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abstract: The aim of this article is to introduce the sequence spaces AC(f) and
AS(f) using arithmetic convergence and modulus function, and study algebraic and
topological properties of this space, and certain inclusion results.
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1. Introduction

Throughout, N, R and C will denote the set of natural, real and complex num-
bers, respectively and x = (xk) denotes a sequence whose kth term is xk. Similarly
w, c, ℓ∞, ℓ1 denotes the space of all, convergent, bounded, absolutely summable se-
quences of complex terms, respectively.

For a sequence x = (xk) defined on N and n ∈ N, the notation
∑

k|n

xk means

the finite sum of all the numbers xk as k ranges over the integers that divide n

including 1 and n. In general for integers k and n we write k|n to mean ’k divides
n’ or ’n is a multiple of k’. We use the symbol < m,n > to denote the greatest
common divisor of two integers m and n.

In [17], Ruckle was introduced the notions arithmetic summability and arith-
metic convergence as follows:

(i) A sequence x = (xk) defined on N is called arithmetically summable if for
each ε > 0 there is an integer n such that for every integer m we have
∣

∣

∣

∣

∣

∑

k|m

xk −
∑

k|<m,n>

xk

∣
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∣

< ε.
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(ii) A sequence y = (yk) is called arithmetically convergent if for each ε > 0 there
is an integer n such that for every integer m we have |ym − y<m,n>| < ε.

We studied arithmetic convergence and arithmetic continuity in [18,19,20].
The notion of a modulus function was introduced by Nakano [12] in the year

1953 (also see [11,13]). We recall that a modulus f is a function f : [0,∞) → [0,∞)
such that

(i) f(x) = 0 if and only if x = 0,

(ii) f(x+ y) ≤ f(x) + f(y) for all x ≥ 0, y ≥ 0,

(iii) f is increasing,

(iv) f is continuous from the right at 0.

Because of (ii), |f(x) − f(y)| ≤ f(|x − y|) so that in view of (iv), f is continuous
everywhere on [0,∞). A modulus function may be unbounded (for example, f(x) =
xp, 0 < p ≤ 1) or bounded (for example, f(x) = x

1+x
).

It is easy to see that f1 + f2 is a modulus function when f1 and f2 are modulus
functions, and that the function fi(i is a positive integer), the composition of a
modulus function f with itself i times, is also a modulus function. Ruckle [14]
used the idea of a modulus function f to construct a class of FK spaces

X(f) =

{

x = (xk) :

∞
∑

k=1

f(|xk|) < ∞

}

.

The space X(f) is closely related to the space l1 which is an X(f) space with
f(x) = x for all real x ≥ 0. Thus Ruckle [14] proved that, for any modulus f,

X(f) ⊂ l1.

The space X(f) is a Banach space with respect to the norm

‖x‖ =

∞
∑

k=1

f (|xk|) < ∞.

Spaces of the type X(f) are a special case of the spaces structured by Gramsch in
[6]. From the point of view of local convexity, spaces of the type X(f) are quite
pathological. Therefore symmetric sequence spaces, which are locally convex have
been frequently studied by Garling [4,5], Köthe [10] and Ruckle [15,16]. After
then Kolk [8,9] gave an extension of X(f) by considering a sequence of modulii
F = (fk) and defined the sequence space X(F ) = {x = (xk) : (fk (|xk|)) ∈ X} .
Also we refer to readers [1,2,3] for different types of sequence spaces defined by
modulus function.

2. Definitions and Preliminaries

Now we give the following definition for establishing certain results of this ar-
ticle.
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Definition 2.1. A sequence space E said to be sequence algebra if (xk) ∗ (yk) =
(xkyk) ∈ E whenever (xk); (yk) ∈ E.

Lemma 2.2. [13, Proposition 1] Let f be a modulus function and let 0 < δ < 1.
Then for each x ≥ δ, we have f(x) ≤ 2f(1)δ−1x.

3. Arithmetic convergent sequence space AC(f)

In this section we study certain algebraic and topological properties of arith-
metic convergent sequence space AC(f) defined by modulus function f. We define

AC(f) = {(xm) : for ε > 0 and an integer n, f (|xm − x<m,n>|) < ε, ∀m} .

Theorem 3.1. The sequence space AC(f) is a linear space.

Proof: Let (xm), (ym) be two sequences in AC(f). By definition of AC(f), for
ε > 0 and an integer n, we have

f (|xm − x<m,n>|) < ε and f (|ym − y<m,n>|) < ε for all m.

Since f is a modulus function, for ε > 0 and an integer n and scalars α and β,

f (|(αxm + βym)− (αx<m,n> + βy<m,n>)|) ≤ f (|α| |xm − x<m,n>|)

+f (|β| |ym − y<m,n>|)

≤ f (|xm − x<m,n>|)

+f (|ym − y<m,n>|)

< ε+ ε = 2ε for all m.

Thus AC(f) is a linear space. ✷

Theorem 3.2. The sequence space AC(f) is a sequence algebra.

Proof: Let (xm), (ym) be sequences AC(f). Then by definition, for ε > 0 and an
integer n, we have

f (|xm − x<m,n>|) < ε and f (|ym − y<m,n>|) < ε for all m.

Then we have

f (|xmym − x<m,n>y<m,n>|) < ε for all m. (see [18])

Hence the sequence (xmym) ∈ AC(f). This completes the proof. ✷

Theorem 3.3. Let f1 and f2 be two modulus functions, then AC(f1) ⊂ AC(f1f2).
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Proof: Let (xm) ∈ AC(f2). Then for ε > 0 and an integer n, we have
f2 (|xm − x<m,n>|) < ε.

We choose δ with 0 < δ < 1 such that f1(x) < ε for 0 ≤ x ≤ δ. Let us denote
ym = f2 (|xm − x<m,n>|) and consider

lim
m

f1(ym) = lim
ym≤δ

f1(ym) + lim
ym>δ

f1(ym), m ∈ N

since f1 is a modulus function,

lim
ym≤δ

f1(ym) < ε.

For ym > δ we use the fact that

ym <
ym

δ
< 1 +

[ym

δ

]

,

where [x] denotes the integral part of x.
Since f1 is a modulus function, by definition of modulus function and Lemma 2.2,
we have for ym > δ

f1(ym) < f1(1)
(

1 +
[ym

δ

])

≤ 2f1(1)
ym

δ
.

Thus

lim
ym>δ

f1(ym) ≤ 2f1(1)δ
−1 lim

ym>δ
ym < ε.

Hence (xm) ∈ AC(f1f2). ✷

Corollary 3.4. The sequence space of all arithmetic convergent sequences, AC is
subset of AC(f) .i.e. AC ⊂ AC(f).

Theorem 3.5. Let f1 and f2 be two modulus functions. Then we have

AC(f1) ∩ AC(f2) ⊂ AC(f1 + f2).

Proof: Let (xm) ∈ AC(f1) ∩ AC(f2). Then
(xm) ∈ AC(f1) and (xm) ∈ AC(f2)
⇒ for ε > 0 ∃ positive integer n such that

f1 (|xm − x<m,n>|) < ε and f2 (|xm − x<m,n>|) < ε for all m.

From the above equations we can easily see that for ε > 0 and integer n

(f1 + f2) (|xm − x<m,n>|) < ε for all m.

Thus (xm) ∈ AC(f1 + f2). Hence the result. ✷
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4. Arithmetic summable sequence space AS(f)

In this section we study certain algebraic and topological properties of arith-
metic summable sequence space AS(f) defined by modulus function f . We define

AS(f)=







(xm) : for ε > 0 and an integer n,f
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Theorem 4.1. The sequence space AS(f) is a linear space.

Proof: Let (xm), (ym) ∈ AS(f). By definition of AS(f), for ε > 0 and an integer
n,

f
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 < ε for all m.

Since f is a modulus function, for ε > 0 and an integer n and scalars α and β,

f
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< ε+ ε = 2ε for all m.

Thus AS(f) is a linear space. ✷

Theorem 4.2. Let f1 and f2 be two modulus functions, then AS(f1) ⊂ AS(f1f2).

Proof: The proof of the theorem is analogous to the proof of the Theorem 3.3 ✷

Corollary 4.3. The sequence space of all arithmetic summable sequences, AS is
subset of AS(f) i.e. AS ⊂ AS(f).

Theorem 4.4. Let f1 and f2 be two modulus functions. Then AS(f1)∩AS(f2) ⊂
AS(f1 + f2).

Proof: Let (xm) ∈ AS(f1) ∩ AS(f2). Then
(xm) ∈ AS(f1) and (xm) ∈ AS(f2)
⇒ for ε > 0 ∃ positive integer n such that

f1
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From the above equations we can easily see that for ε > 0 and integer n

(f1 + f2)
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∣
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∣



 < ε for all m.

Thus (xm) ∈ AS(f1 + f2). Hence the result. ✷

The next result gives an important inclusion property between l1 and AS(f).

Theorem 4.5. l1 ⊂ AS(f).

Proof: The result can be easily obtained from the inclusion l1 ⊂ AS given by
Proposition 16 in [17] and by using the Corollary 4.3. ✷

The following theorem established a relation between AS(f) and AC(f).

Theorem 4.6. If the sequence (xm) ∈ AS(f) then the sequence (ym) defined by
ym =

∑

k|m

xk is in AC(f).

Proof: Let (xm) ∈ AS(f). Then by definition we have

f





∣
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∣

∣
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∣



 < ε

⇒ f (|ym − y<m,n>|) < ε

⇒ ym ∈ AC(f).

✷
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