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Global Solutions To Nonlinear Second Order Interval
Integrodifferential Equations By Fixed Point In Partially Ordered Sets

Robab Alikhani and Fariba Bahrami

abstract: In this paper, we prove the existence and uniqueness of global solution
for second order interval valued integrodifferential equation with initial conditions
admitting only the existence of a lower solution or an upper solution. In this study,
in order to make the global solution on entire [a, b], we use a fixed point in partially
ordered sets on the subintervals of [a, b] and obtain local solutions. Also, under
weak conditions we show being well-defined a special kind of H-difference involved
in this work. Moreover, we compare the results of existence and uniqueness under
consideration of two kind of partial ordering on fuzzy numbers.
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1. Introduction

In many simultaneously occurring processes in modeling of the real world phe-
nomena to obtain data, the field observations are needed. The modeling of a
dynamical system based on the field observations becomes uncertain and vague-
ness or fuzziness, which is inherent in the systems behavior rather than being
purely random or deterministic. Motivations for employing interval-valued and
fuzzy functions, in general, fall in the fact that models based on the considera-
tion of only two values: 0, 1 are inadequate for describing real practical problems
for which we have to use linguistic variables.The study of interval and fuzzy dif-
ferential equations is an area of mathematics that has recently received a lot of
attention (see e.g. [5,6,13,17]). Recently, there are some papers dealing with the
existence of solution for nonlinear set valued and fuzzy differential equations whose
methods are based on the monotone method, the method of upper and lower so-
lutions and fixed point theorems [13,7,1,3,2]. Some works also have been done on
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the existence and uniqueness results of solutions for interval-valued second-order
differential equations by contraction principle and successive approximations [9,10].
Moreover, author in [3], has proved the existence and uniqueness of global solu-
tions for fuzzy integro-differential equation of Volterra type by means of the fixed
point theory, the successive iteration method and Gronwall inequality. Among of
them, we can find results on existence of solution for fuzzy differential equations
in presence of both lower and upper solutions relative to the problem considered.
The contraction mapping theorem and the abstract monotone iterative technique
are well known and are applicable to a variety of situations. Recently, there is a
fixed point theorem to weaken the requirement on the contraction by considering
metric spaces endowed with partial order. The existence of a unique fixed point
is based on assuming that the operator considered is monotone in such a setting
[11,12,16].
In this study, we consider the following second order fuzzy integrodifferential equa-
tion

u′′(t) = f(t, u(t), u′(t)) +

∫ t

a

k(t, s, u(s), u′(s))ds, (1.1)

together with the initial conditions

u(a) = u01, u
′(a) = u02, (1.2)

where f : [a, b]×K2 → K, k : [a, b]× [a, b]×K2 → K are continuous in all of their
arguments. All initial conditions are supposed to be interval numbers.
Here, we reduce (1.1) to a system of two first order interval integrodifferential equa-
tions with the initial condition and use fixed point in partially ordered sets to prove
the existence results. This kind of fixed point needs just only a lower solution or
an upper solution for the initial value problem of system and also the weak as-
sumptions on the functions f, k. In this study, we try to overcome some difficulties
mentioned below. Firstly, one of them is being well-defined H-differences appeared
in the problem that we show them under weak conditions. Secondly, applying such
fixed point gives us a local solution. In order to make the global solution on entire
[0, b], we use a fixed point in partially ordered sets on the subintervals of [0, b] and
obtain local solutions.
In general, the method can be applied to first order nonlocal systems of fuzzy dif-
ferential equations.
Our interest in this kind of problem (1.1) may be arisen from its application as a
model for population dynamics under uncertainty. The growth and decay of the
populations are based on biological principles, reactions, environmental conditions
and the parameters obtained from experiment. Therefore there are some uncertain-
ties in determining these parameters. Let X(t) = (x1(t), x2(t)) be the population
of two species; a logistic fuzzy model for populations dynamics is

Ẋ(t) = βf(X)− γg(X), (1.3)

where, βf(X) represents the growth and γg(X) an inhibition term. The growth
factor may change with the state of the environment at time t which in turn depends
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on the past history of the populations, since the populations contributes to the
change in the environment. Thus instead of βf(X), it becomes admissible to use
a variable growth factor incorporating a history-dependent term, for example

βf(X) = β0 −

∫ t

0

K(t− s)x(s)ds.

The same description can be presented for the inhibition term. Thus Equation
(1.3) becomes the Volterra integro-differential equation.

2. Preliminaries

In this section we gather together some definitions and results from the litera-
ture, which we will use throughout this paper.

K denotes the spaces of nonempty compact and convex sets of the real line R.
For A ∈ K, we have A = [a−, a+] where a− ≤ a+. We denote the width of an
interval A by len(A) = a+−a−. Given two intervals A,B ∈ K and k ∈ R, addition
and scalar multiplication are defined by A+B = [a− + b−, a+ + b+] and

kA =

{

[ka−, ka+], k ≥ 0
[ka+, ka−], k < 0.

(2.1)

Difference is defined as A − B = A + (−1)B. It is well known that addition is
associative and commutative and with neutral element {0}. If A,B ∈ K, and if
there exists a unique interval C ∈ K such that B + C = A, then C is called the
H-difference of A, B and is denoted by A⊖B (see e.g. [14]). For intervals A,B ∈ K

the Hausdorff distance is defined as usual by

D(A,B) = max{|a− − b−|, |a+ − b+|}.

The following properties of distance D are well-known (see e.g. [18])
For all A,B,C,E ∈ K and λ ∈ R, we have

D(A+B,A+ C) = D(B,C),

D(λA, λB) = |λ|D(A,B), ∀λ ∈ R,

D(A+B,C + E) ≤ D(A,C) +D(B,E),

also if both of H-differences A⊖B and C ⊖ E exist, we conclude

D(A⊖B,C ⊖ E) = D(A+ E,B + C),

and (K, D) is a complete metric space.
In vector form, we define

D(A,B) = max{D(A1, B1), D(A2, B2)},

for A = (A1, A2), B = (B1, B2) ∈ K×K.
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We recall that if F : [a, b] → K is an interval-valued function such that F (t) =
[f−(t), f+(t)], then limt→t0 F (t) exists, if and only if limt→t0f

−(t) and limt→t0f
+(t)

exist as finite numbers. In this case, we have

lim
t→t0

F (t) = [ lim
t→t0

f−(t), lim
t→t0

f+(t)].

In particular, F is continuous if and only if f− and f+ are continuous.

Definition 2.1. (See e.g. [5]) Let F : (a, b) → K and x0 ∈ (a, b). We say f is
strongly generalized differentiable at x0, if there exists an element F ′(x0) ∈ K, such
that for all h > 0 sufficiently small,
(i) there exist F (x0 + h)⊖ F (x0), F (x0)⊖ F (x0 − h) and

lim
hց0

F (x0 + h)⊖ F (x0)

h
= lim

hց0

F (x0)⊖ F (x0 − h)

h
= F ′(x0),

or (ii) there exist F (x0)⊖ F (x0 + h), F (x0 − h)⊖ F (x0) and

lim
hց0

F (x0)⊖ F (x0 + h)

−h
= lim

hց0

F (x0 − h)⊖ F (x0)

−h
= F ′(x0),

or (iii) there exist F (x0 + h)⊖ F (x0), F (x0 − h)⊖ F (x0) and

lim
hց0

F (x0 + h)⊖ F (x0)

h
= lim

hց0

F (x0 − h)⊖ F (x0)

−h
= F ′(x0),

or (iv) there exist F (x0)⊖ F (x0 + h), F (x0)⊖ F (x0 − h) and

lim
hց0

F (x0)⊖ F (x0 + h)

−h
= lim

hց0

F (x0)⊖ F (x0 − h)

h
= F ′(x0).

( h and −h at denominators mean 1
h
· and − 1

h
·, respectively).

Remark 2.2. We say that a function is (i)- differentiable if it is differentiable as
the case (i) of the definition above, etc.

Throughout this paper, we consider J = [a, b] and we shall use the notation

C(J,K) = { F : J → K| F is continuous},

where the continuity is one-side at endpoints a, b. Also for k = 1, 2

C2
(i)(J,K) = {F : J → K| F (j) is (i)-differentiable and continuous ; j = 0, 1},

C2
(ii)(J,K) = {F : J → K| F (j) is (ii)-differentiable and continuous ; j = 0, 1},

where differentiability at the endpoints a and b, is interpreted right and left gH-
differentiability at these points respectively. Define for F,G ∈ C(J,K)

H(F,G) = sup
t∈J

D(F (t), G(t)).
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Remark. (C(J,K), H) is a complete metric space.
In vector form, we define

H(Φ,Ψ) = max{H(Φ1,Ψ1), H(Φ2,Ψ2)},

for Φ = (Φ1,Φ2),Ψ = (Ψ1,Ψ2) ∈ C(J,K) × C(J,K).
The metric space (C(J,K) × C(J,K),H) is a complete space.

Remark. In this paper, for the integral concept, we will use the interval Riemann
integral introduced in [8]. Let F : [a, b] → K be an interval-valued function such
that F (t) = [f−(t), f+(t)] and f− and f+ are measurable and Lebesgue integrable

on [a, b]. Then we define
∫ b

a
F (t)dt by

∫ b

a

F (t)dt =

[

∫ b

a

f−(t)dt,

∫ b

a

f+(t)dt

]

and we say that F is Lebesgue integrable on [a,b].

Lemma 2.3. (See [15].) Let F : [a, b] −→ K be (i)-differentiable and C is an
interval.Then C + F is (i)-differentiable and C ⊖ f is (ii)-differentiable.

Throughout this work, we will use the following partial orders and we compare
the results of existence and uniqueness under them (see e.g. [13]).

Definition 2.4. Suppose x, y ∈ K. We say that x ≤1 y if and only if

x− ≤ y−, and x+ ≤ y+.

Definition 2.5. Suppose x, y ∈ K. We say that x ≤2 y if and only if

x− ≥ y−, and x+ ≤ y+.

Let h1, h2 ∈ C(J,K) be two interval functions, we say that h1 ≤j h2 if h1(t) ≤j

h2(t) for t ∈ J (j = 1, 2).
We recall some properties on the partial ordering ≤j in space of interval func-

tions, which are useful to our procedure.

Lemma 2.6. (See [13].) Let x, y, z, w ∈ K and c ∈ R, c > 0, j = 1, 2.

• x = y if and only if x ≤j y and x ≥j y.

• If x ≤j y, then x+ z ≤j y + z.

• If x ≤j y and z ≤j w, then x+ z ≤j y + w.

• If x ≤j y, then cx ≤j cy.

Lemma 2.7. (See [13]) Let g, h ∈ C(J,K) and g ≤j h, then

∫ t

a

g(s)ds ≤j

∫ t

a

h(s)ds, ∀t ∈ J.
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Lemma 2.8. Let g, h ∈ C(J,K) and u0 ∈ K and also g ≤1 h, then

u0 ⊖ (−1) ·

∫ t

a

g(s)ds ≤1 u0 ⊖ (−1) ·

∫ t

a

h(s)ds, ∀t ∈ J,

provided u0 ⊖ (−1) ·
∫ t

a
g(s)ds and u0 ⊖ (−1) ·

∫ t

a
h(s)ds are well-defined.

Lemma 2.9. Let g, h ∈ C(J,K) and u0 ∈ K and also g ≤2 h, then

u0 ⊖ (−1) ·

∫ t

a

g(s)ds ≥2 u0 ⊖ (−1) ·

∫ t

a

h(s)ds, ∀t ∈ J,

provided u0 ⊖ (−1) ·
∫ t

a
g(s)ds and u0 ⊖ (−1) ·

∫ t

a
h(s)ds are well-defined.

Lemma 2.10. (See [13].) If {gn} ⊆ C(J,K) and h ∈ C(J,K) are such that

gn ≤j h, ∀n ∈ N,

and gn(t) converges to g(t) in K for all t ∈ J , then g ≤j h.

Definition 2.11. Let (X,≤j) be a partially ordered set and f : X −→ X. We say
that f is monotone nondecreasing in x if for any x, y ∈ X,

x ≤j y ⇒ f(x) ≤j f(y)

and is monotone nonincreasing in y, if

x ≤j y ⇒ f(x) ≥j f(y).

The partial ordering in the vector form is defined as follows.

Definition 2.12. Suppose X = (x1, x2), Y = (y1, y2) ∈ K × K. We say that
X �j Y (i = 1, 2) if and only if

x1 ≤j y1, and x2 ≤j y2, (j = 1, 2).

Throughout this study we will use the following fixed point theorem in the
partially ordered set.

Theorem 2.13. (See [11,12].) Let (X,≤) be a partially ordered set and suppose
that d be a metric on X such that (X, d) is a complete metric space. Furthermore,
let T : X → X be a monotone nondecreasing mapping such that

∃ 0 ≤ k < 1 ∋ d(T (x), T (y)) ≤ kd(x, y), ∀x ≥ y.

Suppose that either T is continuous or X is such that if {xn} → x is a nondecreas-
ing (or respectively nonincreasing) sequence in X, then xn ≤ x (or respectively
xn ≥ x) for every n ∈ N. If there exists x0 ∈ X comparable to T (x0), then T has
a fixed point x̄ and

lim
n→∞

T n(x0) = x̄.
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The following lemma shows that a part of assumptions of Theorem 2.13 by
considering X = C(J,K) is satisfied.

Lemma 2.14. If a nondecreasing (or nonincreasing) sequence fn → f in C(J,K),
then fn ≤j f (or fn ≥j f), ∀n respectively.

Proof. Since fn is nondecreasing sequence in C(J,RF), fn(t) is nondecreasing se-
quence in K for t ∈ J . Also we have

f−
1 (t) ≤1 ... ≤1 f

−
n (t) ≤1 ....

Hence f−
n (t) is a nondecreasing sequence that converges to f−(t) in R. Therefore

f−
n (t) ≤1 f

−(t) for every n. Similarly we conclude f+
n (t) ≤1 f

+(t) for every n.
Thus fn ≤1 f for every n. Also we have

f−
1 (t) ≥2 ... ≥2 f

−
n (t) ≥2 ....

Hence f−
n (t) is a nonincreasing sequence that converges to f−(t) in R. Therefore

f−
n (t) ≥2 f

−(t) for every n. Similarly we conclude f+
n (t) ≤2 f

+(t) for every n.
Thus fn ≤2 f for every n. The similar result can be conclude for nonincreasing
function. ✷

The following lemma guaranties the existence of special kind of H-difference
under some conditions that we will be faced it.

Lemma 2.15. Let x ∈ K and f : [a, b] → K be continuous with respect to t. If
x ∈ K \R i.e. x− < x+ or if x ∈ R and f(t) ∈ R for all t ∈ [a, b], then there exists
h > a such that the H-difference

x⊖

∫ t

a

f(s)ds,

exists for any t ∈ [a, h].

Proof. The proof is given in [4] in fuzzy space. We give it for our special case in

intervals space. In order to prove the existence of x⊖
∫ t

a
f(s)ds, we have to prove

that [x− −
∫ t

a
f−(s)ds, x+ −

∫ t

a
f+(s)ds] is an interval. Therefore we have to check

∫ t

a

f+(s)ds−

∫ t

a

f−(s)ds ≤ x+ − x−.

The above condition is equivalent to
∫ t

a

len(f(s))ds ≤ len(x).

By continuity of f , there exists M > 0 such that len(f(t)) ≤ M for all t ∈ [a, b].

Now suppose x ∈ K \ R and t ∈ [a, a+ len(x)
M

], thus we have
∫ t

a

len(f(s))ds ≤M(t− a) ≤ len(x).

If x, f(t) ∈ R for all t ∈ [a, b], then len(x) = len(f(t)) = 0 for all t ∈ [a, b]. ✷
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3. Main Results

In this section, we consider the following initial value problem for the second
order interval integrodifferential equation of Volterra type

u′′(t) = f(t, u(t), u′(t)) +

∫ t

a

k(t, s, u(s), u′(s))ds,

u(a) = u01, u
′(a) = u02, t ∈ J = [a, b], (3.1)

where f ∈ C(J ×K
(2),K) and k ∈ C(J ×J ×K

(2),K) and u01, u02 are the interval
numbers.
The purpose of current section is finding solutions u ∈ C(J,K) of (3.1), which are
defined as below.

Definition 3.1. We say that u ∈ C2
(i)(J,K) is (i)-solution of (3.1), if u and u′

satisfy (3.1).

Definition 3.2. We say that u ∈ C2
(ii)(J,K) is (ii)-solution of (3.1), if u and u′

satisfy (3.1).

Definition 3.3. We say that u is (ii,i)-solution of (3.1), if there exists c ∈ (a, b)
such that u is (ii)-solution on [a, c] and (i)-solution on (c, b].

We can reduce (3.1) to the following system of two first order interval integro-
differential equations

{

v′1(t) = v2(t) t ∈ J,

v′2(t) = f(t, v1(t), v2(t)) +
∫ t

a
k(t, s, v1(s), v2(s))ds

(3.2)

together with the initial conditions

v1(a) = u01, v2(a) = u02. (3.3)

For convenience, we apply vector notations V (t) =

[

v1(t)
v2(t)

]

, V ′(t) =

[

v′1(t)
v′2(t)

]

and rewrite the problem (3.2) and (3.3) as

V ′(t) =

[

v2(t)

f(t, v1(t), v2(t)) +
∫ t

a
k(t, s, v1(s), v2(s))ds

]

,

V (a) =

[

u01
u02

]

. (3.4)

We note that two problems (3.1) and (3.4) are equivalent.

Lemma 3.4. (See [3].) The problem (3.4) is equivalent to one of the following
integral equations systems
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(F1) if v1, v2 both (i)-differentiable on J , then

V (t) =

[

u01 +
∫ t

a
v2(s)ds

u02 +
∫ t

a
f(s, v1(s), v2(s))ds +

∫ t

a

∫ s

a
k(s, r, v1(r), v2(r))drds

]

.

(F2) if v1, v2 are both (ii)-differentiable on J , then

V (t) =

[

u01 ⊖ (−1) ·
∫ t

a
v2(s)ds

u02 ⊖ (−1) · (
∫ t

a
f(s, v1(s), v2(s))ds+

∫ t

a

∫ s

a
k(s, r, v1(r), v2(r))drds)

]

.

(F3) if v1, v2 are both (ii)-differentiable on [a, a+ c∗] and (i)-differentiable on [a+ c∗, b],
then for t ∈ [a, a+ c∗]

V (t) =

[

u01 ⊖ (−1) ·
∫ t

a
v2(s)ds

u02 ⊖ (−1) · (
∫ t

a
f(s, v1(s), v2(s)) +

∫ s

a
k(s, r, v1(r), v2(r))drds)

]

,

and for t ∈ [a+ c∗, b]

V (t) =

[

v1(a+ c∗) +
∫ t

a+c∗
v2(s)ds

v2(a+ c∗) +
∫ t

a+c∗
f(s, v1(s), v2(s)) +

∫ s

a
k(s, r, v1(r), v2(r))drds

]

.

Remark 3.5. The continuous solution, obtained of integral equations (F1) is cor-
responding to the (i)-solution, (F2) is corresponding to the (ii)-solutions and (F3)
is corresponding to the (ii,i)-solution of (3.1).

3.1. Existence of (i)-solution

Now we are in a situation to define the nonlinear mappings A : C(J,K) ×
C(J,K) −→ C(J,K) × C(J,K), which plays a main role in our discussion, as
following

[AΦ](t) =

[

[A1Φ](t)
[A2Φ](t)

]

=

[

u01 +
∫ t

a
φ2(s)ds

u02 +
∫ t

a
f(s,Φ(s)) +

∫ s

a
k(s, r,Φ(r))drds

]

, (3.5)

where t ∈ J and Φ(t) =

[

φ1(t)
φ2(t)

]

.

In follows, we define upper and lower solution for Problem 3.4 as following:

Definition 3.6. Let U =

[

u1
u2

]

, Ū =

[

u1
u2

]

∈ C(J,K)× C(J,K), we say that

(a) U is a lower solution for the problem (3.1) if

U(t) �j [AU ](t), t ∈ J,

(b) U is an upper solution for the problem (3.4) if

U(t) �j [AU ](t), t ∈ J.
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We are now in a position to state our main results. We apply fixed point
Theorem 2.13 to prove the existence and uniqueness of global solution belonging
to C2

(i)(J,K) for the interval initial value problem (3.1) by the existence of just a
lower solution or an upper solution. The following theorem states the same results
for two kinds of partial ordering ≤j (j = 1, 2).

Theorem 3.7. Consider Problem (3.1) with f and k continuous and suppose
f, k are nondecreasing in two last arguments. Let exist two constant real num-
bers l1, l2 > 0 such that

D(f(t, x1, x2), f(t, y1, y2)) ≤ l1max{D(x1, y1), D(x2, y2)}, ∀t ∈ J,

D(k(t, s, x1, x2), k(t, s, y1, y2)) ≤ l2max{D(x1, y1), D(x2, y2)}, ∀t ∈ J,

for x1 ≥j y1 and x2 ≥j y2. Then the existence of a lower solution U (or an upper
solution U) for Problem (3.1) provides the existence of a fixed point for A like U ,
and consequently (i)-solution to Problem (3.1) on [a, b]. Also, limn→∞ An(U) = U

(or limn→∞ An(U) = U). Moreover, if W ∈ C(J,K) × C(J,K) is another fixed
point of A such that is comparable to U , then U =W .

Proof. Since by Lemma 3.4, Problem (3.1) is equivalent to (F1), we prove that the
mapping A has a unique fixed point under assumption the existence a lower solution
U for Problem (3.1). Because of similarity we omit the proof under assumption
the existence of upper solution. Now we check that hypotheses in Theorem 2.13
are satisfied.
We consider X = C(J,K) × C(J,K) that is partially ordered set by the following
order relation For G,F ∈ C(J,K)× C(J,K),

G �j F ⇔ G(t) �j F (t), ∀t ∈ J.

Since f, k are nondecreasing in their two last arguments, the mapping A, defined by
(3.5), is nondecreasing on J . Obviously there exists c > 0 such that b−a

c
= N ∈ N

and max{c, l1c+ l2
c2

2 } < 1. Firstly We consider the interval [a, a+ c]. For Φ �j Ψ,
we have

D([A1Φ](t), [A1Ψ](t)) ≤

∫ t

a

D(φ2(s), ψ2(s))ds ≤ cH(φ2, ψ2), (3.6)

and also,

D([A2Φ](t), [A2Ψ](t)) ≤

∫ t

a

D(f(s,Φ(s)), f(s,Ψ(s)))ds

+

∫ t

a

∫ s

a

D(k(s, r,Φ(r)), k(s, r,Ψ(r)))drds

≤ l1cmax{H(φ1, ψ1), H(φ2, ψ2)}

+ l2
c2

2
max{H(φ1, ψ1), H(φ2, ψ2)}. (3.7)
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Then from (3.6) and (3.7), we have

H(AΦ,AΨ) ≤ LH(Φ,Ψ), (3.8)

where L = max{c, l1c + l2
c2

2 } < 1. Applying Theorem 2.13, A has a fixed point

U =

[

u1

u2

]

∈ C([a, a + c],K) × C([a, a + c],K) and limn→∞ An(U) = U (or

limn→∞ An(U) = U). Now suppose W ∈ C([a, a + c],K) × C([a, a + c],K) is
another fixed point of A such that is comparable to U . It means that U �j W or
W �j U . We claim that H(U,W ) = 0. Employing the nondecreasing property of
the mapping A, along with Lemma 2.14 and U �j A, we can infer U �j U. Then
AnU is comparable to An

U = U and AnW = W for n = 0, 1, 2, .... Utilizing (3.8)
we have

H(U,W ) = H(An
U,AnW ) ≤ H(An

U,AnU) +H(AnW,AnU)

≤ Ln
H(U, U) + Ln

H(U,W ).

Since L < 1, the right-hand side of above equation converges to zero as n → ∞.
Then H(U,W ) = 0. It means that the fixed point is unique on [a, a+ c]
Now by considering U as a fixed point for A on the interval [a, a + c], we define
another mapping on the interval [a+ c, a+ 2c] as follows:

[TΦ](t) =
[

u1(a+ c) +
∫ t

a+c
φ2(s)ds

u2(a+ c) +
∫ t

a+c

∫ a+c

a
k(s, r,U(r))drds+

∫ t

a+c
(f(s,Φ(s)) +

∫ s

a+c
k(s, r,Φ(r))dr)ds

]

.

Since f, k are nondecreasing in two of last their arguments, the mapping T :
C([a+c, a+2c],K)×C([a+c, a+2c],K) → C([a+c, a+2c],K)×C([a+c, a+2c],K)
is nondecreasing.
Now we will show that U(t) �j [TU ](t) (or U(t) �j [TU ](t)) for t ∈ [a+ c, a+ 2c].
Due the fact that U is a lower solution of Problem (3.1) for t ∈ [a, b] and U �j U

for t ∈ [a, a+ c], we have

U =

[

u1(t)
u2(t)

]

�j

[

[A1U ](t)
[A2U ](t)

]

=

[

u01 +
∫ t

a
u2(s)ds

u02 +
∫ t

a
f(s, U(s)) +

∫ s

a
k(s, r, U(r))drds

]

=

[

u01 +
∫ a+c

a
u2(s)ds+

∫ t

a+c
u2(s)ds

u02 +
∫ a+c

a
f(s, U(s)) +

∫ s

a
k(s, r, U(r))drds +

∫ t

a+c
f(s, U(s)) +

∫ s

a
k(s, r, U(r))drds

]

�j

[

u01 +
∫ a+c

a
u2(s)ds+

∫ t

a+c
u2(s)ds

u02 +
∫ a+c

a
f(s,U(s)) +

∫ s

a
k(s, r,U(r))drds+

∫ t

a+c
f(s, U(s)) +

∫ s

a
k(s, r, U(r))drds

]

=

[

u1(a + c) +
∫ t

a+c
u2(s)ds

u2(a+ c) +
∫ t

a+c
f(s, U(s)) +

∫ s

a
k(s, r, U(r))drds

]

=

[

u1(a + c) +
∫ t

a+c
u2(s)ds

u2(a+ c) +
∫ t

a+c

∫ a+c

a
k(s, r, U(r))drds +

∫ t

a+c
f(s, U(s)) +

∫ s

a+c
k(s, r, U(r))drds

]

�j

[

u1(a + c) +
∫ t

a+c
u2(s)ds

u2(a + c) +
∫ t

a+c

∫ a+c

a
k(s, r,U(r))drds +

∫ t

a+c
f(s, U(s)) +

∫ s

a+c
k(s, r, U(r))drds

]

= [TU ](t).
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For Φ �j Ψ, we conclude

D([T1Φ](t), [T1Ψ](t)) ≤

∫ t

a+c

D(φ2(s), ψ2(s))ds ≤ cH(φ2, ψ2), (3.9)

and also,

D([T2Φ](t), [T2Ψ](t)) ≤

∫ t

a+c

D(f(s,Φ(s)), f(s,Ψ(s)))ds

+

∫ t

a+c

∫ s

a+c

D(k(s, r,Φ(r)), k(s, r,Ψ(r)))drds

≤ l1cmax{H(φ1, ψ1), H(φ2, ψ2)}

+ l2
c2

2
max{H(φ1, ψ1), H(φ2, ψ2)}.

Then we have
H(TΦ,TΨ) ≤ LH(Φ,Ψ), (3.10)

where L = max{c, l1c+ l2
c2

2 } < 1. All the conditions in Theorem 2.13 are satisfied,
therefore the mapping T has a fixed point V ∈ C([a+ c, a+ 2c],K)×C([a+ c, a+
2c],K) and limn→∞ T

n(U) = V.
If we suppose W ∈ C([a + c, a + 2c],K) × C([a + c, a + 2c],K) is another fixed
point of T such that is comparable to U on [a + c, a + 2c], then it is clear that
H(V,W ) = 0.
Obviously U as defined

U =

[

u1
u2

]

=

{

U t ∈ [a, a+ c]
V t ∈ [a+ c, a+ 2c]

(3.11)

is a fixed point of A defined by (3.5) on [a, a + 2c]. By Lemma 2.3, u1, u2 are
(i)-differentiable on [a, a+ 2c]. In the same trend we can make a fixed point of A

defined by (3.5) on [a, a+ Nc] = [a, b]. Let U =

[

u1
u2

]

∈ C(J,K) × C(J,K) is a

fixed point of A where J = [a, b]. Therefore U is a solution of integral equation
(F1). By Remark 3.5 and System (3.2), we can conclude u1 is a (i)-solution of
Problem (3.1).
Now suppose W ∈ C(J,K) × C(J,K) is another fixed point of A such that is
comparable to U on J = [a, b]. It is clear that H(U,W ) = 0.

✷

3.2. Existence of (ii)-solution

Let x0 ∈ K. We denote by B̄(x0) = {x ∈ K : len(x) ≤ len(x0)}, a closed subset
in K. Now we are in a situation to define the nonlinear mappings B, which plays
a main role in our discussion, as following

[BΦ](t) =

[

[B1Φ](t)
[B2Φ](t)

]

=

[

u01 ⊖ (−1)
∫ t

a
φ2(s)ds

u02 ⊖ (−1)
∫ t

a
f(s,Φ(s)) +

∫ s

a
k(s, r,Φ(r))drds

]

,(3.12)
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where t ∈ J and Φ(t) =

[

φ1(t)
φ2(t)

]

. In general the mapping B : C(J,K) ×

C(J,K) −→ C(J,K) × C(J,K) is not well-defined. The following lemma guar-
anties the existence of H-differences involving in the mapping B.

Lemma 3.8. Let u01, u0,2 ∈ K \ R and len(f(t, x, y)), len(k(t, s, x, y)) for all
x ∈ B̄(u01), y ∈ B̄(u02), ∀t, s ∈ [a, b] are bounded. Then there exists c∗ > 0 such
that the mapping B : C([a, a + c∗], B̄(u01)) × C([a, a + c∗], B̄(u02)) −→ C([a, a +
c∗], B̄(u01))× C([a, a+ c∗], B̄(u02)) is well-defined.

Proof. By Lemma 2.15, for t ∈ [a, a+ len(u01)
len(u02)

] we have

∫ t

a

len(φ2(s))ds ≤ (t− a)len(u02) ≤ len(u01). (3.13)

Now let len(f(t, x, y)) ≤M1, len(k(t, s, x, y)) ≤M2 for all x ∈ B̄(u01), y ∈ B̄(u02),

∀t, s ∈ [a, b]. Thus for t ∈ [a, a+ 2len(u02)
2M1+M2(b−a) ], we can conclude

∫ t

a

len(f(s,Φ(s))) +

∫ s

a

len(k(s, r,Φ(r)))drds ≤ M1(t− a) +M2
(t− a)2

2

≤ len(u02). (3.14)

Let consider c∗ = min{ len(u01)
len(u02)

,
2len(u02)

2M1+M2(b−a) , b−a}. Then from the relations (3.13)

and (3.14), H-differences involving in the mapping B exist on t ∈ [a, a+ c∗]. ✷

Definition 3.9. Let U =

[

u1
u2

]

, Ū =

[

u1
u2

]

∈ C(J, B̄(u01))) × C(J, B̄(u02))),

we say that
(a) U is a lower solution for the problem (3.4) if

U(t) �j [BU ](t), t ∈ J,

(b) Ū is an upper solution for the problem (3.4) if

Ū(t) �j [BŪ ](t), t ∈ J.

Remark 3.10. If u01, u02 ∈ K \ R, then Definition 3.13 is well-defined.

The following theorem gives (ii)-solution to Problem (3.1) considering partial
ordering ≤1, along with nondecreasing property of f, k.

Theorem 3.11. Consider Problem (3.1) with f and k continuous and suppose f, k
are nondecreasing in all their arguments except for the first. Let u01, u0,2 ∈ K \ R
and len(f(t, x, y)), len(k(t, s, x, y)) for all x ∈ B̄(u01), y ∈ B̄(u02), ∀t, s ∈ [a, b] are
bounded with bounds of M1,M2 respectively. Assume

c∗ = min{
len(u01)

len(u02)
,

2len(u02)

2M1 +M2(b − a)
, b− a}.
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Let exist l1, l2 > 0 such that

D(f(t, x1, x2), f(t, y1, y2)) ≤ l1max{D(x1, y1), D(x2, y2)}, ∀t ∈ [a, a+ c∗],

D(k(t, s, x1, x2), k(t, s, y1, y2)) ≤ l2max{D(x1, y1), D(x2, y2)}, ∀t ∈ [a, a+ c∗],

for x1 ≥1 y1 and x2 ≥1 y2. Then the existence of a lower solution U (or an
upper solution Ū) for Problem (3.1) provides the existence of a fixed point for
B like U , and consequently (ii)-solution to Problem (3.1) on [a, a + c∗]. Also,
limn→∞ Bn(U) = U (or limn→∞ Bn(Ū) = U). Moreover, if W ∈ C([a, a +
c∗], B̄(u01))×C([a, a+ c∗], B̄(u02)) is another fixed point of B such that is compa-
rable to U in the partial ordering �1, then U =W .

Proof. Since by Lemma 3.4, Problem (3.1) is equivalent to (F2), we prove that the
mapping B has a unique fixed point under assumption the existence of a lower solu-
tion U for Problem (3.1). Because of similarity we omit the proof under assumption
the existence of upper solution. Now we check that hypotheses in Theorem 2.13
are satisfied.
We consider X = C([a, a+ c∗], B̄(u01))×C([a, a+ c∗], B̄(u02)) that is partially or-
dered set by the following order relation For G,F ∈ C([a, a+c∗], B̄(u01))×C([a, a+
c∗], B̄(u02)),

G �1 F ⇔ G(t) �1 F (t), ∀t ∈ [a, a+ c∗].

Obviously there exists c > 0 such that c∗

c
= N ∈ N and max{c, l1c + l2

c2

2 } < 1.
Firstly We consider the interval [a, a+c]. By Lemma 3.8, the mapping B : C([a, a+
c], B̄(u01)) × C([a, a + c], B̄(u02)) → C([a, a + c], B̄(u01)) × C([a, a + c], B̄(u02))
defined by (3.21), is well-defined and since f, k are nondecreasing in their two last
arguments, the mapping B is nondecreasing on [a, a+ c]. For Φ �1 Ψ, we have

D([B1Φ](t), [B1Ψ](t)) ≤

∫ t

a

D(φ2(s), ψ2(s))ds ≤ cH(φ2, ψ2), (3.15)

and also,

D([B2Φ](t), [B2Ψ](t)) ≤

∫ t

a

D(f(s,Φ(s)), f(s,Ψ(s)))ds

+

∫ t

a

∫ s

a

D(k(s, r,Φ(r)), k(s, r,Ψ(r)))drds

≤ l1cmax{H(φ1, ψ1), H(φ2, ψ2)}

+ l2
c2

2
max{H(φ1, ψ1), H(φ2, ψ2)}. (3.16)

Then from (3.15) and (3.16), we have

H(BΦ,BΨ) ≤ LH(Φ,Ψ), (3.17)
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where L = max{c, l1c+l2
c2

2 } < 1. Applying Theorem 2.13, B has a fixed point U =
[

u1

u2

]

∈ C([a, a + c], B̄(u01)) × C([a, a + c], B̄(u02)) and limn→∞ Bn(U) = U (or

limn→∞ Bn(U) = U). Now supposeW ∈ C([a, a+c], B̄(u01))×C([a, a+c], B̄(u02))
is another fixed point of B such that is comparable to U with respect to partial
ordering �1. It means that U �1 W or W �1 U . We claim that H(U,W ) = 0.
Employing the nondecreasing property of the mapping B, along with Lemma 2.14
and U �1 BU , we can infer U �1 U. Then BnU is comparable to Bn

U = U and
BnW =W for n = 0, 1, 2, .... Utilizing (3.17) we have

H(U,W ) = H(Bn
U,BnW ) ≤ H(Bn

U,BnU) +H(BnW,BnU)

≤ Ln
H(U, U) + Ln

H(U,W ).

Since L < 1, the right-hand side of above equation converges to zero as n → ∞.
Then H(U,W ) = 0. It means that the fixed point is unique on [a, a+ c]
Now by considering U as a fixed point for B on the interval [a, a + c], we define
another mapping on the interval [a+ c, a+ 2c] as follows:

[TΦ](t) =
[

u1(a+ c)⊖ (−1)
∫ t

a+c
φ2(s)ds

u2(a+ c)⊖ (−1)(
∫ t

a+c

∫ a+c

a
k(s, r,U(r))dr + (f(s,Φ(s)) +

∫ s

a+c
k(s, r,Φ(r))drds)

]

.

The mapping T : C([a+c, a+2c], B̄(u01))×C([a+c, a+2c], B̄(u02)) → C([a+c, a+
2c], B̄(u01))× C([a+ c, a+ 2c], B̄(u02)) is well-defined, since for t ∈ [a+ c, a+ 2c]

∫ a+c

a

len(u2(s))ds+

∫ t

a+c

len(φ2(s))ds ≤ len(u02)c+ len(u02)(t− a− c)

≤ len(u02)c
∗ ≤ len(u01).

That means
∫ t

a+c

len(φ2(s))ds ≤ len(u01)−

∫ a+c

a

len(u2(s))ds = len(u1(a+ c)).

Also for being well-defined the second component of T we have

∫ t

a+c

(

∫ a+c

a

len(k(s, r,U(r)))dr + len(f(s,Φ(s))) +

∫ s

a+c

len(k(s, r,Φ(r)))dr)ds

+

∫ a+c

a

(len(f(s,U(s))) +

∫ s

a

len(k(s, r,U(r)))dr)ds

≤M2c(t− a− c) +M1(t− a− c) +M2
(t− a− c)2

2
+M1c+M2

c2

2

=M1(t− a) +M2
(t− a)2

2
≤ c∗(M1 +M2

(b− a)

2
) ≤ len(u02).

Since f, k are nondecreasing in two of last their arguments, the mapping T :
C([a+ c, a+2c], B̄(u01))×C([a+ c, a+2c], B̄(u02)) → C([a+ c, a+2c], B̄(u01))×
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C([a+ c, a+ 2c], B̄(u02)) is nondecreasing.
Now we will show that U(t) �1 [TU ](t) (or U(t) �1 [TU ](t)) for t ∈ [a+ c, a+ 2c].
Due the fact that U is a lower solution of Problem (3.1) for t ∈ [a, b] and U �1 U

for t ∈ [a, a+ c], we have

U =

[

u1(t)
u2(t)

]

�1

[

[B1U ](t)
[B2U ](t)

]

=

[

u01 ⊖ (−1)
∫ t

a
u2(s)ds

u02 ⊖ (−1)(
∫ t

a
f(s, U(s)) +

∫ s

a
k(s, r, U(r))drds)

]

�1

[

u01 ⊖ (−1)
∫ a+c

a
u2(s)ds⊖ (−1)

∫ t

a+c
u2(s)ds

u02 ⊖ (−1)(
∫ a+c

a
f(s,U(s)) +

∫ s

a
k(s, r,U(r))drds +

∫ t

a+c
f(s, U(s)) +

∫ s

a
k(s, r, U(r))drds)

]

=

[

u1(a + c)⊖ (−1)
∫ t

a+c
u2(s)ds

u2(a+ c)⊖ (−1)
∫ t

a+c
f(s, U(s)) +

∫ s

a
k(s, r, U(r))drds

]

=

[

u1(a + c)⊖ (−1)
∫ t

a+c
u2(s)ds

u2(a+ c)⊖ (−1)(
∫ t

a+c

∫ a+c

a
k(s, r, U(r))drds +

∫ t

a+c
f(s, U(s)) +

∫ s

a+c
k(s, r, U(r))drds)

]

�1

[

u1(a + c)⊖ (−1)
∫ t

a+c
u2(s)ds

u2(a + c)⊖ (−1)(
∫ t

a+c

∫ a+c

a
k(s, r,U(r))drds +

∫ t

a+c
f(s, U(s)) +

∫ s

a+c
k(s, r, U(r))drds)

]

= [TU ](t).

For Φ �1 Ψ, we conclude

D([T1Φ](t), [T1Ψ](t)) ≤

∫ t

a+c

D(φ2(s), ψ2(s))ds ≤ cH(φ2, ψ2), (3.18)

and also,

D([T2Φ](t), [T2Ψ](t)) ≤

∫ t

a+c

D(f(s,Φ(s)), f(s,Ψ(s)))ds

+

∫ t

a+c

∫ s

a+c

D(k(s, r,Φ(r)), k(s, r,Ψ(r)))drds

≤ l1cmax{H(φ1, ψ1), H(φ2, ψ2)}

+ l2
c2

2
max{H(φ1, ψ1), H(φ2, ψ2)}.

Then we have

H(TΦ,TΨ) ≤ LH(Φ,Ψ), (3.19)

where L = max{c, l1c+ l2
c2

2 } < 1. All the conditions in Theorem 2.13 are satisfied,
therefore the mapping T has a fixed point V ∈ C([a+ c, a+ 2c], B̄(u01)) × C([a +
c, a+ 2c], B̄(u02)) and limn→∞ Tn(U) = V.
If we suppose W ∈ C([a+ c, a+2c], B̄(u01))×C([a+ c, a+2c], B̄(u02)) is another
fixed point of T such that is comparable to U on [a+ c, a+2c], then it is clear that
H(V,W ) = 0.
Obviously U as defined

U =

[

u1
u2

]

=

{

U t ∈ [a, a+ c]
V t ∈ [a+ c, a+ 2c]

(3.20)
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is a fixed point of B defined by (3.21) on [a, a + 2c]. By Lemma 2.3, u1, u2 are
(ii)-differentiable on [a, a + 2c]. In the same trend we can make a fixed point of

B defined by (3.21) on [a, a + Nc] = [a, a + c∗]. Let U =

[

u1
u2

]

∈ C([a, a +

c∗], B̄(u01))×C([a, a+ c∗], B̄(u02)) is a fixed point of B. Therefore U is a solution
of integral equation (F2). By Remark 3.5 and System (3.2), we can conclude u1 is a
(ii)-solution of Problem (3.1). Now supposeW ∈ C(J,K)×C(J,K) is another fixed
point of A such that is comparable to U on [a, a+c∗]. It is clear that H(U,W ) = 0.
✷

The following theorem gives (ii)-solution to Problem (3.1) considering partial
ordering ≤2, along with nonincreasing property of f, k which is different from as-
sumptions of Theorem 3.11.

Theorem 3.12. Consider Problem (3.1) with f and k continuous and suppose f, k
are nonincreasing in all their arguments except for the first. Let u01, u0,2 ∈ K \ R
and len(f(t, x, y)), len(k(t, s, x, y)) for all x ∈ B̄(u01), y ∈ B̄(u02), ∀t, s ∈ [a, c∗]
are bounded with bounds of M1,M2 respectively, where

c∗ = min{
len(u01)

len(u02)
,

2len(u02)

2M1 +M2(b − a)
, b− a}.

Let exist l1, l2 > 0 such that

D(f(t, x1, x2), f(t, y1, y2)) ≤ l1max{D(x1, y1), D(x2, y2)}, ∀t ∈ [a, a+ c∗],

D(k(t, s, x1, x2), k(t, s, y1, y2)) ≤ l2max{D(x1, y1), D(x2, y2)}, ∀t ∈ [a, a+ c∗],

for x1 ≥2 y1 and x2 ≥2 y2. Then the existence of a lower solution U (or an
upper solution Ū) for Problem (3.1) provides the existence of a fixed point for
B like U , and consequently (ii)-solution to Problem (3.1) on [a, a + c∗]. Also,
limn→∞ Bn(U) = U (or limn→∞ Bn(Ū) = U). Moreover, if W ∈ C([a, a +
c∗], B̄(u01))×C([a, a+ c∗], B̄(u02)) is another fixed point of B such that is compa-
rable to U in the partial ordering �1, then U =W .

Proof. Since f, k are nonincreasing, by Lemma 2.9, the mapping B is nondecreas-
ing. Continuing the similar trend with the proof of Theorem 3.11, we prove our
results. ✷

3.3. Existence of (ii,i)-solution

Now we define the nonlinear mappings L, which plays a main role in our dis-
cussion, as following

[LΦ](t) =

[

[L1Φ](t)
[L2Φ](t)

]

(3.21)

=



















[

u01 ⊖ (−1) ·
∫ t

a
φ2(s)ds

u02 ⊖ (−1) · (
∫ t

a
f(s,Φ(s)) +

∫ s

a
k(s, r,Φ(r))drds)

]

, t ∈ [a, a+ c∗]
[

φ1(a+ c∗) +
∫ t

a+c∗
φ2(s)ds

φ2(a+ c∗) +
∫ t

a+c∗
f(s,Φ(s)) +

∫ s

a
k(s, r,Φ(r))drds

]

, t ∈ [a+ c∗, b]
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where Φ(t) =

[

φ1(t)
φ2(t)

]

. In general the L : C(J,K) × C(J,K) −→ C(J,K) ×

C(J,K) is not well defined, but under the conditions of the next theorem, it will
be well-defined.

Definition 3.13. Let U =

[

u1
u2

]

, Ū =

[

u1
u2

]

∈ C(J, B̄(u01)) × C(J, B̄(u02)),

we say that
(a) U is a lower solution for the problem (3.4) if

U(t) �j [LU ](t), t ∈ J,

(b) Ū is an upper solution for the problem (3.4) if

Ū(t) �j [LŪ ](t), t ∈ J.

The following theorem gives (ii,i)-solution to Problem (3.1)with considering just
only partial ordering ≤1.

Theorem 3.14. Consider Problem (3.1) with f and k continuous and suppose
f, k are nondecreasing in all their arguments except for the first. Let u01, u0,2 ∈
K \R. And also, let len(f(t, x, y)), len(k(t, s, x, y)) for all x ∈ B̄(u01), y ∈ B̄(u02),
∀t, s ∈ [a, a+ c∗] be bounded with bounds of M1,M2 respectively, where

c∗ = min{
len(u01)

len(u02)
,

2len(u02)

2M1 +M2(b − a)
, b− a}.

Let exist l1, l2 > 0 such that

D(f(t, x1, x2), f(t, y1, y2)) ≤ l1max{D(x1, y1), D(x2, y2)}, ∀t ∈ [a, b],

D(k(t, s, x1, x2), k(t, s, y1, y2)) ≤ l2max{D(x1, y1), D(x2, y2)}, ∀t ∈ [a, b],

for x1 ≥1 y1 and x2 ≥1 y2. Then the existence of a lower solution U (or an upper
solution Ū) for Problem (3.1) provides the existence of a fixed point for L like U ,
and consequently (ii,i)-solution to Problem (3.1) on [a, b]. Also, limn→∞ Ln(U) =
U (or limn→∞ B

n(Ū) = U). Moreover, if W ∈ C([a, a + c∗], B̄(u01)) × C([a, a +
c∗], B̄(u02)) is another fixed point of B such that is comparable to U in the partial
ordering �1, then U =W .

Proof. By Theorem 3.11, the mapping L is well-defined and there exists a fixed

point for the mapping L like U =

[

u1

u2

]

∈ C([a, a + c∗], B̄(u01)) × C([a, a +

c∗], B̄(u02)) and consequently (ii)-solution for Problem (3.1) on [a, a+ c∗]. Now by
considering U as a fixed point for B on the interval [a, a+ c∗], we define the other
mapping T : C([a+c∗, b],K)×C([a+c∗, b],K) → C([a+c∗, b],K)×C([a+c∗, b],K)
as follows:

[TΦ](t) =
[

u1(a+ c∗) +
∫ t

a+c∗
φ2(s)ds

u2(a+ c∗) + (
∫ t

a+c∗

∫ a+c∗

a
k(s, r,U(r))dr + (f(s,Φ(s)) +

∫ s

a+c∗
k(s, r,Φ(r))drds)

]

.
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Now we will show that U(t) �1 [TU ](t) (or U(t) �1 [TU ](t)) for t ∈ [a + c∗, b].
Due the fact that U is a lower solution of Problem (3.1) for t ∈ [a, b] and U �1 U

for t ∈ [a, a+ c∗], we have for t ∈ [a+ c∗, b]

U =

[

u1(t)
u2(t)

]

�1

[

[L1U ](t)
[L2U ](t)

]

=

[

u1(a + c∗) +
∫ t

a+c∗
u2(s)ds

u2(a+ c∗) +
∫ t

a+c∗
f(s, U(s)) +

∫ s

a
k(s, r, U(r))drds

]

�1

[

u1(a + c∗) +
∫ t

a+c∗
u2(s)ds

u2(a+ c∗) +
∫ t

a+c∗
f(s, U(s)) +

∫ s

a
k(s, r, U(r))drds

]

=

[

u1(a + c∗) +
∫ t

a+c∗
u2(s)ds

u2(a+ c∗) +
∫ t

a+c∗

∫ a+c∗

a
k(s, r, U(r))drds +

∫ t

a+c∗
f(s, U(s)) +

∫ s

a+c∗
k(s, r, U(r))drds

]

�1

[

u1(a + c) +
∫ t

a+c
u2(s)ds

u2(a+ c∗) +
∫ t

a+c∗

∫ a+c∗

a
k(s, r,U(r))drds +

∫ t

a+c∗
f(s, U(s)) +

∫ s

a+c∗
k(s, r, U(r))drds

]

=[TU ](t).

By Theorem 3.7, the mapping T has a fixed point V ∈ C([a + c∗, b],K) × C([a +
c∗, b],K). Obviously U as defined

U =

[

u1
u2

]

=

{

U t ∈ [a, a+ c∗]
V t ∈ [a+ c∗, b]

(3.22)

is a fixed point of L on [a, b]. ✷
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