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Tauberian Conditions Under Which Statistical Convergence Follows

From Statistical Summability (EC)1n

Naim L. Braha and Ismet Temaj

abstract: Let (xk), for k ∈ N ∪ {0} be a sequence of real or complex numbers

and set (EC)1n = 1

2n

∑n
j=0

(

n

j

)

1

j+1

∑j
v=0

xv, n ∈ N∪{0}. We present necessary and

sufficient conditions, under which st− lim xk = L follows from st− lim (EC)1n = L,

where L is a finite number. If (xk) is a sequence of real numbers, then these are
one-sided Tauberian conditions. If (xk) is a sequence of complex numbers, then
these are two-sided Tauberian conditions.

Key Words: Statistical Convergence; (EC)1n− Summability; (EC)1n− Statis-
tically Convergent; One-sided and two-sided Tauberian Conditions.
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1. Introduction and preliminaries

We shall denote by N the set of all natural numbers. Let K ∈ N and Kn =

{k ≤ n : k ∈ K}. Then the natural density of K is defined by d(K) = limn→∞
|Kn|
n

if the limit exists, where the vertical bars indicate the number of elements in the
enclosed set. The sequence x = (xk) is said to be statistically convergent to L if
for every ǫ > 0, the set Kǫ = {k ∈ N : |xk − L| ≥ ǫ} has natural density zero ( [5],
[8])i.e. for each ǫ > 0,

lim
n→∞

1

n
|{k ≤ n : |xk − L| ≥ ǫ}| = 0.

In this case, we write L = st− lim xn. Note that every convergent sequence is
statistically convergent but not conversely.

Let us define the (EC)1n− summability method as follows:

(EC)1n =
1

2n

n
∑

k=0

(

n

k

)

C1
k ,

where C1
k denotes the Cesaro summability method. The summability method

(EC)1n is a regular.

2010 Mathematics Subject Classification: 40E05, 40G05.

Submitted June 15, 2016. Published May 04, 2017

9
Typeset by B

S
P
M

style.
c© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.v37i4.32297


10 N. L. Braha and Ismet Temaj

We say that the series
∑∞

n=1 xn is (EC)1n− summable to L if

lim
n

1

2n

n
∑

k=0

(

n

k

)

1

k + 1

k
∑

v=0

xv = L.

Definition 1.1. A sequence (xn) is weighted (EC)1n−statistically convergent to L

if for every ǫ > 0,

lim
n→∞

1

2n

∣

∣

∣

∣

∣

{

k ≤ 2n :

∣

∣

∣

∣

∣

1

2n

n
∑

k=0

(

n

k

)

1

k + 1

k
∑

v=0

xv − L

∣

∣

∣

∣

∣

≥ ǫ

}∣

∣

∣

∣

∣

= 0.

Theorem 1.2. If sequence x = (xn) is (EC)1n summable to L, then sequence
x = (xn) is (EC)1n− statistically convergent to L. But not conversely.

Proof: The first part of the proof is obvious. To prove the second part we will
show this example:
Example We will define

xk =

{ √
2k , for k = 2n

0 , otherwise

Under this conditions we get:

1

2n

∣

∣

∣

∣

∣

{

k ≤ 2n :

∣

∣

∣

∣

∣

1

2n

n
∑

k=0

(

n

k

)

1

k + 1

k
∑

v=0

xv − 0

∣

∣

∣

∣

∣

≥ ǫ

}∣

∣

∣

∣

∣

≤
√
2n

2n
→ 0.

On the other hand, if we assume that k = 2n, then we obtain:

1

2n

n
∑

k=0

(

n

k

)

1

k + 1

k
∑

v=0

xv → ∞ as n → ∞.

From last relation follows that x = (xn) is not (EC)1n summable to 0. ✷

Theorem 1.3. Let us suppose that sequence (xn)-statistically convergent to L, and
|xn−L| ≤ M for every n ∈ N. Then it converges (EC)1n-statistically to L. Converse
is not true.

Proof: From fact that (xn) converges statistically to L, we get

lim
n→∞

|{k ≤ n : |xk − L| ≥ ǫ}|
n

= 0.

Let us denote by Bǫ = {k ≤ n : |xk − L| ≥ ǫ} and Bǫ = {k ≤ n : |xk − L| ≤ ǫ}.
Then

∣

∣

∣

∣

∣

1

2n

n
∑

k=0

(

n

k

)

1

k + 1

k
∑

v=0

xv − L

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

2n

n
∑

k=0

(

n

k

)

1

k + 1

k
∑

v=0

(xv − L)

∣

∣

∣

∣

∣

≤
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1

2n

n
∑

k=0
k∈Bǫ

(

n

k

)

1

k + 1

k
∑

v=0

|xv − L|+ 1

2n

n
∑

k=0
k∈Bǫ

(

n

k

)

1

k + 1

k
∑

v=0

|xv − L| ≤

≤ M |Bǫ|
1

2n

n
∑

k=0

(

n

k

)

1

k + 1
+ ǫ|Bǫ|

1

2n

n
∑

k=0

(

n

k

)

1

k + 1
≤

M |Bǫ|
2n+1 − 1

2n(n+ 1)
+ ǫ|Bǫ|

2n+1 − 1

2n(n+ 1)
→ 0 + ǫ, as n → ∞.

To show that converse is not true we will use into consideration this

Example Let us consider the following sequence x = (xn), which is defined as
follows:

xk =







1 , for k = m2 −m, · · · ,m2 − 1
− 1

m
, for k = m2,m = 2, · · ·

0 , otherwise

Under this conditions, after some calculations we get:

1

2n

n
∑

k=0

(

n

k

)

1

k + 1

k
∑

v=0

xv ≤ 1

2n

n
∑

k=0

(

n

k

)

k

k + 1
− 1

2n

n
∑

k=0

(

n

k

)

(

1 + 1
2 + · · ·+ 1

k

)

k + 1
=

1

2n

n
∑

k=0

(

n

k

)

k

k + 1
− 1

2n

n
∑

k=0

(

n

k

)

ln k + C

k + 1
,

where C− is Euler constant,

≤ 1

2n

n
∑

k=0

(

n

k

)

k

k + 1
− 1

2n

n
∑

k=0

(

n

k

)

1

k + 1
· k − 1

k
− C(2n+1 − 1)

2n(n+ 1)
≤

1

2n

n
∑

k=0

(

n

k

)

1

k + 1
− C(2n+1 − 1)

2n(n+ 1)
→ 0, as n → ∞,

for every k. From last relation follows that x = (xn) is (EC)1n summable to 0.
Hence from Theorem 1.3, (xn) is (EC)1n− statistically convergent. On the other
hand, the sequence (m2;m = 2, 3 · · · , ) has natural density zero and it is clear
that st − lim infn xn = 0 and st − lim supn xn = 1. Thus, (xk) is not statistically
convergent.

✷

The theory of Tauberian theorems was investigated intensively from many au-
thors(see [1,2,3], [6,7], [9], [4]). In this paper our aim is to find conditions (so-called
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Tauberian) under which the converse implication holds, in Theorem 1.3, for defined
convergence. Exactly, we will prove under which conditions statistical convergence
st− limxn, follows from (EC)1n-statistically convergence. This method generalized
method given in [6].

2. Main results

Theorem 2.1. If

st− lim
n

inf
2tn

2n
> 1, t > 1 (2.1)

where tn, denotes the integral parts of the [tn] for every n ∈ N, and let (xk) be a
sequence of real numbers which converges to L, (EC)1n− statistically. Then (xk) is
st− convergent to the same number L if and only if the following two conditions
holds:

inf
t>1

lim
n

sup
1

2n

∣

∣

∣

∣

∣

∣







k ≤ 2n :
1

2tk − 2k

tk
∑

j=k+1

(

tk

j

)

1

j + 1

j
∑

v=0

(xv − xk) ≤ −ǫ







∣

∣

∣

∣

∣

∣

= 0

(2.2)
and

inf
0<t<1

lim
n

sup
1

2n

∣

∣

∣

∣

∣

∣







k ≤ 2n :
1

2k − 2tk

k
∑

j=tk+1

(

k

j

)

1

j + 1

j
∑

v=0

(xk − xv) ≤ −ǫ







∣

∣

∣

∣

∣

∣

= 0.

(2.3)

Remark 2.2. Let us suppose that st− limk xk = L; (xn) is (EC)1n− statistically
convergent and relation (2.1) satisfies, then for every t > 1, is valid the following
relation:

st− lim
k

1

2tk − 2k

tk
∑

j=k+1

(

tk

j

)

1

j + 1

j
∑

v=0

(xv − xk) = 0 (2.4)

and in case where 0 < t < 1,

st− lim
k

1

2k − 2tk

k
∑

j=tk+1

(

k

j

)

1

j + 1

j
∑

v=0

(xk − xv) = 0. (2.5)

In what follows we will show some auxiliary lemmas which are needful in the
sequel.

Lemma 2.3. Condition given by relation (2.1) is equivalent to this one:

st− lim
n

inf
2n

2tn
> 1, 0 < t < 1. (2.6)

Proof: Let us suppose that relation (2.1) is valid, 0 < t < 1 and m = tn = [t · n],
n ∈ N. Then it follows that

1

t
> 1 ⇒ m

t
=

[t · n]
t

≤ n,
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from above relation we obtain:

2n

2tn
≥ 2[

m

t ]

2tn
⇒ st− lim

n
inf

2n

2tn
≥ st− lim

n
inf

2[
m

t ]

2tn
> 1.

Conversely, let use suppose that relation (2.6) is valid. Let t > 1 be given number
and let t1 be chosen such that 1 < t1 < t. Set m = tn = [t·n]. From 0 < 1

t
< 1

t1
< 1,

it follows that:

n ≤ tn− 1

t1
<

[tn]

t1
=

m

t1
,

provided t1 ≤ t− 1
n
, which is a case where if n is large enough. Under this conditions

we have:

2tn

2n
≥ 2tn

2

[

m

t1

] ⇒ stλ − lim
n

inf
2tn

2n
≥ stλ − lim

n
inf

2tn

2

[

m

t1

] > 1.

✷

Lemma 2.4. Let us suppose that relation (2.1) is satisfied and let x = (xk) be a
sequence of complex numbers which is (EC)1n−statistically convergent to L. Then
for every t > 0,

st− lim
n

(EC)1tn = L.

Proof: (I) Let us consider that t > 1. Then

lim
n→∞

1

2n

n
∑

k=0

(

n

k

)

1

k + 1

k
∑

v=0

xv = lim
n→∞

1

2tn

tn
∑

k=0

(

tn

k

)

1

k + 1

k
∑

v=0

xv, (2.7)

and for every ǫ > 0 we have:

{k ≤ 2tn : |(EC)1tn − L| ≥ ǫ} ⊂ {k ≤ 2n : |(EC)1n − L| ≥ ǫ}∪
{

k ≤ 2n :
1

2n

n
∑

k=0

(

n

k

)

1

k + 1

k
∑

v=0

xv 6= 1

2tn

tn
∑

k=0

(

tn

k

)

1

k + 1

k
∑

v=0

xv

}

.

Now proof of the lemma in this case follows from relation (2.2) and st−limn (EC)1n =
L.

(II) In this case we have that 0 < t < 1. For tn = [t · n], for any natural number
n, we can conclude that (EC)1tn does not appears more than [1 + t−1] times in the
sequence (EC)1n. In fact if there exist integers k, l such that

n ≤ t · k < t(k + 1) < · · · < t(k + l − 1) < n+ 1 ≤ t(k + l),

then

n+ t(l − 1) ≤ t(k + l− 1) < n+ 1 ⇒ l < 1 +
1

t
.
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And we have this estimation

1

2n
∣

∣

{

k ≤ 2n : |(EC)1tn − L| ≥ ǫ
}∣

∣ ≤
(

1 +
1

t

)

1

2n
∣

∣

{

k ≤ 2tn : |(EC1
n − L| ≥ ǫ

}∣

∣ ≤

2(1 + t)
1

2tn

∣

∣

{

k ≤ 2tn : |(EC)1n − L| ≥ ǫ
}∣

∣ ,

provided 1
2n (

t+1
t
) ≤ 2(t+ 1) 1

2tn , which is the case where n is large enough. From
last relation it follows: st− limn (EC)1tn = L. ✷

Lemma 2.5. Let us suppose that relation (2.1) is satisfied and let x = (xk) be a
sequence of complex numbers which is (EC)1n−statistically convergent to L. Then
for every t > 1,

st− lim
k

1

2tk − 2k

tk
∑

j=k+1

(

tk

j

)

1

j + 1

j
∑

v=0

xv = L; (2.8)

and for every 0 < t < 1,

st− lim
k

1

2k − 2tk

k
∑

j=tk+1

(

k

j

)

1

j + 1

j
∑

v=0

xv = L. (2.9)

Proof: (I) Let us suppose that t > 1. After some calculations we obtain

(2tn − 2n)−1
tn
∑

j=n+1

(

tn

j

)

1

j + 1

j
∑

v=0

xv =
1

2n

n
∑

j=1

(

n

j

)

1

j + 1

j
∑

v=0

xv+

2tn

2tn − 2n





1

2tn

tn
∑

j=1

(

tn

j

)

1

j + 1

j
∑

v=0

xv −
1

2n

n
∑

j=1

(

n

j

)

1

j + 1

j
∑

v=0

xv



 . (2.10)

From definition of the sequence (tn), we get

st− lim
n

sup
2tn

2tn − 2n
< ∞. (2.11)

Now relation (2.8) follows from relations (2.10), (2.11) and Lemma 2.4.
(II) Case where 0 < t < 1. In this case we have

(2n − 2tn)−1
n
∑

j=tn+1

(

n

j

)

1

j + 1

j
∑

v=0

xv =
1

2n

n
∑

j=1

(

n

j

)

1

j + 1

j
∑

v=0

xv+

2tn

2n − 2tn





1

2n

n
∑

j=1

(

n

j

)

1

j + 1

j
∑

v=0

xv −
1

2tn

tn
∑

j=1

(

tn

j

)

1

j + 1

j
∑

v=0

xv



 . (2.12)



Statistical Convergence Follows From Statistical Summability 15

Following Lemma 2.4, relation (2.12) and the conclusions like as in the previous
case we get that relation (2.8) is valid. ✷

In what follows we will prove the Theorem 2.1.
Proof of Theorem 2.1

Proof: Necessity. Let us suppose that st− limk xk = L, and st− limk (EC)1k = L.

For every t > 1 following Lemma 2.4 we get relation (2.2) and in case where
0 < t < 1, again applying Lemma 2.4 we obtain relation (2.3).

Sufficient: Assume that st − limn (EC)1n = L, and conditions (2.1), (2.2) and
(2.3) are satisfied. In what follows we will prove that st− limn xn = L. Or equiva-
lently, st− limn ((EC)1n − xn) = 0.
First we consider the case where t > 1. We will start from this estimation

xn − (EC)1n =
2tn

2tn − 2n





1

2tn

tn
∑

j=0

(

tn

j

)

1

j + 1

j
∑

v=0

xv −
1

2n

n
∑

j=0

(

n

j

)

1

j + 1

j
∑

v=0

xv



−

1

2tn − 2n

tn
∑

j=n+1

(

tn

j

)

1

j + 1

j
∑

v=0

(xv − xn).

For any ǫ > 0, we obtain:

{k ≤ 2n : xk − (EC)1k ≥ ǫ} ⊂
{

k ≤ 2n :
2tk

2tk − 2k
((EC)1tk − (EC)1k) ≥

ǫ

2

}

∪







k ≤ 2n :
1

2tk − 2k

tk
∑

j=k+1

(

tk

j

)

1

j + 1

j
∑

v=0

(xv − xk) ≤ − ǫ

2







.

From relation (2.2), it follows that for every γ > 0, exists a t > 1 such that

lim
n

sup
1

2n

∣

∣

∣

∣

∣

∣







k ≤ 2n :
1

2tk − 2k

tk
∑

j=k+1

(

tk

j

)

1

j + 1

j
∑

v=0

(xv − xk) ≤ −ǫ







∣

∣

∣

∣

∣

∣

≤ γ.

By Lemma 2.4 and relation (2.11) we get

lim
n

sup
1

2n

∣

∣

∣

{

k ≤ 2n : |2tk(2tk − 2k)−1((EC)1tk − (EC)1k)| ≥
ǫ

2

}∣

∣

∣ = 0.

Combining last three relations we have:

lim
n

sup
1

2n
∣

∣

{

k ≤ 2n : xk − (EC)1k ≥ ǫ
}∣

∣ ≤ γ,

and γ is arbitrary, we conclude that for every ǫ > 0,
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lim
n

sup
1

2n

∣

∣

{

k ≤ 2n : xk − (EC)1k ≥ ǫ
}∣

∣ = 0. (2.13)

Now we consider case where 0 < t < 1. From above we get that:

xn − (EC)1n =
2tn

2n − 2tn





1

2n

n
∑

j=0

(

n

j

)

1

j + 1

j
∑

v=0

xv −
1

2tn

tn
∑

j=0

(

tn

j

)

1

j + 1

j
∑

v=0

xv



+

1

2n − 2tn

n
∑

j=tn+1

(

n

j

)

1

j + 1

j
∑

v=0

(xn − xv).

For any ǫ > 0,

{k ≤ 2n : xk − (EC)1k ≥ ǫ} ⊂
{

k ≤ 2n :
2tk

2k − 2tk
((EC)1k − (EC)1tk ) ≥

ǫ

2

}

∪






k ≤ 2n :
1

2k − 2tk

k
∑

j=tk+1

(

k

j

)

1

j + 1

j
∑

v=0

(xk − xv) ≤ − ǫ

2







.

For same reasons as in the case where t > 1, by Lemma 2.4, we have that for
every ǫ > 0,

lim sup
n

1

2n
∣

∣

{

k ≤ 2n : xk − (EC)1k ≤ −ǫ
}∣

∣ = 0. (2.14)

Finally from relations (2.13) and (2.14) we get:

lim sup
n

1

2n

∣

∣

{

k ≤ 2n : |xn − (EC)1n| ≥ ǫ
}∣

∣ = 0.

✷

In the next result we will consider the case where x = (xn) is a sequence of
complex numbers.

Theorem 2.6. Let us suppose that relation (2.1) is satisfied. And (xn) be a se-
quence of complex numbers, which is (EC)1n− statistically convergent to L. Then
(xn) is st− convergent to the same number L if and only if the following two con-
ditions holds:

inf
t>1

lim
n

sup
1

2n

∣

∣

∣

∣

∣

∣







k ≤ 2n :

∣

∣

∣

∣

∣

∣

1

2tk − 2k

tk
∑

j=k+1

(

tk

j

)

1

j + 1

j
∑

v=0

(xv − xk)

∣

∣

∣

∣

∣

∣

≥ ǫ







∣

∣

∣

∣

∣

∣

= 0

(2.15)
and

inf
0<t<1

lim
n

sup
1

2n

∣

∣

∣

∣

∣

∣







k ≤ 2n :

∣

∣

∣

∣

∣

∣

1

2k − 2tk

k
∑

j=tk+1

(

k

j

)

1

j + 1

j
∑

v=0

(xk − xv)

∣

∣

∣

∣

∣

∣

≥ ǫ







∣

∣

∣

∣

∣

∣

= 0.

(2.16)
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Remark 2.7. Let us suppose that st − limk xk = L, st − limk (EC)1k = L and
relation (2.1) satisfies. Then for every t > 1, relation (2.4) holds, and in case
where 0 < t < 1, relation (2.5) is valid.

Proof of Theorem 2.6. We omit it, because it is similar to the Theorem 2.1.
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