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Second Order Duality for Mathematical Programming Involving n-set
Functions

Joydev Dasmahapatra and Saroj Kumar Padhan

abstract: The notion of second order convexity and its generalization for n-set
functions are introduced. Mond-weir type second order duality is formulated for the
general mathematical programming problems involving n-set functions and proved
the desired duality theorems. Further, counterexamples are provided in support of
the present investigation.
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1. Introduction

The objective function and the constraint functions of general optimization
problems are considered as point functions. The point function f : X → Y maps
a point of X to a point in Y . However, in real life situations there exist several
functions which maps a set to a point. These functions are called set functions.
The optimization problem involving set functions or n-set functions i.e. selection
of measurable subsets from a given space is an interesting topic of research in the
optimization field of recent time.

The idea of getting optimal selection of subsets for set functions appeared in
many mathematical areas [7,8,25]. A few problems of this type have been con-
fronted in designing of electrical insulators [3], fluid flows [2], optimal plasma con-
finements [33] and statistics [10]. It is observed that the theory and methods of
the above works are suitable to solve many real life problems in several situations.

Morris [24] first revealed the complexity of the above problem, occurs inade-
quately structured feasible domain which were not open, nonconvex and, literally
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nowhere dense. And also developed a new theory to optimize the set functions. Fur-
ther, the notions of differentiability of set functions and local and global convexity
for them was established by him. Lin [20] first introduced the concepts of pseu-
doconvexity and quasiconvexity of set functions and established many properties
of nonconvex differentiable n-set functions. Lai and Yang [14] derived optimality
conditions for mathematical programming problems with set functions. The opti-
mality conditions for n-set functions were established by Zalmai [34,35]. Second
order optimality conditions for nonlinear programming problems involving set func-
tions was studied by Chou et al. [4]. Corley [9] defined the concept of derivatives
and convexity conditions for n-set functions. Many authors [6,14,15] were discussed
the duality results of nonlinear programs with set functions. The above results were
extended for n-set functions by Corley [9]. Zalmai [34] formulated Wolfe-type dual
problems and proved the related duality results. Mond-weir type duality theorems
of a nonlinear minimax programming problem involving n-set functions were es-
tablished by Preda and Zalmai [26,35]. Multi-objective programs containing n-set
functions have been discussed by Kim et al. [11,12,13], Chou et al. [5], Lai and Lin
[16], Lin [17,18,19], Preda [26,27]. Preda and Stancu-Minasian [28,30,31] studied
optimality and duality results for optimization problems containing vector-valued
n-set functions. A new class of generalized convex n-set functions was introduced
by Zalmai [36] and proved a number of parametric and semi-parametric sufficient
efficiency conditions for multiobjective fractional subset selection programs. Many
parametric and semi-parametric dual models and the duality results were estab-
lished under these assumptions. The extended work of Zalmai [36] was reported
by [21,22,32].

Chou et al. [4] discussed the second order differentiability of a set function,
and obtained the necessary and sufficient conditions for optimality for a class of
optimization problems. Bector and Chandra [1], and Mond and weir [23] sepa-
rately introduced the second order pseudoconvex and quasiconvex functions for a
twice differentiable point function. Preda [29] defined bonvexity and generalized
bonvexity for twice differentiable n-set functions.

The study of second order duality is more effective due to the computational
advantage over first order duality. However, to the best of our knowledge there
is no literature available on second order duality models involving n-set functions.
In the present investigation, second order convexity and second order generalized
convexity are described for n-set functions with suitable illustrations. Further, sec-
ond order Mond-weir type duality model for a general mathematical programming
problem involving n-set functions is established and proved the desired duality
results. Moreover, some counterexamples are given to justify the efficacy of our
work.

2. Preliminaries

Suppose (X,A, µ) is a finite and atomless measure space and L1(µ) is separa-
ble. Let An = {(S1, ..., Sn) : Si ∈ A, i = 1, ..., n} be the n-fold product of the
σ-algebra A of subsets of a given set X . F, G1, ..., Gm are twice differentiable real
valued functions on An and B ⊂ An. Now consider the following mathematical
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programming problem (P) involving n-set functions to find the minima of F on
B = {(S1, ..., Sn) : Gj(S1, ..., Sn) ≤ 0), j ∈ m}, i.e.,

(P) min F (S) (2.1)

subject to Gj(S) ≤ 0, j ∈ m (2.2)

S = (S1, ..., Sn) ∈ A
n. (2.3)

This type of problem appears in optimal selection of measurable subsets.
Throughout the paper, the set functions on An are called as n-set functions. But
the fact is that An is only a semialgebra, not a σ-algebra. (An, d) is a pseudometric
space under the pseudometric d defined by

d[(R1, ..., Rn), (S1, ..., Sn)] =
[ n∑

i=1

µ2(Ri∆Si)
] 1

2 ,

where ∆ denotes symmetric difference. This pseudometric space (An, d) will serve
as the domain for most of the functions which is used in this paper.
Let f ∈ L1(µ) and S ∈ A with Characteristic (indicator) function Xs ∈ L1(µ).
Then integral

∫
S
fdµ will be denoted by 〈f,Xs〉. For w ∈ L1(µ×µ) and s1, s2 ∈ A,

the integral
∫
s1×s2

w is represented by 〈w,Xs1 ×Xs2〉. diag w denotes the diagonal

of w and defined a function on A as diag w(s) = 〈w,Xs × Xs〉, s ∈ A. Again,
diag w is called w⋆-continuous if Xsn →w⋆

Xs ⇒ diag w(sn) → diag w(s), where
Xsn →w⋆

Xs means 〈f,Xsn〉 → 〈f,Xs〉,∀f ∈ L1(µ).
The notions of differentiability and convexity are defined for n-set functions as
follows.

Definition 2.1. [24] A set function P : A → R is said to be differentiable at
S⋆ ∈ A if there exists DPS⋆ ∈ L1(X,A, µ), called the derivative of P at S⋆, such
that for each S ∈ A,

P (S) = P (S⋆) + 〈DPS⋆ ,XS − XS⋆〉+ VP (S, S
⋆),

where VP (S, S
⋆) is o(d(S, S⋆)), i.e., lim

d(S,S⋆)→0

VP (S, S
⋆)

d(S, S⋆)
= 0.

Definition 2.2. [4] A set function P : A → R is said to be twice differentiable at
S⋆ ∈ A if it has a first derivative DPS⋆ at S⋆, and there exists D2PS⋆ ∈ L1(µ×µ),
called the second derivative of P at S⋆ such that for each S ∈ A,

P (S) = P (S⋆) + 〈DPS⋆ ,XS − XS⋆〉+ 〈D2PS⋆ , (XS − XS⋆)2〉+ EP (S, S
⋆),

where EP (S, S
⋆) = o(d2(S, S⋆)), i.e., lim

d(S,S⋆)→0

EP (S, S
⋆)

d2(S, S⋆)
= 0.
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Definition 2.3. [9] An n-set function Q : An → R is said to have a partial deriva-
tive at (S⋆

1 , ..., S
⋆
n) ∈ A

n with respect to its ith argument if the function P (Si) =
Q(S⋆

1 , ..., S
⋆
i−1, S

⋆
i , S

⋆
i+1, ..., S

⋆
n) has derivative DPS⋆

i
, i ∈ n. Now the ith partial

derivatve of Q at (S⋆
1 , ..., S

⋆
n) is defined to be DiQS⋆

1
,...,S⋆

n
= DPS⋆

i
, i ∈ n. If there

exists DiQS⋆

1
,...,S⋆

n
, 1 ≤ i ≤ n we put DQS⋆

1
,...,S⋆

n
= (D1QS⋆

1
,...,S⋆

n
, ..., DnQS⋆

1
,...,S⋆

n
).

Definition 2.4. [9] An n-set function Q : An → R is said to be differentiable at
(S⋆

1 , ..., S
⋆
n) if all the partial derivatives DiQS⋆

1
,...,S⋆

n
, i ∈ n, exist and satisfy the

requirement

Q(S1, ..., Sn) = Q(S⋆
1 , ..., S

⋆
n) +

n∑

i=1

〈DiQS⋆

1
,...,S⋆

n
,XSi

− XS⋆

i
〉

+WQ((S1, ..., Sn), (S
⋆
1 , ..., S

⋆
n)),

where WQ((S1, ..., Sn), (S
⋆
1 , ..., S

⋆
n)) is o(d((S1, ..., Sn), (S

⋆
1 , ..., S

⋆
n))) for all

(S1, ..., Sn) ∈ An.

Definition 2.5. [29] An n-set functionQ : An → R is said to be twice differentiable
at S⋆ = (S⋆

1 , ..., S
⋆
n) ∈ An if it has the first derivative DQS⋆ at S⋆ and there

exists D2
kiQS⋆ ∈ L1(µ × µ), k, i ∈ n, such that for S ∈ An the function qS⋆(S) =∑n

k,i=1〈D
2
kiQS⋆ , (XSk

− XS⋆

k
) × (XSi

− XS⋆

i
)〉, called the second derivative of Q at

S⋆, is w⋆ continuous and satisfies

Q(S) = Q(S⋆) +
n∑

i=1

〈DiQS⋆ ,XSi
− XS⋆

i
〉

+

n∑

k,i=1

〈D2
kiQS⋆ , (XSk

− XS⋆

k
)× (XSi

− XS⋆

i
)〉+WQ(S, (S

⋆),

where WQ(S, S
⋆) = o(d2(S, S⋆)), i.e., lim

d(S,S⋆)→0

WQ(S, S
⋆)

d2(S, S⋆)
= 0.

From Theorem 1 [4] it is obtained that the second derivatives are unique and Q

is differentiable at S⋆ ∈ A
n. The second derivative, qS⋆(S), is the quadratic form

defined by (D2
kiQS⋆)k,i.

Example 2.6. An example of a twice differentiable set function is

F (S) = h(

∫

S

v1dµ, ...,

∫

S

vndµ)

where h : R
n → R is differentiable and v1, ..., vn are in L1(µ). Then its first

derivative

DFS =
n∑

i=1

Dih
( ∫

S

v1dµ, ...,

∫

S

vndµ
)
vi



Second Order Duality for n-set Functions 41

and its second derivative is

D2FS =

n∑

j,i=1

D2
jih

(∫

S

v1dµ, ...,

∫

S

vndµ
)
vivj ,

where Dih and D2
jih denote the ith first order partial derivative of h and ijth

second order partial derivative of h, respectively.
The condition for local convexity of a twice differentiable set function given in
Lemma 4 [4] i.e.
Let F : A → R be a set function which is twice differentiable at S⋆ ∈ A. If F
is locally convex at S⋆ then there exists ǫ > 0 such that d(S⋆, S) < ǫ implies
〈D2FS⋆ , (XS − XS⋆)2〉 ≥ 0, i.e., D2FS⋆ is locally positive semidefinite.

3. Generalized Convexity

This section deals with the definition of the second order convexity and second
order generalized convexity for twice differentiable n-set functions. Consider F :
An → R as a twice differentiable n-set function throughout this section.

Definition 3.1. An n-set function F : An → R is called second order convex at
T = (T1, ..., Tn) ∈ An for each S = (S1, ..., Sn) ∈ An, (S 6= T ) if

F (S1, ..., Sn)− F (T1, ..., Tn) +
1

2

n∑

k,i=1

〈D2
kiFT , (XSk

− XTk
)× (XSi

− XTi
)〉 ≥

≥
n∑

i=1

〈DiFT ,XSi
− XTi

〉+
n∑

k,i=1

〈D2
kiFT , (XSk

− XTk
)× (XSi

− XTi
)〉.

Definition 3.2. An n-set function F : An → R is termed as second order pseudo-
convex at T = (T1, ..., Tn) ∈ An for each S = (S1, ..., Sn) ∈ An, (S 6= T ) if

n∑

i=1

〈DiFT ,XSi
− XTi

〉+

n∑

k,i=1

〈D2
kiFT , (XSk

− XTk
)× (XSi

− XTi
)〉 ≥ 0

⇒ F (S1, ..., Sn) ≥ F (T1, ..., Tn)−
1

2

n∑

k,i=1

〈D2
kiFT , (XSk

− XTk
)× (XSi

− XTi
)〉,

or equivalently,

F (S1, ..., Sn) < F (T1, ..., Tn)−
1

2

n∑

k,i=1

〈D2
kiFT , (XSk

− XTk
)× (XSi

− XTi
)〉

⇒

n∑

i=1

〈DiFT ,XSi
− XTi

〉+

n∑

k,i=1

〈D2
kiFT , (XSk

− XTk
)× (XSi

− XTi
)〉 < 0.
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Definition 3.3. An n-set function F : An → R is said to be strictly second order
pseudoconvex at T = (T1, ..., Tn) ∈ A

n for each S = (S1, ..., Sn) ∈ A
n, (S 6= T ) if

n∑

i=1

〈DiFT ,XSi
− XTi

〉+

n∑

k,i=1

〈D2
kiFT , (XSk

− XTk
)× (XSi

− XTi
)〉 ≥ 0

⇒ F (S1, ..., Sn) > F (T1, ..., Tn)−
1

2

n∑

k,i=1

〈D2
kiFT , (XSk

− XTk
)× (XSi

− XTi
)〉,

or equivalently,

F (S1, ..., Sn) ≤ F (T1, ..., Tn)−
1

2

n∑

k,i=1

〈D2
kiFT , (XSk

− XTk
)× (XSi

− XTi
)〉

⇒

n∑

i=1

〈DiFT ,XSi
− XTi

〉+

n∑

k,i=1

〈D2
kiFT , (XSk

− XTk
)× (XSi

− XTi
)〉 < 0.

Definition 3.4. An n-set function F : An → R is called second order quasiconvex
at T = (T1, ..., Tn) ∈ A

n for each S = (S1, ..., Sn) ∈ A
n, (S 6= T ) if

F (S1, ..., Sn) ≤ F (T1, ..., Tn)−
1

2

n∑

k,i=1

〈D2
kiFT , (XSk

− XTk
)× (XSi

− XTi
)〉

⇒

n∑

i=1

〈DiFT ,XSi
− XTi

〉+

n∑

k,i=1

〈D2
kiFT , (XSk

− XTk
)× (XSi

− XTi
)〉 ≤ 0,

or equivalently,

n∑

i=1

〈DiFT ,XSi
− XTi

〉+

n∑

k,i=1

〈D2
kiFT , (XSk

− XTk
)× (XSi

− XTi
)〉 > 0

⇒ F (S1, ..., Sn) > F (T1, ..., Tn)−
1

2

n∑

k,i=1

〈D2
kiFT , (XSk

− XTk
)× (XSi

− XTi
)〉.

With the help of following propositions the existance of second order pseudo-
convexity and second order quasiconvexity of n-set functions is verified.

Proposition 3.5. [20] Let S be a convex subfamily of An and f(S1, ..., Sn) =
v(〈g1,XS1

〉, ..., 〈gn,XSn
〉), where v : Rn → R is a differentiable function, g1, ..., gn ∈

L1(X,A, µ) and (S1, ..., Sn) ∈ S.

(a) f is pseudoconvex set function, if v is pseudoconvex.
(b) f is quasiconvex set function, if v is quasiconvex.
(c) f is strictly quasiconvex set function, if v is strictly quasiconvex.
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Proposition 3.6. Let S be a convex subfamily of An and

f(S1, ..., Sn) = v(〈g1,XS1
〉, ..., 〈gn,XSn

〉)

, where v : R
n → R is a differentiable function, g1, ..., gn ∈ L1(X,A, µ) and

(S1, ..., Sn) ∈ S.

(a) f is second order pseudoconvex n-set function, if v is second order pseudocon-
vex.
(b) f is second order quasiconvex n-set function, if v is second order quasiconvex.
(c) f is second order strictly pseudoconvex n-set function, if v is second order
strictly pseudoconvex.

Proof: (a) Suppose v is a second order pseudoconvex function. Let (S1, ..., Sn),
(T1, ..., Tn) ∈ S, then it follows from the definition of partial derivatives,

DifT = vi(〈g1,XT1
〉, ..., 〈gn,XTn

〉)gi

D2
kifT = vki(〈g1,XT1

〉, ..., 〈gn,XTn
〉)gkgi,

where vi and vki denote the ith and kith partial derivative of v, respectively.
If

n∑

k,i=1

〈D2
kifT , (XSk

− XTk
)× (XSi

− XTi
)〉+

n∑

i=1

〈DifT ,XSi
− XTi

〉 ≥ 0,

we have,∑n

k,i=1 vki(〈g1,XT1
〉, ..., 〈gn,XTn

〉)〈gk,XSk
− XTk

〉〈gi,XSi
− XTi

〉

+
∑n

i=1 vi(〈g1,XT1
〉, ..., 〈gn,XTn

〉)〈gi,XSi
− XTi

〉 ≥ 0

that is,


〈g1,XS1
〉 − 〈g1,XT1

〉
.

.

.

〈gn,XSn
〉 − 〈gn,XTn

〉




T

∇2v(g(x))




〈g1,XS1
〉 − 〈g1,XT1

〉
.

.

.

〈gn,XSn
〉 − 〈gn,XTn

〉




+∇v(〈g1,XT1
〉, ..., 〈gn,XTn

〉)




〈g1,XS1
〉 − 〈g1,XT1

〉
.

.

.

〈gn,XSn
〉 − 〈gn,XTn

〉




≥ 0,

where g(x) = 〈g1,XT1
〉, ..., 〈gn,XTn

〉. Since v : Rn → R is a second order pseudo-
convex function it follows that,

f(S1, ..., Sn) = v(〈g1,XS1
〉, ..., 〈gn,XSn

〉) ≥ v(〈g1,XT1
〉, ..., 〈gn,XTn

〉)
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− 1
2




〈g1,XS1
〉 − 〈g1,XT1

〉
.

.

.

〈gn,XSn
〉 − 〈gn,XTn

〉




T

∇2v(g(x))




〈g1,XS1
〉 − 〈g1,XT1

〉
.

.

.

〈gn,XSn
〉 − 〈gn,XTn

〉




≥ f(T1, ..., Tn)−
1
2

∑n

k,i=1〈D
2
kifT , (XSk

− XTk
)× (XSi

− XTi
)〉.

This shows that f is a second order pseudoconvex set function. ✷

The proof of (b) and (c) are similar to the prove of (a). Hence it is omitted.

Proposition 3.7. Suppose f : An → R be a convex n-set function. Then,
(a) f is second order pseudoconvex n-set function.
(b) f is second order strictly pseudoconvex n-set function.

Proof: (a) Since f is differentiable onAn and convex then for all T = (T1, ..., Tn), S =
(S1, ..., Sn) ∈ An we have,

f(S1, ..., Sn)− f(T1, ..., Tn) ≥

n∑

i=1

〈DifT ,XSi
− XTi

〉,

again f is a twice differentiable n-set function and suppose it is locally convex at
T = (T1, ..., Tn) ∈ An.

This implies D2fT is locally positive semidefinite. Therefore using these conditions
in the definition of second order pseudoconvex n-set function, we immediately show
that f is a second order pseudoconvex n-set function.
Similarly, if f is a twice differentiable convex n-set function then (b) holds.

Remark 3.8. Every twice differentiable convex n-set function is a second order
pseudoconvex n-set function but the converse is not true, which can be easily
verified by considering the set function f : S → R defined by f(S) =

∫
S
g dµ +

(
∫
S
g dµ)3 where g ∈ L(X,A, µ) and S is a convex subfamily of A.

Remark 3.9. If f : S → R is defined by f(S) = (
∫
S
g dµ)3, where g ∈ L(X,A, µ)

and S is a convex subfamily of A, then f is not a convex set function but it is a
second order quasiconvex function.

Theorem 3.10. (Kuhn-Tucker type necessary conditions [9]) Let (X,A, µ)
be a finite atomless measure space and let F,G1, ..., Gm : An → R, j ∈ m, be
differentiable at T ⋆ = (T ⋆

1 , ..., T
⋆
n) ∈ An. If (T ⋆

1 , ..., T
⋆
n) is a regular optimal solution

of (P ), i.e. if (T ⋆
1 , ..., T

⋆
n) is an optimal solution of (P ) and for (T̂1, ..., T̂n) ∈ An,

Gj(T
⋆
1 , ..., T

⋆
n) +

n∑

i=1

〈DiGjT⋆ ,X
T̂i

− XT⋆

i
〉 < 0, j ∈ m ,

then there exists y⋆ ∈ R
m
+ (nonnegative orthant of Rm) such that,

〈DiFT⋆ +

m∑

j=1

yjDiGjT⋆ ,XSi
− XT⋆

i
〉 ≥ 0, ∀Si ∈ A, i ∈ n ,
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yjGj(T
⋆
1 , ..., T

⋆
n) = 0, j ∈ m ,

Gj(T
⋆
1 , ..., T

⋆
n) ≤ 0, j ∈ m .

4. Second order Mond-Weir type duality

In this section, we consider the Mond-Weir type second order dual (SMWD)
of a general mathematical programming problem (P) involving n-set functions.
Weak, strong and strict converse duality theorems are established under generalized
second order convexity assumptions.

(SMWD) max F (U)−
1

2

n∑

k,i=1

〈D2
kiFU , (XSk

− XUk
)× (XSi

− XUi
)〉 (4.1)

subject to 〈DiFU ,XSi
− XUi

〉+
m∑

j=1

〈yjDiGjU ,XSi
− XUi〉

+

n∑

k=1

〈D2
kiFU , (XSk

− XUk
)× (XSi

− XUi
)〉

+

n∑

k=1

m∑

j=1

〈yjD
2
kiGjU , (XSk

− XUk
)× (XSi

− XUi
)〉 ≥ 0,

∀Si, Ui ∈ A, i ∈ n, (4.2)

m∑

j=1

{yjGj(U)−
1

2

n∑

k,i=1

〈yjD
2
kiGjU , (XSk

− XUk
)× (XSi

− XUi
)〉} ≥ 0, (4.3)

U = (U1, ..., Un) ∈ A
n, (4.4)

y = (y1, ..., ym) ∈ Rm
+ . (4.5)

Theorem 4.1. (Weak duality)
Suppose S and (U, y) are arbitrary feasible solutions of (P) and (SMWD), respec-
tively, where U = (U1, ..., Un) ∈ An, S = (S1, ..., Sn) ∈ An and y ∈ R

m
+ . Again

assume the following two conditions,

(A)

m∑

j=1

yjGj(S) is second order quasiconvex at U ,

(B) F (S) is a second order pseudoconvex at U .
Then the following can not hold,

F (S) < F (U)−
1

2

n∑

k,i=1

〈D2
kiFU , (XSk

− XUk
)× (XSi

− XUi
)〉. (4.6)



46 J. Dasmahapatra and S. K. Padhan

Proof: S and (U, y) are arbitrary feasible solution of (P) and (SMWD), respec-
tively, and y ∈ R

m
+ . Now from inequality (2.2) and (4.3),

m∑

j=1

yjGj(S) ≤ 0 ≤
m∑

j=1

{yjGj(U)

−
1

2

n∑

k,i=1

〈yjD
2
kiGjU , (XSk

− XUk
)× (XSi

− XUi
)〉}. (4.7)

Second order quasiconvexity of

m∑

j=1

yjGj(S) and condition (A) gives,

n∑

i=1

m∑

j=1

〈yjDiGjU ,XSi
− XUi〉

+

n∑

k,i=1

m∑

j=1

〈yjD
2
kiGjU , (XSk

− XUk
)× (XSi

− XUi
)〉 ≤ 0. (4.8)

From inequality (4.2) we obtain,

〈DiFU ,XSi
− XUi

〉+
n∑

k=1

〈D2
kiFU , (XSk

− XUk
)× (XSi

− XUi
)〉 ≥

−[

m∑

j=1

〈yjDiGjU ,XSi
− XUi〉+

n∑

k=1

m∑

j=1

〈yjD
2
kiGjU , (XSk

− XUk
)× (XSi

− XUi
)〉],

∀Si, Ui ∈ A, i ∈ n.

⇒

n∑

i=1

〈DiFU ,XSi
− XUi

〉+

n∑

k, i=1

〈D2
kiFU , (XSk

− XUk
)× (XSi

− XUi
)〉

≥ −[

n∑

i=1

m∑

j=1

〈yjDiGjU ,XSi
− XUi〉

+

n∑

k, i=1

m∑

j=1

〈yjD
2
kiGjU , (XSk

− XUk
)× (XSi

− XUi
)〉]. (4.9)

Now the inequality (4.8) and (4.9) gives,

n∑

i=1

〈DiFU ,XSi
− XUi

〉+

n∑

k,i=1

〈D2
kiFU , (XSk

− XUk
)× (XSi

− XUi
)〉 ≥ 0. (4.10)

Now assume that ineqality (4.6) holds, i.e.,

F (S) < F (U)−
1

2

n∑

k,i=1

〈D2
kiFU , (XSk

− XUk
)× (XSi

− XUi
)〉,
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which by virtue of (B), leads to

n∑

i=1

〈DiFU ,XSi
− XUi

〉+
n∑

k,i=1

〈D2
kiFU , (XSk

− XUk
)× (XSi

− XUi
)〉 < 0. (4.11)

Which contradicts the inequality (4.10). Hence, the inequality (4.6) can not hold.
✷

Theorem 4.2. (Strong duality)
Suppose S = (S1, ..., Sn) ∈ An is a regular solution of (P) at which the Kuhn-
Tucker type theorem is satisfied. Then there exists y ∈ R

m
+ such that the weak

duality theorem holds between the primal (P) and the dual (SMWD), again assume
that,

n∑

k=1

〈D2
kiFS , (XSk

− XSk
)× (XSi

− XSi
)〉 = 0, ∀Si, Si ∈ A, i ∈ n, (4.12)

and

n∑

k=1

m∑

j=1

〈yjD
2
kiGjS , (XSk

− XSk
)× (XSi

− XSi
)〉 = 0, ∀Si, Si ∈ A, i ∈ n. (4.13)

Then (S, y), is an optimal solution of (SMWD) and the corresponding optimal
values of (P) and (SMWD) are equal.

Proof: Since S is a regular solution of (P) at which Kuhn-Tucker type theorem
is satisfied, then there exists y ∈ R

m
+ such that

〈DiFS +
m∑

j=1

yjDiGjS ,XSi
− XSi

〉 ≥ 0, ∀Si ∈ A, i ∈ n, (4.14)

yjGj(S) = 0, j ∈ m, (4.15)

Gj(S) ≤ 0, j ∈ m, (4.16)

so from (4.2) we get,

m∑

j=1

yjGj(S) = 0.

from the assumptions (4.12) and (4.13),

n∑

k=1

〈D2
kiFS , (XSk

− XSk
)× (XSi

− XSi
)〉 = 0, ∀Si, Si ∈ A, i ∈ n,
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and,

n∑

k=1

m∑

j=1

〈yjD
2
kiGjS , (XSk

− XSk
)× (XSi

− XSi
)〉 = 0, ∀Si, Si ∈ A, i ∈ n,

⇒

n∑

k=1

〈D2
kiFS , (XSk

− XSk
)× (XSi

− XSi
)〉

+
n∑

k=1

m∑

j=1

〈yjD
2
kiGjS , (XSk

− XSk
)× (XSi

− XSi
)〉 = 0, ∀Si, Si ∈ A, i ∈ n. (4.17)

Using the two equations (4.12) and (4.13) we obtain,

n∑

k,i=1

〈D2
kiFS , (XSk

− XSk
)× (XSi

− XSi
)〉 = 0,

and,

n∑

k,i=1

m∑

j=1

〈yjD
2
kiGjS , (XSk

− XSk
)× (XSi

− XSi
)〉 = 0.

Therefore (S, y) is a optimal solution for (SMWD). If S is regular optimal solu-
tion of (P), and the corresponding optimal values of objective function of (P) and
(SMWD) are equal, then the optimality of (SMWD) follows from weak duality
theorem. ✷

Theorem 4.3. (Strict converse duality)
Suppose S and (U, y) are arbitrary feasible solutions of (P) and (SMWD), respec-
tively, where U = (U1, ..., Un) ∈ An, S = (S1, ..., Sn) ∈ An and y ∈ R

m
+ such

that,

F (S) = F (U)−
1

2

n∑

k,i=1

〈D2
kiFU , (XSk

− XUk
)× (XSi

− XUi
)〉. (4.18)

Again if one of the following conditions is satisfied.
(A)

∑m

j=1 yjGj(S) is second order quasiconvex at U and F (S) is strictly second

order pseudoconvex at U .
(B)

∑m

j=1 yjGj(S) is strictly second order pseudoconvex at U and F (S) is second

order quasiconvex at U .
Then S = U ; i.e. U is an optimal solution of (P).
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Proof: We assume that S 6= U . Since S and (U, y) are arbitrary feasible
solutions of (P) and (SMWD), respectively, then we have

m∑

j=1

yjGj(S) ≤ 0 ≤

m∑

j=1

{yjGj(U)

−
1

2

n∑

k,i=1

〈yjD
2
kiGjU , (XSk

− XUk
)× (XSi

− XUi
)〉}. (4.19)

Using second order quasiconvexity of
∑m

j=1 yjGj(S) at U we get,

n∑

i=1

m∑

j=1

〈yjDiGjU ,XSi
− XUi

〉

+

n∑

k,i=1

m∑

j=1

〈yjD
2
kiGjU , (XSk

− XUk
)× (XSi

− XUi
)〉 ≤ 0. (4.20)

From inequality (4.2) we get

〈DiFU ,XSi
− XUi

〉+
n∑

k=1

〈D2
kiFU , (XSk

− XUk
)× (XSi

− XUi
)〉

≥ −
[ m∑

j=1

〈yjDiGjU ,XSi
− XUi

〉

+

n∑

k=1

m∑

j=1

〈yjD
2
kiGjU , (XSk

− XUk
)× (XSi

− XUi
)〉
]
, ∀Si, U i ∈ A, i ∈ n

⇒
n∑

i=1

[
〈DiFU ,XSi

− XUi
〉+

n∑

k=1

〈D2
kiFU , (XSk

− XUk
)× (XSi

− XUi
)〉
]

≥

−

n∑

i=1

[ m∑

j=1

〈yjDiGjU ,XSi
− XUi

〉

+

n∑

k=1

m∑

j=1

〈yjD
2
kiGjU , (XSk

− XUk
)× (XSi

− XUi
)〉
]
. (4.21)

Now by the inequality (4.20) and (4.21) we have

n∑

i=1

[
〈DiFU ,XSi

− XUi
〉+

n∑

k=1

〈D2
kiFU , (XSk

− XUk
)× (XSi

− XUi
)〉
]
≥ 0

⇒

n∑

i=1

〈DiFU ,XSi
− XUi

〉+

n∑

k,i=1

〈D2
kiFU , (XSk

− XUk
)× (XSi

− XUi
)〉 ≥ 0.(4.22)
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If F (S) is strictly second order pseudoconvex at U then,

F (S) > F (U)−
1

2

n∑

k,i=1

〈D2
kiFU , (XSk

− XUk
)× (XSi

− XUi
)〉. (4.23)

which contradicts equation (4.18).
When the hypothesis (B) holds, from inequality (4.19) we get,

n∑

i=1

m∑

j=1

〈yjDiGjU ,XSi
− XUi

〉

+

n∑

k,i=1

m∑

j=1

〈yjD
2
kiGjU , (XSk

− XUk
)× (XSi

− XUi
)〉 < 0. (4.24)

By the first dual constraints of (SMWD) we have,

〈DiFU ,XSi
− XUi

〉+
n∑

k=1

〈D2
kiFU , (XSk

− XUk
)× (XSi

− XUi
)〉

≥ −[

m∑

j=1

〈yjDiGjU ,XSi
− XUi

〉

+

n∑

k=1

m∑

j=1

〈yjD
2
kiGjU , (XSk

− XUk
)× (XSi

− XUi
)〉], ∀Si, U i ∈ A, i ∈ n

⇒

n∑

i=1

[〈DiFU ,XSi
− XUi

〉

+

n∑

k=1

〈D2
kiFU , (XSk

− XUk
)× (XSi

− XUi
)〉] (4.25)

≥ −

n∑

i=1

[

m∑

j=1

〈yjDiGjU ,XSi
− XUi

〉 (4.26)

+

n∑

k=1

m∑

j=1

〈yjD
2
kiGjU , (XSk

− XUk
)× (XSi

− XUi
)〉]. (4.27)

So by the ineqalities (4.24) and (4.25) we have

n∑

i=1

[〈DiFU ,XSi
− XUi

〉+

n∑

k=1

〈D2
kiFU , (XSk

− XUk
)× (XSi

− XUi
)〉] > 0

⇒

n∑

i=1

〈DiFU ,XSi
− XUi

〉+

n∑

k,i=1

〈D2
kiFU , (XSk

− XUk
)× (XSi

− XUi
)〉 > 0.(4.28)
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Now if F (S) is second order quasiconvex at U , then

F (S) > F (U)−
1

2

n∑

k,i=1

〈D2
kiFU , (XSk

− XUk
)× (XSi

− XUi
)〉, (4.29)

which contradicts the equation (4.18). Therefore our assumption is wrong. So we
get,

S = U.

✷

A counterexample for an optimization problem is constructed, where the involved
functions are not convex set functions. But the objective function is second order
pseudoconvex set function and the constraint function is second order quasiconvex
set function. It is also verified that the following example satisfy all duality results
of the present investigation.

Example 4.4. Let g ∈ L(X,A, µ). Suppose S is a convex subfamily of A

(P1) min F (S) =

∫

S

g dµ+
(∫

S

g dµ
)3

subject to G(S) =
( ∫

S

g dµ
)3

S ∈ S.

Let T ∈ S, then we have

〈DFT ,XS − XT 〉 = 3
(∫

T

g dµ
)2

〈g,XS − XT 〉+ 〈g,XS − XT 〉,

〈DGT ,XS − XT 〉 = 3
(∫

T

g dµ
)2

〈g,XS − XT 〉

and

〈D2FT , (XS − XT )× (XS − XT )〉 = 6
(∫

T

g dµ
)
〈g,XS − XT 〉〈g,XS − XT 〉

〈D2GT , (XS − XT )× (XS − XT )〉 = 6
(∫

T

g dµ
)
〈g,XS − XT 〉〈g,XS − XT 〉

Now we obtain the following second order Mond-Weir type dual problem (SMWD1)
of (P1):

(SMWD1) max

∫

T

g dµ+
(∫

T

g dµ
)3

− 3
(∫

T

g dµ
)
〈g,XS − XT 〉〈g,XS − XT 〉

Subject to,

3(y + 1)
(∫

T

g dµ
)2

〈g,XS − XT 〉

+〈g,XS − XT 〉+ 6(y + 1)
( ∫

T

g dµ
)
〈g,XS − XT 〉〈g,XS − XT 〉 ≥ 0,
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y
(∫

S

g dµ
)3

− 3y
(∫

T

g dµ
)
〈g,XS − XT 〉〈g,XS − XT 〉 ≥ 0,

y ∈ R+ .

It can be easily seen that F is strictly second order pseudoconvex and yG is second
order quasiconvex functions. Hence this example verifies all the above discussed
theorems.

5. Conclusion

Second order convexity and its generalizations have been introduced for n-set
functions as an extension of the concept of first order generalized convexity. Second
order Mond-Weir type dual model have been constructed for a general mathemat-
ical programming problem involving n-set functions and desired duality theorems
are established. Further, counter examples are given to justify our results. Since
the concept of second order convexity extended to second order pseudoconvexity
and second order quasiconvexity, the results presented in the paper are applica-
ble to the larger class of nonconvex programming problems. The obtained results
of the present investigation can also be generalized to a class of nondifferentiable
programming problems involving n-set functions.
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