−1 = f(ρ)f(σ).
On the other hand, if f(ρ) = f(σ) ⇒ Mρ−1 = Mσ−1 ⇒ Mρ = Mσ ⇒ ρ = σ.

Moreover, for each M ∈ M(H), there exists ρ ∈ H such that f(ρ) = M .
Therefore f is an isomorphism. ✷

3. Linear representation of a Graph

Definition 3.1. We will say that M(H) is a linear representation of a graph G,
of order p, if only if, M(H) ∼= Aut(G).

Remark 3.2. The linear representation of a graph G, is denoted M(G). Then,

M(G) = {Mρ/ρ ∈ Aut(G)} .

Example 3.1 (Linear representation of a complete Graph). Let Kp be a complete
Graph (See [2] ). We have Aut(Kp) ∼= Sp (See [4]) and M(Sp) = {Mρ/ρ ∈ Sp}.
Thus, M(Sp) ∼= Sp.

In particular, Aut(K3) ∼= S3 and M(K3) = {Mρ/ρ ∈ Aut(K3)} . Then, M(K3)
has six matrices. These are:

M(1) =





1 0 0
0 1 0
0 0 1



 ;M(12) =





0 1 0
1 0 0
0 0 1



 ;M(13) =





0 0 1
0 1 0
1 0 0



 ;

M(23) =





1 0 0
0 0 1
0 1 0



 ;M(123) =





0 0 1
1 0 0
0 1 0



 ;M(132) =





0 1 0
0 0 1
1 0 0



 .

Accordingly, the linear representation of K3 is:











1 0 0
0 1 0
0 0 1



 ,





0 1 0
1 0 0
0 0 1



 ,





0 0 1
0 1 0
1 0 0



 ,





1 0 0
0 0 1
0 1 0



 ,





0 0 1
1 0 0
0 1 0



 ,





0 1 0
0 0 1
1 0 0











.
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Example 3.2 (Linear representation of a cycle). Let Cp be a cycle of order p
(See [2]). We have Aut(Cp) ∼= D2p (See [4]) and M(D2p) = {Mρ/ρ ∈ D2p}.Thus,
M(D2p) ∼= D2p.

In particular, Aut(C4) ∼= D8 and M(C4) = {Mρ/ρ ∈ Aut(C4)} . Thus, M(C4)
has six matrices. But D8 = 〈(1234), (14)(23)〉, therefore:

M(C4) =

〈









0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0









,









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









〉

is the linear representation of C4.

Remark 3.3. Note that for the generator









0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0









, the characteristic poly-

nomial is: x4 − 1, and its characteristic values: ±1,±i. These can be considered
as the vertices of a square inscribed in the unit circle in the complex plane.

For the Generator









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









, the characteristic polynomial is: x4−2x2+

1, and its characteristic values: ±1, each of them of multiplicity two. These can be
considered as the generators orthogonal planes in space R

4.

Finally, we have the main result of this work.

Theorem 3.4. Every graph admits a linear representation.

Proof: Let G be a graph and Aut(G) the group of G. By Cayley Theorem (See
[1]), exist H ≤ Sp such that H ∼= Aut(G) and by Theorem 2.3, H ∼= M(H).
Therefore, Aut(G) ∼= M(H). ✷
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