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abstract: Recently, a large number of integral formulas involving Bessel func-
tions and their extensions have been investigated. The objective of this paper is to
establish four classes of integral formulas associated with the Struve functions, which
are expressed in terms of the Fox-Wright function. Among a variety of special cases
of the main results, we present only six integral formulas involving trigonometric
and hyperbolic functions.
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1. Introduction and Preliminaries

A remarkably large number of integral formulas involving a variety of spe-
cial functions have been presented (see, e.g., [3,6,8,14,15,22,29,30]; see also [20]).
Among those special functions, due mainly to the greater abstruseness of their
properties, Bessel functions have found many applications in various problems of
mathematical physics (see, e.g., [28]). Recently, a large number of integral for-
mulas involving Bessel functions and their various extensions (or generalizations)
have been investigated (see, e.g., [1,4,5,11,12,16,17]). Throughout this paper, let
C, R+, N and Z

−
0 be the sets of complex numbers, positive real numbers, positive

and non-positive integers, respectively, and N0 := N ∪ {0}.

The Struve functions (see [18, Chapter 11]), which are related to Bessel func-
tions and other functions (see [27, pp. 44-45]), have appeared in various problems
in physics and applied mathematics, for example, water-wave and surface-wave
problems [2,9], unsteady aerodynamics [24], particle quantum dynamical studies
of spin decoherence [23] and nanotubes [19]. The Struve functions Hν(z) of order
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ν are defined by (see [18, 288]; see also [27, pp. 44-45])
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(1.1)

where Γ(λ) is the familiar Gamma function (see, e.g., [25, Section 1.1]) and pFq is
the generalized hypergeometric series defined by (see, e.g., [21, p. 73]):

pFq

[

α1, . . . , αp;

β1, . . . , βq;
z

]

=
∞
∑

n=0

(α1)n · · · (αp)n
(β1)n · · · (βq)n

zn

n!

= pFq(α1, . . . , αp; β1, . . . , βq; z),

(1.2)

(λ)n being the Pochhammer symbol defined (for λ ∈ C) by (see [25, p. 2 and p. 5]):

(λ)n : =

{

1 (n = 0)

λ(λ+ 1) . . . (λ+ n− 1) (n ∈ N)

=
Γ(λ+ n)

Γ(λ)
(λ ∈ C \ Z−

0 ).

(1.3)

The modified Struve functions Lν(z) is defined by (see [18, 288])
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]

Hν(iz) (i =
√
−1).

(1.4)

Here, in this paper, we aim at establishing four classes of integral formulas
involving the Struve functions (1.1) and (1.4), which are expressed in terms of the
well-known Fox-Wright function pΨq defined by (see, for details, [26, p. 21]; see
also [13, p. 56])

pΨq [z] = pΨq





(a1, α1) , · · · , (ap, αp) ;

(b1, β1) , · · · ,
(
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(1.5)
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where the coefficients α1, . . . , αp, β1, . . . , βq ∈ R+ such that

1 +

q
∑

j=1

βj −
p

∑

i=1

αi ≧ 0. (1.6)

By comparing the definitions (1.2) and (1.5), we find

pΨq

[

(α1, 1) , . . . , (αp, 1) ;
(β1, 1) , . . . ,

(

βq, 1
)

;
z

]

=

p
∏

j=1

Γ(αj)

q
∏

j=1

Γ(βj)
pFq

[

α1, . . . , αp;
β1, . . . , βq;

z

]

. (1.7)

For more detailed properties of pΨq including its asymptotic behavior, one may
refer to works (for example) [29,30,10,11,12].

For the present investigation, we also need the following integral formula (see
[14]):

∫ 1

0

xα−1 (1− x)
2β−1

(

1− x

3

)2α−1 (

1− x

4

)β−1

dx =

(

2

3

)2α
Γ (α) Γ (β)

Γ (α+ β)
, (1.8)

provided min {ℜ (α) , ℜ (β)} > 0.

2. Main results

Here we present four classes of integral formulas associated with the Struve
functions (1.1) and (1.4) by mainly using the integral formula (1.8). The results
are expressed in terms of the Fox-Wright function pΨq in (1.5) and given in the
following four theorems. Here and in what follows, all involved complex powers
are, for simplicity, assumed to have principal values.

Theorem 2.1. Let ξ, η, ν ∈ C with ℜ (ν) > −1 and min {ℜ (ξ + η) ,ℜ (ξ + ν)} >
0. Then, for y ∈ C, the following integral formula holds true:
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.

(2.1)

Proof: Let L be the left-hand side of (2.1). Using the series representation of
the Struve function (1.1) in the integrand of (2.1), and, then, interchanging the
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order of integration and summation, which is verified by uniform convergence of
the involved series under the given conditions, we have

L =

∞
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It is noted that, under given conditions,

ℜ (ξ + η) > 0 and ℜ (ξ + ν + 2k) > 0 (k ∈ N0) .

Then, we can apply the integral formula (1.8) to the last resulting integrals to yield
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(
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,

which, upon using (1.5), is seen to lead to the right-hand side of (2.1). ✷

The following integral formulas given in Theorems 2.2-2.4 can be established
by using a similar argument as in the proof of Theorem 2.1. So the details of their
proofs are omitted.

Theorem 2.2. Let ξ, η, ν ∈ C with ℜ (ν) > −1 and min {ℜ (ξ + η) ,ℜ (ξ + ν)} >
0. Then, for y ∈ C, the following integral formula holds true:

∫ 1

0
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(2.2)

Theorem 2.3. Let ξ, η, ν ∈ C with ℜ (ν) > −1 and min {ℜ (ξ + η) ,ℜ (ξ + ν)} >
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0. Then, for y ∈ C, the following integral formula holds true:
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Theorem 2.4. Let ξ, η, ν ∈ C with ℜ (ν) > −1 and min {ℜ (ξ + η) ,ℜ (ξ + ν)} >
0. Then, for y ∈ C, the following integral formula holds true:
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3. Special Cases

Here we consider some special cases of the main results in Section 2. The Struve
functions Hν(z) in (1.1) are specialized to connect with circular functions (see, e.g.,
[18, p. 291]):

H− 1

2

(z) =

√

2

πz
sin z (3.1)

and

H 1

2
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√

2
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Setting ν = − 1
2 and ν = 1

2 in the results in Theorems 2.1 and 2.2, we obtain
some interesting integral formulas involving trigonometric functions which, without
proof, are given in Corollaries 3.1–3.4.

Corollary 3.1. Let ξ, η ∈ C with ℜ (ξ + η) > 0 and ℜ (ξ) > 1
2 . Then, for y ∈ C,
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Corollary 3.2. Let ξ, η ∈ C with ℜ (ξ + η) > 0 and ℜ (ξ) > 1
2 . Then, for y ∈ C,

the following integral formula holds true:
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Corollary 3.3. Let ξ, η ∈ C with ℜ (ξ + η) > 0 and ℜ (ξ) > − 1
2 . Then, for y ∈ C,

the following integral formula holds true:

∫ 1

0

xξ+η−1 (1− x)2(ξ−1)
(

1− x

3

)2(ξ+η)−1 (

1− x

4

)ξ− 3

2

×
[

1− cos
{

y
(

1− x

4

)

(1− x)
2
}]

dx

=

√
π

4
y2Γ (ξ + η)

(

2

3

)2(ξ+η)

× 2Ψ3

[

(ξ + 3/2, 2) , (1, 1) ;
(

2ξ + η + 3
2 , 2

)

, (3/2, 1) , (2, 1) ;
−
(y

2

)2
]

.

(3.5)

Corollary 3.4. Let ξ, η ∈ C with ℜ (ξ + η) > 0 and ℜ (ξ) > − 1
2 . Then, for y ∈ C,

the following integral formula holds true:
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Further, setting ν = − 1
2 and ν = 1

2 in the result in Theorem 2.3 with the aid
of the following known formulas (see [18, p. 291]):

L− 1

2

(z) =

√

2
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sinh z (3.7)

and

L 1

2

(z) =

√

2

πz
(cosh z − 1) , (3.8)

we obtain some interesting integral formulas involving hyperbolic functions which,
without proof, are given in Corollaries 3.5 and 3.6.
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Corollary 3.5. Let ξ, η ∈ C with ℜ (ξ + η) > 0 and ℜ (ξ) > 1
2 . Then, for y ∈ C,

the following integral formula holds true:
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(
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Corollary 3.6. Let ξ, η ∈ C with ℜ (ξ + η) > 0 and ℜ (ξ) > − 1
2 . Then, for y ∈ C,

the following integral formula holds true:
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