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Involving Indefinite Weight Functions and Asymptotically Linear
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abstract: In this work, we study the existence of positive solutions to the singular
system







−∆pu = λa(x)f(v) − u−α in Ω,

−∆pv = λb(x)g(u) − v−α in Ω,

u = v = 0 on ∂Ω,

where λ is positive parameter, ∆pu = div(|∇u|p−2∇u), p > 1, Ω ⊂ Rn some
for n > 1, is a bounded domain with smooth boundary ∂Ω , 0 < α < 1, and
f, g : [0,∞] → R are continuous, nondecreasing functions which are asymptotically
p-linear at ∞. We prove the existence of a positive solution for a certain range of λ
using the method of sub-supersolutions.

KeyWords: Infinite semipositone problems; Indefinite weight; Asymptotically
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1. Introduction

In this article, we mainly consider the existence of a positive solution of the
following singular elliptic system







−∆pu = λa(x)f(v) − u−α in Ω,
−∆pv = λb(x)g(u)− v−α in Ω,
u = v = 0 on ∂Ω,

(1.1)

where λ is a positive parameter, ∆pu = div(|∇u|p−2∇u), p > 1, Ω ⊂ Rnsome
for n > 1, is a bounded domain with smooth boundary ∂Ω, 0 < α < 1, and
f, g : [0,∞] → R are continuous, nondecreasing functions which are asymptotically
p-linear at ∞. We prove the existence of a positive solution for a certain range of
λ.

We consider problem (1.1) under the following assumptions.
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(H1) There exist σ1 > 0, k1 > 0 and s1 > 1 such that

f(s) ≥ σ1s
p−1 − k1

for every s ∈ [0, s1]

and that there exist σ2 > 0, k2 > 0 and s2 > 1 such that

g(s) ≥ σ2s
p−1 − k2

for every s ∈ [0, s2],

(H2) For all M > 0 , lims→+∞
f(M [g(s)]

1
p−1 )

sp−1 = σ for some σ > 0.

(H3) a, b : Ω → (0,∞) are continuous functions such that a1 = minx∈Ω a(x),
b1 = minx∈Ω b(x), a2 = maxx∈Ω a(x) and b2 = maxx∈Ωb(x).

(H4) There exists τ ∈ R such that for each M > 0, f(Ms) ≤M τf(s) for s≫ 1.

Let F (u) := λa(x)f(u)− u−α. The case when F (0) < 0 (and finite) is referred
to in the literature as a semipositone problem. Finding a positive solution for a
semipositone problem is well known to be challenging (see [2,5]) . Here we consider
the more challenging case when limu→0+ F (u) = −∞, which has received attention
very recently and is referred to as an infinite semipositone problem. However,
most of these studies have concentrated on the case when the nonlinear function
satisfies a sublinear condition at ∞ (see [6,7,9]). We refer to [15,16,17,18,19] for
additional results on elliptic problems. The only paper to our knowledge dealing
with an infinite semipositone problem with an asymptotically linear nonlinearity
is [8], where the author is restricted to the case p = 2. Also here the existence
of a positive solution is focused near λ1

σ
, where λ1 is the first eigenvalue of −∆.

See also [1,11], where asymptotically linear nonlinearities have been discussed in
he case of a nonsingular semipostione problem and an infinite positone problem.
Motivated by the above papers, in this note, we are interested in the existence of
positive solution for problem (1.1), where a, b are continuous functions in Ω and
λ is a positive parameter. Our main goal is to improve the result introduced in
[12], in which the authors study the existence of positive solutions for an infinite
semipositone problem with the nonlinearity f being not dependent of x. We shall
establish our an existence result via the method of sub and supersolutions.

Definition 1.1. We say that (ψ1, ψ2) (resp. (z1, z2)) in (W 1,p(Ω)∩C(Ω),W 1,p(Ω)∩
C(Ω)) are called a subsolution (resp. a supersolution) of (1.1), if ψi (i = 1, 2) sat-
isfy






















∫

Ω |∇ψ1(x)|
p−2∇ψ1 · ∇w1dx ≤

∫

Ω

(

λa(x)f(ψ2)− ψ−α
1

)

w1(x)dx
∫

Ω
|∇ψ2(x)|

p−2∇ψ2(x) · ∇w2dx ≤
∫

Ω

(

λb(x)g(ψ1)− ψ−α
2

)

w2(x)dx

ψ1, ψ2 > 0 in Ω,
ψ1 = ψ2 = 0 on ∂Ω,

(1.2)



Class of Singular Elliptic System 69

(

resp. zi (i = 1, 2) satisfy:



































∫

Ω
|∇z1|

p−2∇z1 · ∇w1(x)dx ≥
∫

Ω

(

λa(x)f(z2)− z−α
1

)

w1(x)dx
∫

Ω |∇z2|
p−2∇z2 · ∇w2(x)dx ≥

∫

Ω

(

λb(x)g(z1)− z−α
2

)

w2(x)dx

z1, z2 > 0 in Ω,

z1 = z2 = 0 on ∂Ω

)

(1.3)
for all non-negative test functions wi(i = 1, 2) ∈W , where W = {ξ ∈ C∞

0 (Ω) : ξ ≥
0 in Ω}.

The following lemma was established by Miyagaki in [14]:

Lemma 1.1 (See [14]). If there exist sub-supersolutions (ψ1, ψ2) and (z1, z2), re-
spectively, such that 0 ≤ ψi(x) ≤ zi(x) (i = 1, 2) for all x ∈ Ω, then (1.1) has a
positive solution (u, v) such that ψ1(x) ≤ u(x) ≤ z1(x) and ψ2(x) ≤ v(x) ≤ z2(x)
for all x ∈ Ω.

2. Main result

With the hypotheses introduced in previous section, the main result of this
paper is given by the following theorem.

Theorem 2.1. Assume the conditions (H1)− (H4) are satisfed. Then there exist
positive constants s∗0(σ,Ω), J

∗(Ω), λ∗, and λ∗∗(> λ∗) such that if min {s1, s2} ≥

s∗0 and min{a1,b1}min{σ1,σ2}

(σ)
p−1

p−1+τ

≥ J∗, problem (1.1) has a positive solution for λ ∈

[λ∗, λ∗∗].

Proof: Let µ1 is the principal eigenvalue of operator −∆p with Dirichlet boundary
condition. By anti-maximum principle (see [10]), there exists ξ = ξ(Ω) > 0 such
that the solution zµ of

{

−∆pz − µ|z|p−2z = −1 in Ω,
z = 0 on ∂Ω

for µ ∈ (µ1, µ1 + ξ) is positive in Ω and is such that
∂zµ
∂ν

< 0 on ∂Ω, where ν is
outward normal vector at ∂Ω.

Since zµ > 0 in Ω and
∂zµ
∂ν

< 0 there exist m > 0, A > 0, and δ > 0 be such

that |∇zµ| ≥ m in Ωδ and zµ ≥ A in Ω \ Ωδ, where Ωδ = {x ∈ Ω : d(x, ∂Ω) ≤ δ}.

We first construct a supersolution for (1.1). Let

(z1, z2) =
(

Mλep, [λb2g(Mλ‖ep‖∞)]
1

p−1 ep

)

,
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where Mλ ≫ 1 is a large positive constant and ep is the unique positive solution of
{

−∆pep = 1 in Ω,
ep = 0 on ∂Ω.

By the hypothesis (H2), we can choose Mλ ≫ 1 such that

2σ

a2
≥
f
(

[b2g(Mλ‖ep‖∞)]
1

p−1

)

(

Mλ‖ep‖∞

)p−1 .

Then

−∆pz1 =M
p−1
λ ≥

a2f
(

[b2g(Mλ‖ep‖∞)]
1

p−1

)

2σ‖ep‖
p−1
∞

.

Now since λ ≤ 1

‖ep‖
p−1
∞ (2σ)

p−1
p−1+τ

= λ∗∗ we have

−∆pz1 ≥
λ

p−1+τ

p−1 a2‖ep‖
p−1+τ
∞ f

(

[b2g(Mλ‖ep‖∞)]
1

p−1

)

‖ep‖
p−1
∞

≥λa2λ
τ

p−1 ‖ep‖
τ
∞f
(

[b2g(Mλ‖ep‖∞)]
1

p−1

)

.

Note that (H2) implies g(s) → ∞ as s→ ∞. Hence from (H3) for Mλ ≫ 1 we get

−∆pz1 ≥ λa2f
(

λ
1

p−1 ‖ep‖∞[b2g(Mλ‖ep‖∞)]
1

p−1

)

= λa2f
(

‖ep‖∞[λb2g(Mλ‖ep‖∞)]
1

p−1

)

≥ λa2f(z2)−
1

zα1

≥ λa(x)f(z2)−
1

zα1
.

(2.1)

Also

−∆pz2 = λb2g(Mλ‖ep‖∞) ≥ λb2g(Mλep) ≥ λb2g(z1)−
1

zα2
≥ λb(x)g(z1)−

1

zα2
.

(2.2)
Hence, from relations (2.1) and (2.2) we see that (z1, z2) is a supersolution of
problem (1.1) when λ ≤ 1

‖ep‖
p−1
∞ (2σ)

p−1
p−1+τ

.

Define

(ψ1, ψ2) :=
(

k0z
p

p−1+α

µ , k0z
p

p−1+α

µ

)

where k0 > 0 is such that

1

k
p−1+α
0

(

1 +
kkα0 z

αp

p−1+α

µ

‖ep‖
p−1
∞ (2σ)

p−1
p−1+τ

)

≤ min {(x1, x2)} (2.3)
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with k = max{k1, k2} and (x1, x2) =

(

(

mp(1−α)(p−1)pp−1

(p−1+α)p

)

,
(

p
p−1+α

)p−1

A

)

. Then

∇ψ1 = k0

( p

p− 1 + α

)

z
1−α

p−1+α

µ ∇zµ

and

−∆pψ1

= −div(|∇ψ1|
p−2∇ψ1)

= −kp−1
0

( p

p− 1 + α

)p−1

div
(

z
(1−α)(p−1)

p−1+α

µ |∇zµ|
p−2∇zµ

)

= −kp−1
0

( p

p− 1 + α

)p−1
{

∇[z
(1−α)(p−1)

p−1+α

µ ].|∇zµ|
p−2∇zµ + z

(1−α)(p−1)
p−1+α

µ ∆pzµ

}

= −kp−1
0

( p

p− 1 + α

)p−1
{

(1− α)(p− 1)

p− 1 + α
z

−αp

p−1+α

µ .|∇zµ|
p + z

(1−α)(p−1)
p−1+α

µ (1− µzp−1
µ )

}

= k
p−1
0

( p

p− 1 + α

)p−1

µz
p(p−1)
p−1+α

µ − k
p−1
0

( p

p− 1 + α

)p−1

z
(1−α)(p−1)

p−1+α

µ −

k
p−1
0 pp−1(1− α)(p− 1)|∇zµ|

p

(p− 1 + α)pz
αp

p−1+α

µ

.

(2.4)

Now we let s∗0(σ,Ω) = k0‖z
p

p−1+α

µ ‖∞. If we can prove

−∆pψ1 ≤ λa1σ1k
p−1
0 z

p(p−1)
p−1+α

µ − λk −
1

kα0 z
αp

p−1+α

µ

, (2.5)

then it implies from (H1) that

−∆pψ1 ≤ λa1f(ψ2)−
1

ψα
1

≤ λa(x)f(ψ2)−
1

ψα
1

.

Let us prove (2.5) holds true. Let λ∗ =
µ( p

p−1+α
)p−1

min{a1,b1}min(σ1,σ2)
. For λ ≥ λ∗ , we get

k
p−1
0

( p

p− 1 + α

)p−1

µz
p(p−1)
p−1+α

µ ≤ λa1σ1k
p−1
0 z

p(p−1)
p−1+α

µ , (2.6)

k
p−1
0

( p

p− 1 + α

)p−1

µz
p(p−1)
p−1+α

µ ≤ λb1σ2k
p−1
0 z

p(p−1)
p−1+α

µ . (2.7)

Also since λ ≤ λ∗∗ = 1

‖ep‖
p−1
∞

(2σ)
p−1

p−1+τ

λk +
1

kα0 z
αp

p−1+α

µ

≤
1

kα0 z
αp

p−1+α

µ

+
k

‖ep‖
p−1
∞ (2σ)

p−1
p−1+τ

=
k
p−1
0

z
αp

p−1+α

µ

[

1

k
p−1+α
0

(

1 +
kkα0 z

αp

p−1+α

µ

‖ep‖
p−1
∞ (2σ)

p−1
p−1+τ

)

]

.

(2.8)
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Now in Ωδ, we have |∇zµ| ≥ m, and by (2.3)

1

k
p−1+α
0

(

1 +
kkα0 z

αp

p−1+α

µ

‖ep‖
p−1
∞ (2σ)

p−1
p−1+τ

)

≤
mp(1 − α)(p− 1)pp−1

(p− 1 + α)p
.

Hence,

λk +
1

kα0 z
αp

p−1+α

µ

≤
k
p−1
0 pp−1(1− α)(p− 1)|∇zµ|

p

(p− 1 + α)pz
αp

p−1+α

µ

in Ωδ. (2.9)

From (2.6) and (2.9) it can be seen that (2.5) holds in Ωδ. A similar argument
shows that

−∆pψ2 ≤ λb1g(ψ1)−
1

ψα
2

≤ λb(x)g(ψ1)−
1

ψα
2

.

We will now prove (2.5) holds also in Ω \Ωδ. Since zµ ≥ A in Ω \ Ωδ and by (2.3)
and (2.8) we get

λk +
1

kα0 z
αp

p−1+α

µ

≤
k
p−1
0

z
αp

p−1+α

µ

( p

p− 1 + α

)p−1

zµ

≤ k
p−1
0

( p

p− 1 + α

)p−1

z
(1−α)(p−1)

p−1+α

µ in Ω \ Ωδ.

(2.10)

From (2.6) and (2.10), (2.5) holds also in Ω \ Ωδ.
Thus (ψ1, ψ2) is a positive subsolution of (1.1) if λ ∈ [λ∗, λ∗∗]. We can now

choose Mλ ≫ 1 such that ψ1 ≤ z1, ψ2 ≤ z2. Let

J∗(Ω) = 2
p−1

p−1+τ ‖ep‖
p−1
∞ µ

( p

p− 1 + α

)p−1

.

If min{a1,b1}min(σ1,σ2)

(2σ)
p−1

p−1+τ

≥ J∗ it is easy to see that λ∗ ≤ λ∗∗ and for λ ∈ [λ∗, λ∗∗] we

have a positive solution. This completes the proof of Theorem 2.1. ✷
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