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Cryptography Based on the Matrices

M. Zeriouh, A. Chillali and A. Boua

abstract: In this work we introduce a new method of cryptography based on the
matrices over a finite field Fq, were q is a power of a prime number p. The first time

we construct the matrix M =

(

A1 A2

0 A3

)

were A1, A2 and A3 are matrices of

order n with coefficients in Fq and 0 is the zero matrix of order n. We prove that

M l =

(

Al
1

(A2)l
0 Al

3

)

were (A2)l =
l−1
∑

k=0

Al−1−k
1

A2A
k
3
for all l ∈ N∗. After we will

make a cryptographic scheme between the two traditional entities Alice and Bob.
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1. Introduction

Cryptography, the science of encrypting and deciphering messages written in
secret codes, has played a vital role in securing information since ancient times. In
classical cryptography, the Hill cipher is a polygraphic substitution cipher based
on linear algebra. Invented by Lester S. Hill in 1929 (see [4] and [5]), it was the
first polygraphic cipher in which it was practical (though barely) to operate on
more than three symbols at once. The following discussion assumes an elementary
knowledge of matrices, not to mention cryptography based on elliptic curves, for
more details see the following references [1], [2] and [3]. The article entitled-
Encryption Schemes based on Hadamard Matrices with Circulant Cores-Christos
Koukouvinos and Dimitris E. Simos propose in [6] two encryption schemes based
on Hadamard matrices with one and two circulant cores. This article describes
an activity built around one of the techniques that illustrates an application of
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matrices.
A cipher’s strength is determined by the computational power needed to break it.
The computational complexity of an algorithm is measured by two variables: T

for time complexity which specifies how the running time depends on the size of
the input, and S for space complexity or memory requirement. Both T and S are
commonly expressed as functions of n, when n is the size of the input. Generally,
the computational complexity of an algorithm is expressed in what is called ” big
O ” notation; the order of magnitude of the computational complexity. We use
O-notation to give an upper bound on a function, to within a constant factor [7].
O-notation For a given function g(n) we denote by O(g(n)) the set of functions

O(g(n)) =
{

f(n)|∃ constants c, n0 ≥ 0 such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0

}

.

We give a necessary brief definition for an encryption scheme.

Definition 1.1. [8] An encryption scheme consists of three sets: a key set K, a

message set M , and a ciphertext set C together with the following three algorithms.

(i) A key generation algorithm, which outputs a valid encryption key k ∈ K and a

valid decryption key k−1 ∈ K.

(ii) An encryption algorithm, which takes an element m ∈ M and an encryption

key k ∈ K and outputs an element c ∈ C defined as c = Ek(m).

(iii) A decryption function, which takes an element c ∈ C and a decryption key

k−1 ∈ K and outputs an element m ∈ M defined as m = Dk−1(c). We

require that Dk−1(Ek(m)) = m.

2. The matrices MB(X,Y )

In this section, we present the theoretical concept for our encryption scheme by

using the Block matrix MB(X,Y ) in the following form: MB(X,Y ) =

(

X B

0 Y

)

where B,X, Y are three square matrices of same order.

Lemma 2.1. Let MB(X,Y ) =

(

X B

0 Y

)

where B,X, Y are three square ma-

trices of same order. Then (MB(X,Y ))l =

(

X l Bl

0 Y l

)

for all l ∈ N
∗ with

Bl =
l−1
∑

k=0

X l−1−kBY k.

Proof. It is obvious that

(MB(X,Y ))1 =

(

X1 B1

0 Y 1

)

=

(

X B

0 Y

)

= MB(X,Y ),
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then our Lemma is true for l = 1.

We assume the recurrence hypothesis: (MB(X,Y ))l =

(

X l Bl

0 Y l

)

, for certain l,

and we prove that:

(MB(X,Y ))l+1 =

(

X l+1 Bl+1

0 Y l+1

)

were Bl+1 =
l
∑

k=0

X l−kBY k .

We have

(MB(X,Y ))l+1 = (MB(X,Y ))l.MB(X,Y )

=





X l
l−1
∑

k=0

X l−1−kBY k

0 Y l



 .

(

X B

0 Y

)

=





X l+1 X lB + (
l−1
∑

k=0

X l−1−kBY k)Y

0 Y l+1





=





X l+1 X lBY 0 +
l−1
∑

k=0

X l−(k+1)BY k+1

0 Y l+1





=





X l+1
l
∑

k=0

X l−kBY k

0 Y l+1



 .

Thus the relation is true for l+1. The principe of recurrence allows to conclude.✷

Notation 1. Let m,n ∈ N
∗. We denote:

(i) (MB(X,Y ))m =

(

Xm Mm(X,Y )
0 Y m

)

where Mm(X,Y ) =
m−1
∑

k=0

Xm−1−kBY k

(ii)

(

A Mm(X,Y )
0 C

)n

=

(

An Mm,n

0 Cn

)

where A and C are two matrices of

order equal to X and Y .

(iii)

(

X Mn(A,C)
0 Y

)m

=

(

Xm Mn,m

0 Y m

)

Theorem 2.2. Let A,B,C,X, Y be a square matrices of same order. If AX = XA

and CY = Y C, then Mm,n = Mn,m.
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Proof. we have :

Mm,n =

n−1
∑

l=0

An−1−lMm(X,Y )Cl

=

n−1
∑

l=0

An−1−l(

m−1
∑

k=0

Xm−1−kBY k)Cl

=

n−1
∑

l=0

m−1
∑

k=0

An−1−lXm−1−kBY kCl

and

Mn,m =

m−1
∑

k=0

Xm−1−kMn(A,C)Y k

=

m−1
∑

k=0

Xm−1−k(

n−1
∑

l=0

An−1−lBCl)Y k

=

m−1
∑

k=0

n−1
∑

l=0

Xm−1−kAn−1−lBClY k.

If AX = XA and CY = Y C, then Mm,n = Mn,m.

3. Encryption Schemes using Matrices

We will be divide this section into five sub-sections; by constructing an en-
cryption scheme using the matrix MB(X,Y ). The first is devoted to the exchange
of keys between the traditional entities Alice and Bob based on the constructed
matrices, in the second we prove the security of this protocol, in the third and
fourth sub-section we construct a cryptosystem based on matrices and which is
homomorphic, we end with a numerical example whose calculations are done by
the Maple software.

3.1. Key exchange protocol

Alice and Bob agree on public prime number p and B is a square matrix with
coefficients in the finite field Fq, were q is a power of p. Alice choose a private
keys: l ∈ N

∗, the matrix A ∈ M(Fq) and publish the set EA determined by the
matrices of same order than A which between them do all commute such that the
zero-matrix and the unit matrix are not in EA. In turn, Bob choose a private keys:
k ∈ N

∗, the matrix Y ∈ M(Fq) and publish the set EY determined by the matrices
of same order than Y which between them do all commute such that the zero-matrix
and the unit matrix are not in EY . Alice choose an other private key: C ∈ EY .

She calculated a matrix (MB(A,C))l and send Ml(A,C) to Bob. Similarly, Bob
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choose an other private key: X ∈ EA. He calculated a matrix (MB(X,Y ))k and
send Mk(X,Y ) to Alice. With their private keys l and k, Alice and Bob calculate
separately the matrices: Mk,l, Ml,k.
According to the theorem 2.2, we have: Mk,l = Ml,k.

Corollary 3.1. The secret key of Alice and Bob is the matrix K = Mk,l.

3.2. Security of this protocol

The set EA and the matrix B are public. If another person wants to compute

the secret key K, it must solve the following equation:
l−1
∑

i=0

Al−1−iBCi = Ml(A,C)

whose unknowns the matrices A,C and the natural number l.

Proposition 3.2. If B be a matrix of order n, then the complexity to calculate the

key K is O(nlk).

Proof. The encryption scheme using a matrix B of order n, will use a key K of size
O(n), as described previously in section 2. Since

K = Mk,l =

k−1
∑

i=0

l−1
∑

j=0

Al−1−jXk−1−iBY iCj

, we have the complexity to calculate the key K is O(nlk). ✷

3.3. Encryption of message

Let K be a secret key exchanged by Alice and Bob. If K is not invertible or
equal unit matrix, then we return to the key exchange protocol. Else let m is the
message that Alice wants to send to Bob, m is the matrix of the same order as K.
The encryption message

c = eK(m) = K.m.K−1.

Lemma 3.3. Let m1,m2 be two messages and for all invertible key not equal to

unit matrix; K, we have:

eK(m1 +m2) = eK(m1) + eK(m2)

eK(m1.m2) = eK(m1).eK(m2)

Proof. We have:

eK(m1 +m2) = K.(m1 +m2).K
−1

= (K.m1 +K.m2).K
−1

= K.m1.K
−1 +K.m2.K

−1

= eK(m1) + eK(m2)
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and

eK(m1.m2) = K.(m1.m2).K
−1

= K.m1.K
−1.K.m2.K

−1

= eK(m1).eK(m2).

✷

Remark 3.1. This encryption message is Homomorphic encryption that allows
computations to be carried out on ciphertext, thus generating an encrypted
result which, when decrypted, matches the result of operations performed on
the plaintext.

3.4. Decryption of message

When Bob receives the encrypted message c sent by Alice, it uses a decryption
function to decrypt it. This function noted dK is defined as follows: dK(c) =
K−1.c.K.

Lemma 3.4. For all message m, we have dK ◦ eK(m) = m.

Proof. We have:

dK ◦ eK(m) = dK(eK(m))

= K−1.eK(m).K

= K−1.K.m.K−1.K

= m

✷

Remark 3.2. The security of this homomorphic Cryptosystem is based on the
difficulty in computing the key K.

3.5. Numerical example

Alice and Bob agree on public prime number p = q, where

p = 54345555556767755334597545638976543289897656443117665344376289471

and the matrix

B =

(

b11 b12
b21 b22

)

,
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where

b11 =54345555556767755334597545638976543289897656443117665344376289378

b12 =54345555556767755334597545638976543289897656443117665344376289399

b21 =54345555556767755334597545638976543289897656443117665344376289395

b22 =54345555556767755334597545638976543289897656443117665344376289469.

Alice choose a private keys: l = 320, the matrix

A =

(

a11 a12
a21 a22

)

,

where

a11 =735965962629

a12 =245321987543

a21 =490643975086

a22 =54345555556767755334597545638976543289897656443117665099054301928.

and publish the set EA. In turn, Bob choose a private keys: k = 132, the matrix

Y =

(

y11 y12
y21 y22

)

,

where

y11 =54345555556767755334597545638976543289897656443112758904623202385

y12 =7359659629630629

y21 =12266099382717715

y22 =54345555556767755334597545638976543289897656443115212124499745928.

and publish the set EY .
Alice choose an other private key:

C =

(

c11 c12
c21 c22

)

,

where

c11 =54345555556767755334597545638976543289897656443117660437937202919

c12 =7359658629828

c21 =12266097716380

c22 =54345555556767755334597545638976543289897656443117662891156746195.
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She calculated a matrix (MB(A,C))l and send

Ml(A,C) =

(

m11 m12

m21 m22

)

, where

m11 =38458229401940433130433299257935435081071284227784725316550879420

m12 =5607737241834621948490319564278994056090145312368157532981529317

m21 =32081644898186246581453115034520319410783016028999427719294969963

m22 =4474690811612495570698811443675179014910841443069512843907075984,

to Bob. Similarly, Bob choose an other private key:

X =

(

2832139913519 688898897883
1377797795766 76544321987

)

.

He calculated a matrix (MB(X,Y ))k and send

Mk(X,Y )

(

n11 n12

n21 n22

)

,

where

n11 =5472303420808232081265259977397666452233748510088173291391247244

n12 =24621828320093464411630076266761264996359620380761225990200236840

n21 =53086143480627890729102915520151902791073396850164887433960073977

n22 =50504412667462067656979447594044993386641854581994253565270057662,

to Alice.
With their private keys l and k, Alice and Bob calculate separately the matrices:
Mk,l and Ml,k. The secret key is:

K = Mk,l = Ml,k

(

k11 k12
k21 k22

)

,

where

k11 =15077262351468540659479560956502646610886273670438644789663346279

k12 =53266772811918178340993237439219610051752252301592872417278564526

k21 =19196956449953983885154387930452134930435839669934020286804160661

k22 =28825506412067472744805589760198569096591435572576575504138281453.
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