

(3s.) **v. 37** 4 (2019): 9–17. ISSN-00378712 in press doi:10.5269/bspm.v37i4.32297

Tauberian Conditions Under Which Statistical Convergence Follows From Statistical Summability $(EC)_n^1$

Naim L. Braha and Ismet Temaj

ABSTRACT: Let (x_k) , for $k \in \mathbb{N} \cup \{0\}$ be a sequence of real or complex numbers and set $(EC)_n^1 = \frac{1}{2^n} \sum_{j=0}^n {n \choose j} \frac{1}{j+1} \sum_{v=0}^j x_v, n \in \mathbb{N} \cup \{0\}$. We present necessary and sufficient conditions, under which $st - \lim x_k = L$ follows from $st - \lim (EC)_n^1 = L$, where L is a finite number. If (x_k) is a sequence of real numbers, then these are one-sided Tauberian conditions. If (x_k) is a sequence of complex numbers, then these are two-sided Tauberian conditions.

Key Words: Statistical Convergence; $(EC)_n^1$ – Summability; $(EC)_n^1$ – Statistically Convergent; One-sided and two-sided Tauberian Conditions.

Contents

1 Introduction and preliminaries

2 Main results

9 12

1. Introduction and preliminaries

We shall denote by \mathbb{N} the set of all natural numbers. Let $K \in \mathbb{N}$ and $K_n = \{k \leq n : k \in K\}$. Then the natural density of K is defined by $d(K) = \lim_{n \to \infty} \frac{|K_n|}{n}$ if the limit exists, where the vertical bars indicate the number of elements in the enclosed set. The sequence $x = (x_k)$ is said to be statistically convergent to L if for every $\epsilon > 0$, the set $K_{\epsilon} = \{k \in \mathbb{N} : |x_k - L| \geq \epsilon\}$ has natural density zero ([5], [8]) i.e. for each $\epsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{n} \left| \{ k \le n : |x_k - L| \ge \epsilon \} \right| = 0.$$

In this case, we write $L = st - \lim x_n$. Note that every convergent sequence is statistically convergent but not conversely.

Let us define the $(EC)_n^1$ – summability method as follows:

$$(EC)_n^1 = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} C_k^1,$$

where C_k^1 denotes the Cesaro summability method. The summability method $(EC)_n^1$ is a regular.

Typeset by $\mathcal{B}^{s} \mathcal{P}_{M}$ style. © Soc. Paran. de Mat.

²⁰¹⁰ Mathematics Subject Classification: 40E05, 40G05.

Submitted June 15, 2016. Published May 04, 2017

We say that the series $\sum_{n=1}^{\infty} x_n$ is $(EC)_n^1$ – summable to L if

$$\lim_{n} \frac{1}{2^{n}} \sum_{k=0}^{n} \binom{n}{k} \frac{1}{k+1} \sum_{v=0}^{k} x_{v} = L.$$

Definition 1.1. A sequence (x_n) is weighted $(EC)_n^1$ -statistically convergent to L if for every $\epsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{2^n} \left| \left\{ k \le 2^n : \left| \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \frac{1}{k+1} \sum_{v=0}^k x_v - L \right| \ge \epsilon \right\} \right| = 0.$$

Theorem 1.2. If sequence $x = (x_n)$ is $(EC)_n^1$ summable to L, then sequence $x = (x_n)$ is $(EC)_n^1$ – statistically convergent to L. But not conversely.

Proof: The first part of the proof is obvious. To prove the second part we will show this example:

Example We will define

$$x_k = \begin{cases} \sqrt{2^k} &, & \text{for } k = 2^n \\ 0 &, & \text{otherwise} \end{cases}$$

Under this conditions we get:

$$\frac{1}{2^n} \left| \left\{ k \le 2^n : \left| \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \frac{1}{k+1} \sum_{v=0}^k x_v - 0 \right| \ge \epsilon \right\} \right| \le \frac{\sqrt{2^n}}{2^n} \to 0.$$

On the other hand, if we assume that $k = 2^n$, then we obtain:

$$\frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \frac{1}{k+1} \sum_{v=0}^k x_v \to \infty \quad \text{as} \quad n \to \infty.$$

From last relation follows that $x = (x_n)$ is not $(EC)_n^1$ summable to 0.

Theorem 1.3. Let us suppose that sequence (x_n) -statistically convergent to L, and $|x_n - L| \leq M$ for every $n \in \mathbb{N}$. Then it converges $(EC)_n^1$ -statistically to L. Converse is not true.

Proof: From fact that (x_n) converges statistically to L, we get

$$\lim_{n \to \infty} \frac{|\{k \le n : |x_k - L| \ge \epsilon\}|}{n} = 0.$$

Let us denote by $B_{\epsilon} = \{k \leq n : |x_k - L| \geq \epsilon\}$ and $\overline{B_{\epsilon}} = \{k \leq n : |x_k - L| \leq \epsilon\}$. Then

$$\left|\frac{1}{2^n}\sum_{k=0}^n \binom{n}{k}\frac{1}{k+1}\sum_{v=0}^k x_v - L\right| = \left|\frac{1}{2^n}\sum_{k=0}^n \binom{n}{k}\frac{1}{k+1}\sum_{v=0}^k (x_v - L)\right| \le$$

10

$$\frac{1}{2^{n}} \sum_{\substack{k=0\\k\in B_{\epsilon}}}^{n} \binom{n}{k} \frac{1}{k+1} \sum_{v=0}^{k} |x_{v} - L| + \frac{1}{2^{n}} \sum_{\substack{k=0\\k\in \overline{B}_{\epsilon}}}^{n} \binom{n}{k} \frac{1}{k+1} \sum_{v=0}^{k} |x_{v} - L| \le \\ \le M |B_{\epsilon}| \frac{1}{2^{n}} \sum_{k=0}^{n} \binom{n}{k} \frac{1}{k+1} + \epsilon |\overline{B_{\epsilon}}| \frac{1}{2^{n}} \sum_{k=0}^{n} \binom{n}{k} \frac{1}{k+1} \le \\ M |B_{\epsilon}| \frac{2^{n+1} - 1}{2^{n}(n+1)} + \epsilon |\overline{B_{\epsilon}}| \frac{2^{n+1} - 1}{2^{n}(n+1)} \to 0 + \epsilon, \quad \text{as} \quad n \to \infty.$$

To show that converse is not true we will use into consideration this

Example Let us consider the following sequence $x = (x_n)$, which is defined as follows:

$$x_k = \begin{cases} 1 & , & \text{for } k = m^2 - m, \cdots, m^2 - 1 \\ -\frac{1}{m} & , & \text{for } k = m^2, m = 2, \cdots \\ 0 & , & \text{otherwise} \end{cases}$$

Under this conditions, after some calculations we get:

$$\frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \frac{1}{k+1} \sum_{v=0}^k x_v \le \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \frac{k}{k+1} - \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \frac{\left(1 + \frac{1}{2} + \dots + \frac{1}{k}\right)}{k+1} = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \frac{k}{k+1} - \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \frac{\ln k + C}{k+1},$$

where C- is Euler constant,

$$\leq \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \frac{k}{k+1} - \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \frac{1}{k+1} \cdot \frac{k-1}{k} - \frac{C(2^{n+1}-1)}{2^n(n+1)} \leq \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \frac{1}{k+1} - \frac{C(2^{n+1}-1)}{2^n(n+1)} \to 0, \quad \text{as} \quad n \to \infty,$$

for every k. From last relation follows that $x = (x_n)$ is $(EC)_n^1$ summable to 0. Hence from Theorem 1.3, (x_n) is $(EC)_n^1$ - statistically convergent. On the other hand, the sequence $(m^2; m = 2, 3 \cdots,)$ has natural density zero and it is clear that $st - \liminf_n x_n = 0$ and $st - \limsup_n x_n = 1$. Thus, (x_k) is not statistically convergent.

The theory of Tauberian theorems was investigated intensively from many authors (see [1,2,3], [6,7], [9], [4]). In this paper our aim is to find conditions (so-called

Tauberian) under which the converse implication holds, in Theorem 1.3, for defined convergence. Exactly, we will prove under which conditions statistical convergence $st - \lim x_n$, follows from $(EC)_n^1$ -statistically convergence. This method generalized method given in [6].

2. Main results

Theorem 2.1. If

$$st - \liminf_{n} \frac{2^{t_n}}{2^n} > 1, \quad t > 1$$
 (2.1)

where t_n , denotes the integral parts of the [tn] for every $n \in \mathbb{N}$, and let (x_k) be a sequence of real numbers which converges to L, $(EC)_n^1$ - statistically. Then (x_k) is st- convergent to the same number L if and only if the following two conditions holds:

$$\inf_{t>1} \limsup_{n} \frac{1}{2^{n}} \left| \left\{ k \le 2^{n} : \frac{1}{2^{t_{k}} - 2^{k}} \sum_{j=k+1}^{t_{k}} \binom{t_{k}}{j} \frac{1}{j+1} \sum_{v=0}^{j} (x_{v} - x_{k}) \le -\epsilon \right\} \right| = 0$$

$$(2.2)$$

and

$$\inf_{0 < t < 1} \limsup_{n} \sup \frac{1}{2^{n}} \left| \left\{ k \le 2^{n} : \frac{1}{2^{k} - 2^{t_{k}}} \sum_{j=t_{k}+1}^{k} \binom{k}{j} \frac{1}{j+1} \sum_{v=0}^{j} (x_{k} - x_{v}) \le -\epsilon \right\} \right| = 0.$$

$$(2.3)$$

Remark 2.2. Let us suppose that $st - \lim_k x_k = L$; (x_n) is $(EC)_n^1$ - statistically convergent and relation (2.1) satisfies, then for every t > 1, is valid the following relation:

$$st - \lim_{k} \frac{1}{2^{t_k} - 2^k} \sum_{j=k+1}^{t_k} {\binom{t_k}{j}} \frac{1}{j+1} \sum_{v=0}^{j} (x_v - x_k) = 0$$
(2.4)

and in case where 0 < t < 1,

$$st - \lim_{k} \frac{1}{2^{k} - 2^{t_{k}}} \sum_{j=t_{k}+1}^{k} \binom{k}{j} \frac{1}{j+1} \sum_{v=0}^{j} (x_{k} - x_{v}) = 0.$$
(2.5)

In what follows we will show some auxiliary lemmas which are needful in the sequel.

Lemma 2.3. Condition given by relation (2.1) is equivalent to this one:

$$st - \liminf_{n} \frac{2^n}{2^{t_n}} > 1, \quad 0 < t < 1.$$
 (2.6)

Proof: Let us suppose that relation (2.1) is valid, 0 < t < 1 and $m = t_n = [t \cdot n]$, $n \in \mathbb{N}$. Then it follows that

$$\frac{1}{t} > 1 \Rightarrow \frac{m}{t} = \frac{[t \cdot n]}{t} \le n,$$

from above relation we obtain:

$$\frac{2^n}{2^{t_n}} \ge \frac{2^{\left[\frac{m}{t}\right]}}{2^{t_n}} \Rightarrow st - \liminf_n \inf \frac{2^n}{2^{t_n}} \ge st - \liminf_n \frac{2^{\left[\frac{m}{t}\right]}}{2^{t_n}} > 1$$

Conversely, let use suppose that relation (2.6) is valid. Let t > 1 be given number and let t_1 be chosen such that $1 < t_1 < t$. Set $m = t_n = [t \cdot n]$. From $0 < \frac{1}{t} < \frac{1}{t_1} < 1$, it follows that:

$$n \le \frac{tn-1}{t_1} < \frac{[tn]}{t_1} = \frac{m}{t_1},$$

provided $t_1 \leq t - \frac{1}{n}$, which is a case where if n is large enough. Under this conditions we have:

$$\frac{2^{t_n}}{2^n} \ge \frac{2^{t_n}}{2^{\left\lceil \frac{m}{t_1} \right\rceil}} \Rightarrow st_\lambda - \liminf_n \frac{2^{t_n}}{2^n} \ge st_\lambda - \liminf_n \frac{2^{t_n}}{2^{\left\lceil \frac{m}{t_1} \right\rceil}} > 1.$$

Lemma 2.4. Let us suppose that relation (2.1) is satisfied and let $x = (x_k)$ be a sequence of complex numbers which is $(EC)_n^1$ -statistically convergent to L. Then for every t > 0,

$$st - \lim_{n} (EC)_{t_n}^1 = L.$$

Proof: (I) Let us consider that t > 1. Then

$$\lim_{n \to \infty} \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \frac{1}{k+1} \sum_{v=0}^k x_v = \lim_{n \to \infty} \frac{1}{2^{t_n}} \sum_{k=0}^{t_n} \binom{t_n}{k} \frac{1}{k+1} \sum_{v=0}^k x_v, \quad (2.7)$$

and for every $\epsilon > 0$ we have:

$$\{k \le 2^{t_n} : |(EC)_{t_n}^1 - L| \ge \epsilon\} \subset \{k \le 2^n : |(EC)_n^1 - L| \ge \epsilon\} \cup$$
$$\left\{k \le 2^n : \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \frac{1}{k+1} \sum_{v=0}^k x_v \ne \frac{1}{2^{t_n}} \sum_{k=0}^{t_n} \binom{t_n}{k} \frac{1}{k+1} \sum_{v=0}^k x_v\right\}.$$

Now proof of the lemma in this case follows from relation (2.2) and $st - \lim_{n} (EC)_{n}^{1} = L$.

(II) In this case we have that 0 < t < 1. For $t_n = [t \cdot n]$, for any natural number n, we can conclude that $(EC)_{t_n}^1$ does not appears more than $[1 + t^{-1}]$ times in the sequence $(EC)_n^1$. In fact if there exist integers k, l such that

$$n \le t \cdot k < t(k+1) < \dots < t(k+l-1) < n+1 \le t(k+l)$$

then

$$n + t(l - 1) \le t(k + l - 1) < n + 1 \Rightarrow l < 1 + \frac{1}{t}.$$

And we have this estimation

$$\begin{split} \frac{1}{2^n} \left| \left\{ k \le 2^n : |(EC)_{t_n}^1 - L| \ge \epsilon \right\} \right| \le \left(1 + \frac{1}{t} \right) \frac{1}{2^n} \left| \left\{ k \le 2^{t_n} : |(EC_n^1 - L| \ge \epsilon \right\} \right| \le \\ 2(1+t) \frac{1}{2^{t_n}} \left| \left\{ k \le 2^{t_n} : |(EC)_n^1 - L| \ge \epsilon \right\} \right|, \end{split}$$

provided $\frac{1}{2^n}(\frac{t+1}{t}) \leq 2(t+1)\frac{1}{2^{t_n}}$, which is the case where *n* is large enough. From last relation it follows: $st - \lim_n (EC)_{t_n}^1 = L$. \Box

Lemma 2.5. Let us suppose that relation (2.1) is satisfied and let $x = (x_k)$ be a sequence of complex numbers which is $(EC)_n^1$ -statistically convergent to L. Then for every t > 1,

$$st - \lim_{k} \frac{1}{2^{t_k} - 2^k} \sum_{j=k+1}^{t_k} {\binom{t_k}{j}} \frac{1}{j+1} \sum_{v=0}^j x_v = L;$$
(2.8)

and for every 0 < t < 1,

$$st - \lim_{k} \frac{1}{2^{k} - 2^{t_{k}}} \sum_{j=t_{k}+1}^{k} \binom{k}{j} \frac{1}{j+1} \sum_{v=0}^{j} x_{v} = L.$$
(2.9)

Proof: (I) Let us suppose that t > 1. After some calculations we obtain

$$(2^{t_n} - 2^n)^{-1} \sum_{j=n+1}^{t_n} {\binom{t_n}{j}} \frac{1}{j+1} \sum_{v=0}^j x_v = \frac{1}{2^n} \sum_{j=1}^n {\binom{n}{j}} \frac{1}{j+1} \sum_{v=0}^j x_v + \frac{2^{t_n}}{2^{t_n} - 2^n} \left(\frac{1}{2^{t_n}} \sum_{j=1}^{t_n} {\binom{t_n}{j}} \frac{1}{j+1} \sum_{v=0}^j x_v - \frac{1}{2^n} \sum_{j=1}^n {\binom{n}{j}} \frac{1}{j+1} \sum_{v=0}^j x_v \right).$$
(2.10)

From definition of the sequence (t_n) , we get

$$st - \lim_{n} \sup \frac{2^{t_n}}{2^{t_n} - 2^n} < \infty.$$
 (2.11)

Now relation (2.8) follows from relations (2.10), (2.11) and Lemma 2.4.

(II) Case where 0 < t < 1. In this case we have

$$(2^{n} - 2^{t_{n}})^{-1} \sum_{j=t_{n}+1}^{n} {\binom{n}{j}} \frac{1}{j+1} \sum_{v=0}^{j} x_{v} = \frac{1}{2^{n}} \sum_{j=1}^{n} {\binom{n}{j}} \frac{1}{j+1} \sum_{v=0}^{j} x_{v} + \frac{2^{t_{n}}}{2^{n} - 2^{t_{n}}} \left(\frac{1}{2^{n}} \sum_{j=1}^{n} {\binom{n}{j}} \frac{1}{j+1} \sum_{v=0}^{j} x_{v} - \frac{1}{2^{t_{n}}} \sum_{j=1}^{t_{n}} {\binom{t_{n}}{j}} \frac{1}{j+1} \sum_{v=0}^{j} x_{v}\right).$$
(2.12)

Following Lemma 2.4, relation (2.12) and the conclusions like as in the previous case we get that relation (2.8) is valid. \Box

In what follows we will prove the Theorem 2.1. **Proof of Theorem 2.1**

Proof: Necessity. Let us suppose that $st - \lim_k x_k = L$, and $st - \lim_k (EC)_k^1 = L$. For every t > 1 following Lemma 2.4 we get relation (2.2) and in case where 0 < t < 1, again applying Lemma 2.4 we obtain relation (2.3).

Sufficient: Assume that $st - \lim_n (EC)_n^1 = L$, and conditions (2.1), (2.2) and (2.3) are satisfied. In what follows we will prove that $st - \lim_n x_n = L$. Or equivalently, $st - \lim_n ((EC)_n^1 - x_n) = 0$.

First we consider the case where t > 1. We will start from this estimation

$$x_n - (EC)_n^1 = \frac{2^{t_n}}{2^{t_n} - 2^n} \left[\frac{1}{2^{t_n}} \sum_{j=0}^{t_n} {\binom{t_n}{j}} \frac{1}{j+1} \sum_{v=0}^j x_v - \frac{1}{2^n} \sum_{j=0}^n {\binom{n}{j}} \frac{1}{j+1} \sum_{v=0}^j x_v \right] - \frac{1}{2^{t_n} - 2^n} \sum_{j=n+1}^{t_n} {\binom{t_n}{j}} \frac{1}{j+1} \sum_{v=0}^j (x_v - x_n).$$

For any $\epsilon > 0$, we obtain:

$$\{k \le 2^n : x_k - (EC)_k^1 \ge \epsilon\} \subset \left\{k \le 2^n : \frac{2^{t_k}}{2^{t_k} - 2^k} ((EC)_{t_k}^1 - (EC)_k^1) \ge \frac{\epsilon}{2}\right\} \cup \left\{k \le 2^n : \frac{1}{2^{t_k} - 2^k} \sum_{j=k+1}^{t_k} \binom{t_k}{j} \frac{1}{j+1} \sum_{v=0}^j (x_v - x_k) \le -\frac{\epsilon}{2}\right\}.$$

From relation (2.2), it follows that for every $\gamma > 0$, exists a t > 1 such that

$$\lim_{n} \sup \frac{1}{2^{n}} \left| \left\{ k \le 2^{n} : \frac{1}{2^{t_{k}} - 2^{k}} \sum_{j=k+1}^{t_{k}} {\binom{t_{k}}{j}} \frac{1}{j+1} \sum_{v=0}^{j} (x_{v} - x_{k}) \le -\epsilon \right\} \right| \le \gamma.$$

By Lemma 2.4 and relation (2.11) we get

$$\lim_{n} \sup \frac{1}{2^{n}} \left| \left\{ k \le 2^{n} : |2^{t_{k}} (2^{t_{k}} - 2^{k})^{-1} ((EC)^{1}_{t_{k}} - (EC)^{1}_{k})| \ge \frac{\epsilon}{2} \right\} \right| = 0$$

Combining last three relations we have:

$$\lim_{n} \sup \frac{1}{2^{n}} \left| \left\{ k \le 2^{n} : x_{k} - (EC)_{k}^{1} \ge \epsilon \right\} \right| \le \gamma,$$

and γ is arbitrary, we conclude that for every $\epsilon > 0$,

$$\lim_{n} \sup \frac{1}{2^{n}} \left| \left\{ k \le 2^{n} : x_{k} - (EC)_{k}^{1} \ge \epsilon \right\} \right| = 0.$$
(2.13)

Now we consider case where 0 < t < 1. From above we get that:

$$x_n - (EC)_n^1 = \frac{2^{t_n}}{2^n - 2^{t_n}} \left[\frac{1}{2^n} \sum_{j=0}^n \binom{n}{j} \frac{1}{j+1} \sum_{v=0}^j x_v - \frac{1}{2^{t_n}} \sum_{j=0}^{t_n} \binom{t_n}{j} \frac{1}{j+1} \sum_{v=0}^j x_v \right] + \frac{1}{2^n - 2^{t_n}} \sum_{j=t_n+1}^n \binom{n}{j} \frac{1}{j+1} \sum_{v=0}^j (x_n - x_v).$$

For any $\epsilon > 0$,

$$\{k \le 2^n : x_k - (EC)_k^1 \ge \epsilon\} \subset \left\{k \le 2^n : \frac{2^{t_k}}{2^k - 2^{t_k}}((EC)_k^1 - (EC)_{t_k}^1) \ge \frac{\epsilon}{2}\right\} \cup \left\{k \le 2^n : \frac{1}{2^k - 2^{t_k}} \sum_{j=t_k+1}^k \binom{k}{j} \frac{1}{j+1} \sum_{v=0}^j (x_k - x_v) \le -\frac{\epsilon}{2}\right\}.$$

For same reasons as in the case where t > 1, by Lemma 2.4, we have that for every $\epsilon > 0$,

$$\limsup_{n} \frac{1}{2^{n}} \left| \left\{ k \le 2^{n} : x_{k} - (EC)_{k}^{1} \le -\epsilon \right\} \right| = 0.$$
(2.14)

Finally from relations (2.13) and (2.14) we get:

$$\limsup_{n} \frac{1}{2^{n}} \left| \left\{ k \le 2^{n} : |x_{n} - (EC)_{n}^{1}| \ge \epsilon \right\} \right| = 0.$$

In the next result we will consider the case where $x = (x_n)$ is a sequence of complex numbers.

Theorem 2.6. Let us suppose that relation (2.1) is satisfied. And (x_n) be a sequence of complex numbers, which is $(EC)_n^1$ – statistically convergent to L. Then (x_n) is st – convergent to the same number L if and only if the following two conditions holds:

$$\inf_{t>1} \limsup_{n} \sup_{n} \frac{1}{2^{n}} \left| \left\{ k \le 2^{n} : \left| \frac{1}{2^{t_{k}} - 2^{k}} \sum_{j=k+1}^{t_{k}} {t_{k} \choose j} \frac{1}{j+1} \sum_{v=0}^{j} (x_{v} - x_{k}) \right| \ge \epsilon \right\} \right| = 0$$
(2.15)

and

$$\inf_{0 < t < 1} \limsup_{n} \frac{1}{2^{n}} \left| \left\{ k \le 2^{n} : \left| \frac{1}{2^{k} - 2^{t_{k}}} \sum_{j=t_{k}+1}^{k} \binom{k}{j} \frac{1}{j+1} \sum_{v=0}^{j} (x_{k} - x_{v}) \right| \ge \epsilon \right\} \right| = 0.$$

$$(2.16)$$

Remark 2.7. Let us suppose that $st - \lim_k x_k = L$, $st - \lim_k (EC)_k^1 = L$ and relation (2.1) satisfies. Then for every t > 1, relation (2.4) holds, and in case where 0 < t < 1, relation (2.5) is valid.

Proof of Theorem 2.6. We omit it, because it is similar to the Theorem 2.1.

References

- N.L. Braha, Tauberian conditions under which λ-statistical convergence follows from statistical summability (V, λ), Miskolc Math. Notes 16 (2015), no. 2, 695-703.
- N.L. Braha, Tauberian Theorems under Nörlund-Cesáro summability methods (357-411), Current Topics in Summability Theory and Applications, editors, Hemen Dutta and Billy E. Rhoades, Springer, 2016.
- 3. N.L. Braha, *Tauberian theorems under statistically Nörlund-Cesáro summability method*, to appear in JMI(Ele math Croatia).
- 4. O.H.H. Edely and M. Mursaleen, *Tauberian theorems for statistically convergent double sequences*, Information Sciences 176 (2006) 875-886.
- 5. H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241-244.
- F. Moricz, Tauberian conditions under which statistical convergence follows from statistical summability (C, 1), Jour. Math. Anal. Appl. 275 (2002) 277-287.
- F. Moricz and C. Orhan, Tauberian conditions under which statistical convergence follows from statistical summability by weighted means, Studia Sci. Math. Hungar. 41 (2004), no. 4, 391-403.
- 8. H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73-74.
- Totur, Umit and Çanak, Ibrahim, Some general Tauberian conditions for the weighted mean summability method, Comput. Math. Appl. 63 (2012), no. 5, 999-1006.

Naim L. Braha, Department of Computer Sciences and Applied Mathematics, College Vizioni per Arsim Rruga "Ahmet Kaciku", No=3, Ferizaj, 70000, Kosova E-mail address: nbraha@yahoo.com

and

Ismet Temaj, University of Prizren, Faculty of Education Rruga "Rruga e shkronjave" No. 1, 20000 Prizren, Kosova E-mail address: itemaj63@yahoo.com