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abstract: We give a version of the Funk-Hecke formula that holds with minimal
assumptons and apply it to obtain formulas for the distributional derivatives of
radial distributions in Rn of the type

Yk

(

∇
)

∆
j
(f (r)) ,

where Yk is a harmonic homogeneous polynomial. We show that such derivatives
have simpler expressions than those of the form p

(

∇
)

(f (r)) for a general polyno-
mial p.
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1. Introduction

Harmonic polynomials have a long and fruitful history in Mathematics and in
Mathematical Physics, but it is noteworthy that there has been interest in several
aspects of the relationship between harmonic polynomials and problems in dis-
tributional regularization and in the computation of distributional derivatives in
recent years. Harmonic polynomials play a fundamental role in the ideas of the
late professor Stora on convergent Feyman amplitudes, particularly in his work
with Nikolov and Todorov [20]; this can be also seen in the recent article of Várilly
and Gracia-Bond́ıa [25]. Parker [21] has pointed out the correct formulas obtained
for multipole potentials built from harmonic polynomials, while the author has
shown that such multipole potentials have remarkable properties with respect to
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regularization and differentiation [6] and that several product formulas involving
n dimensional delta functions simplify only for harmonic polynomials [7].

The aim of this article is to consider the computation of distributional deriva-
tives of the type1

p
(
∇
)
(f (r)) , (1.1)

where f is a radial distribution in Rn and where p is a polynomial in n variables
of the special form p (x) = Y (x) |x|

2j
, Y being a harmonic polynomial. Such

derivatives, particularly in the case of regularizations of power potentials, are very
important in Mathematical Physics [14,19,21], starting with the celebrated Frahm
formulas [11] that have become standard material in textbooks [15]. The general
derivatives of any order of regularizations of power potentials are available [17],
so that, in principle one could evaluate (1.1) for any polynomial p for this type
of radial distributions f, but the formulas simplify substantially precisely if p is
harmonic.

The main ingredients of our analysis are, first, a minimalistic version of the
Funk-Hecke formula that holds for operators that transform polynomials into for-
mal power series, the kernels themselves being formal power series, and which
seems to have independent interest. The usual Funk-Hecke formula has proved to
be an indispensable aid in the study of multidimensional integral transforms, such
as, for example, the Radon transform, from the pioneering work of Ludwig [18]
to recent works [22]. Our version of the formula is not only more general than
the standard one, but can also be applied in other contexts, as we show in this
article. Our second tool is a careful analysis of the spaces of distributions of the
type f (r) Y (x) , where f is radial and Y is a homogeneous harmonic polynomial,
analysis that extends the study of radial distributions of [12] and [5].

2. Notation

We shall write

cm,n =
2Γ (m+ n/2)π(n−1)/2

Γ (m+ 1/2)
=

∫

S

ω2m
j dσ (ω) , C = c0,n . (2.1)

Notice that c0,n = C = 2πn/2/Γ (n/2) , is the surface area of the unit sphere S of
R

n.
The space of homogeneous polynomials of degree k in n variables will be denoted

as Pk or Pk (R
n) . The set of all polynomials in n variables will be denoted as P or as

P (Rn) . In the space P (Rn) we consider the inductive limit topology [24, Chp. 14],
so that it is an LF space. We denote by Hk (R

n) the subspace of Pk (R
n) formed by

the harmonic homogeneous polynomials of degree k. We may also consider Hk (S) ,
the set of restrictions to the unit sphere. The elements of Hk (S) are usually called
spherical harmonics, while those of Hk (R

n) are referred to as solid harmonics.
Notice that the restriction map Hk (R

n) −→ Hk (S) is in fact a bijection because

1 We follow the Farassat notation of denoting distributional derivatives with an overbar [8].
We will denote by ∇ the gradient: ∇ = (∂/∂xi)

n
i=1

.
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of the maximum principle for harmonic functions, and thus one may employ the
simpler notation Hk for this space2. The space H =

⊕∞
k=0 Hk is the space of all

harmonic polynomials, a closed subspace of the topological vector space P.
The dual space P′ can be identified with the space of formal power series in n

variables, and we endow it with the weak topology, which is exactly the topology
of simple convergence of the coefficients [24]. Similarly, H′ can be identified with∏∞

k=0 Hk, with the product topology, or alternatively, with the space of formal
series of the form

∑∞
k=0 Yk where Yk ∈ Hk, with the topology of the simple con-

vergence of each term of the series. When one thinks of the elements of H and of
H′ as objects defined on the sphere S, then it is many times true that spaces of
functions and distributions, X, satisfy H ⊂ X ⊂ H′ and H ⊂ X ′ ⊂ H′; for ex-
ample, H ⊂ L2 (S) ⊂ H′, the elements of L2 (S) being those series

∑∞
k=0 Yk where

Yk ∈ Hk with
∑∞

k=0 ‖Yk‖
2
L2 < ∞, H ⊂ D (S) ⊂ H′, the elements of D (S) being

those series with ‖Yk‖L2 = o (k−m) as k → ∞ for all m, while H ⊂ D′ (S) ⊂ H′,
the elements of D′ (S) being those series with ‖Yk‖L2 = O

(
kM

)
as k → ∞ for some

M ∈ R.
The projection from H′ or any of its subspaces to Hm will be denoted as πm,

that is, πm (
∑∞

k=0 Yk) = Ym. The injection from Hm to H or bigger spaces will be
denoted as im. In fact,

πm {f (u) ;v} = 〈Zm (u,v) , f (u)〉 , (2.2)

where the kernel Zm (u,v) is the zonal harmonic of degree m, the reproducing
kernel of the finite dimensional Hilbert space Hk with structure as a subspace of
L2 (S) [2,9,22]. Actually

Zm (u,v) = P̃m (u · v) , (2.3)

where the P̃m are appropiate multiples of the ultraspherical polynomials3 for di-
mension n [22, (A.6.13)].

3. The Funk-Hecke formula

The Funk-Hecke formula is a very useful tool in harmonic analysis4. The work of
Funk and Hecke deals with the 3 dimensional case [10,13]; in its n dimensional form
it was probably first given by Erdélyi [4]5. Here we shall follow the presentation
of [22, Appendix A], and to some extent that of [3, Sect. 11.4].

The Funk-Hecke formula is usually written in the following way [22, Thm.

A.34]: In n variables, if f (t)
(
1− t2

)(n−3)/2
∈ L1 (−1, 1) then

∫

S

f (u · v)Yk (u) dσ (u) = λkYk (v) , Yk ∈ Hk (S) . (3.1)

2 See [2,9,22] for the properties of Hk.
3 The ultraspherical polynomials are also called Gegenbauer polynomials, and they are actually

the Chebyshev polynomials in dimension 2 and the Legendre polynomials in dimension 3.
4 The author is indebted to Professor Rubin, who shared his deep knowledge of the subject.
5 The formula for the constants λk of (3.1) given in [4] is not the usual one, but the two

expressions can be shown to be equal by applying Parseval’s identity.
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Notice that the constant λk is the same for all spherical harmonics of the same
degree k. Here we would like to give a general version of the formula that asks
minimal regularity of the kernel f (u · v) , that is, by replacing the integral by a
suitable evaluation 〈f (u · v) , Yk (u)〉u we shall see that the Funk-Hecke formula
continues to hold not only for distributional kernels, but actually for kernels that
can be expressed as a formal power series.

Let us start by recalling the following result on invariant functions [22]: A

function g : S× S −→ C is invariant with respect to the group O (n) , g (τu, τv) =
g (u,v) for all τ ∈ O (n) and all (u,v) ∈ S×S if and only if g (u,v) = G (u · v) for
some function of one variable G; actually if n ≥ 3 it is enough to ask invariance

with respect to SO (n) . From this we obtain the following result on invariant
transforms.

Lemma 3.1. Let G : H−→C (S) be a linear transform given by the formula

G {f} = G {f (u) ;v} =

∫

S

g (u,v) f (u) dσ (u) , (3.2)

where g ∈ C (S× S) . Then G is invariant with respect to O (n) ,

G {f (τu) ;v} = G {f (u) ; τv} , τ ∈ O (n) , (3.3)

if and only if
g (u,v) = G (u · v) , (3.4)

for some G ∈ C (S) . If n ≥ 3 it is enough to ask invariance with respect to SO (n) .

Proof: If (3.4) holds, then (3.3) is obtained by a simple change of variables. Con-
versely, if (3.3) is satisfied, then for any τ ∈ O (n) the same change of variables
gives ∫

S

(g (u,v) − g (τu, τv)) f (u) dσ (u) = 0 , (3.5)

for all f ∈ H, and the density of H in (C (S))
′
thus yields g (τu, τv) = g (u,v) ;

(3.4) follows. ✷

We shall improve this result to more general kernels g, but this weaker form
will be useful in our analysis.

Lemma 3.2. Let Gk : Hk−→H′ be a linear transform that is invariant with respect
to O (n) , n = 2, or SO (n) , n ≥ 3. Then there exists a constant λk such that
Gk = λkik, ik : Hk−→H′ being the canonical injection.

Proof: The operator πm ◦ Gk ◦ πk is invariant for any m, and thus the Lemma
3.1 gives that it comes from a continuous kernel gm (u,v) = Gm (u · v) . If we now
apply the Funk-Hecke formula for integrable kernels, we obtain that for each l,
(πm ◦ Gk ◦ πk) ◦ il = λk,m,lil for some constants λk,m,l; clearly λk,m,l = 0 unless
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m = l = k, so that, in particular, if we put λk = λk,k,k we obtain πm ◦ Gk =
(πm ◦ Gk ◦ πk) ◦ ik = λkδk,mik for all m, and this naturally gives Gk = λkik. ✷

We are now ready to give our version of the Funk-Hecke formula.

Theorem 3.3. Let G : H−→H′ be a linear transform that is invariant with respect
to O (n) , n = 2, or SO (n) , n ≥ 3. Then there exist constants λk such that

G (Yk) = λkYk , Yk ∈ Hk . (3.6)

Furthermore6

G =

∞∑

k=0

λkπk , (3.7)

and for any Y ∈ H

G {Y (u) ;v} = 〈G (u · v) , Y (u)〉 , (3.8)

where G is the formal series7

G (t) =
∞∑

k=0

λkP̃k (t) , (3.9)

the P̃k being the normalized ultraspherical polynomials (2.3) for dimension n.

Proof: Indeed, for any operator G : H−→H′ we have G =
∑∞

k=0 Gk ◦ πk, where
Gk = G◦ ik. The Lemma 3.2 gives Gk = λkik, for some constants λk, and this yields
(3.7). The expansion (3.9) for the kernel G is obtained from (2.2). ✷

Notice that when the invariant operator G can be considered as acting from
function or distribution spaces X and Y, with H →֒ X →֒ H′ and H →֒ Y →֒
H′ then the formal series G corresponds to a function or distribution, and the
expansion (3.9) becomes convergent in a stronger sense. For instance, if G is an
operator from D (S) to D′ (S) then G converges distributionally. The operators
that send given spaces X to Y can be characterized by studying the properties of
the sequence {λk}

∞
k=0 [22, Sct. A.12]; in particular G is an operator from D (S) to

D′ (S) if and only if λk = O
(
kM

)
as k → ∞ for some M ∈ R.

We may now employ the Theorem 3.3 to obtain the form of several operators
acting on polynomials in n variables.

Proposition 3.4. Let T : Pk (R
n)−→Pk (R

n) be a linear operator, invariant with
respect to O (n) , n = 2, or SO (n) , n ≥ 3. Then there are constants λk−2j , 0 ≤
2j ≤ k, such that

T

{
|x|2j Yk−2j (x) ; z

}
= λk−2j |z|

2j Yk−2j (z) , Yk−2j ∈ Hk−2j (R
n) . (3.10)

6 The series G (Y ) =
∑

∞

k=0
λkπk (Y ) converges in the topology of H′, since in H′ the weak

and strong topologies coincide [24].
7 Since the Pk are polynomials, this is actually a formal power series.
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Proof: Apply the Funk-Hecke formula to the operator G defined on H as G =

R ◦T ◦R−1 ◦

(∑[[ k/2 ]]
j=0 πk−2j

)
, where R is the restriction operator from Pk (R

n) to

H, R {p (x) ;u} = p (u) , u ∈ S. There are constants λk−2j , 0 ≤ 2j ≤ k, such that
G (Yk−2j) = λk−2jYk−2j for Yk−2j ∈ Hk−2j . Hence,

T

{
|x|

2j
Yk−2j (x) ; z

}
= (R−1 ◦ G ◦R)

{
|x|

2j
Yk−2j (x) ; z

}

= R−1{G {Yk−2j (u) ;v} ; z}

= R−1{λk−2jYk−2j (v) ; z} = λk−2j |z|
2j
pk−2j (z) ,

as required. ✷

We can also rewrite these results in the ensuing way.

Proposition 3.5. Let T : P (Rn)−→P (Rn) be a linear operator that satisfies

T {p (aτx) ; z} = T {p (x) ; aτz} , (3.11)

for a ∈ R \ {0} and for τ ∈ SO (n) . Then there are constants λk,j such that

T

{
|x|

2j
Yk (x) ; z

}
= λk,j |z|

2j
Yk (z) , Yk ∈ Hk (R

n) . (3.12)

Proof: It follows from the Proposition 3.4 since (3.11) implies that T sends Pk (R
n)

to Pk (R
n) . ✷

Notice that in a natural fashion one can consider P (Rn) as a subspace of

P

(
Rn′

)
if n ≤ n′; denote the corresponding injection as in,n′ . Suppose now that

{Tn}
∞
n=1 is a family of operators Tn : P (Rn)−→P (Rn) . If in,n′ ◦ Tn = Tn′ ◦ in,n′

whenever n ≤ n′, then one may consider the family as a single operator T =
{Tn}

∞
n=1 , and one can write T {p} instead of Tn {p} if p ∈ P (Rn) . In general the

constants given in (3.12) will depend on n, that is, if xn ∈ Rn,

T

{
|xn|

2j
Yk (xn) ; zn

}
= λ

{n}
k,j |zn|

2j
Yk (zn) , Yk ∈ Hk (R

n) . (3.13)

However, the λ
{n}
k,0 are actually independent of n, and can be found rather easily.

Proposition 3.6. Let T = {Tn}
∞
n=1 be a family of linear operators that sends

P (Rn) to itself for each n, which satisfies in,n′ ◦ Tn = Tn′ ◦ in,n′ whenever n ≤ n′,

and which is also invariant in the sense of (3.11). Then λ
{n}
k,0 = λk,0 for all n, and

T {xi1 · · ·xik ; z} = λk,0zi1 · · · zik , (3.14)

whenever the indices i1, . . . , ik are all different.
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Proof: Let Y ∈ Hk (R
n) and let n′ ≥ n. Then Y ∈ Hk

(
Rn′

)
also, so that (3.13)

with j = 0 holds for both λ
{n}
k,0 and λ

{n′}
k,0 , and hence we obtain λ

{n}
k,0 = λ

{n′}
k,0 .

Let us thus denote the λ
{n}
k,0 as λk,0. We have that xi1 · · ·xik ∈ Hk (R

n) , therefore
relation (3.14) follows. ✷

We now present an example where all the computations are basically trivial,
but — because of this — will allow the reader to appreciate the main ideas of our
approach.

Example 3.1. Let p ∈ Pk (R
n) and let f be a smooth function defined in (0,∞) .

Consider the Laplacian ∆(f (r) p (x)) , r = |x| : it can be written, in several ways,
as q (r,x) where q (ρ,x) is a polynomial in x whose coefficients are functions of
ρ, but there is a unique expression of this form where for each ρ the polynomial
q = qk belongs to Pk (R

n) . Write

Tn {p} = Tf,r {p} = qk (r,x) = ∆ (f (r) p (x)) . (3.15)

The operator Tn can be extended to P (Rn) by linearity. Notice, however, that the
Tn depend on n. Clearly Tn is invariant in the sense of (3.11). Hence

∆
(
f (r) |xn|

2j
Yk (xn)

)
= Λ

{n}
k,j (f) |xn|

2j
Yk (xn) , Yk ∈ Hk (R

n) , (3.16)

for some operators Λ
{n}
k,j that send smooth functions in (0,∞) to smooth functions

in (0,∞) . Moreover, Λ
{n}
k,j (f (r)) = r−2jΛ

{n}
k,0

(
r2jf (r)

)
. On the other hand, the

Λ
{n}
k,0 can be obtained by observing that Tn {p}−∆n (f (r)) p (x) is independent of n,

so that we may take Yk (x) = x1 · · ·xk, ∆(f (r) x1 · · ·xk) = Λ
{n}
k,0 (f (r))x1 · · ·xk,

so that

Λ
{n}
k,0 (f) = (∆n + 2k) (f) =

(
r2L2 + nL+ 2k

)
(f) , , L (f) =

1

r

df

dr
. (3.17)

What happens if f is now a distribution of one variable, with support in [0,∞)?

It is not clear if the operators Λ
{n}
k,j can be defined for such distributions, since L (f)

cannot be defined as an element of D′ (R) for all f ∈ D′ (R) . However, there should

be a way to extend the Λ
{n}
k,j to distributions since ∆(f (r) p (x)) is a well defined

distribution of D′ (Rn) for any radial distribution f (r) of D′ (Rn) ; we explain how
this is achieved in Section 6.

4. Derivatives of smooth radial functions

In this section we shall apply the Propositions 3.5 and 3.6 to find the formulas
for the computation of the action of certain differential operators on radial functions
in Rn.

We now assume that the radial functions are smooth, and then extend our
analysis to distributional derivatives in the Section 6. Thus f will be a smooth
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function defined in some open subinterval of (0,∞) , so that f (r) will be smooth
in some annular region in R

n.

Theorem 4.1. Let L be the differential operator

L (f) (r) =
1

r

df

dr
. (4.1)

Then in Rn,

Yk (∇)∆j (f (r)) = Λ
{n}
k,j (f) |x|

2j
Yk (x) , Yk ∈ Hk (R

n) , (4.2)

where

Λ
{n}
k,j (f) =

1

r2j
Lk∆j (f) =

1

r2j
Lk

(
r2L2 + nL

)j
(f) . (4.3)

Proof: Let r be a fixed number in the domain of f. Consider the operator T = Tn=
Tf,r,n from P (Rn) to P (Rn) defined by q = T (p) , where p (∇) (f (r)) = q (x) .
Clearly T = {Tn}

∞
n=1 does not depend on n. Furthermore, T is invariant in the sense

of (3.11). Hence (4.2) follows for some operators Λ
{n}
k,j . But ∇if (r) = L (f) (r) xi,

so that if i1, . . . , ik are all different,

∇i1 · · ·∇i1f (r) = Lk (f) (r)xi1 · · ·xi1 . (4.4)

Therefore, by taking Yk (x) = x1 · · ·xk we obtain

Λk,0 (f) = Lk (f) . (4.5)

Since Λ
{n}
k,j (f) = r−2jΛk,0∆

j (f) , the relation (4.3) follows. ✷

It is interesting to notice that the first expression for the operator Λ
{n}
k,j in (4.3)

is, in a way, independent of n. Naturally, of course, Λ
{n}
k,j (f) does depend on n if

j > 0.
In order to appreciate the Theorem 4.1, it is instructive to consider a partic-

ular case, the derivatives of the power potentials f (r) = rλ. The distributional
derivatives of any order of rλ were obtained by the author and are studied in the
textbooks [17]; they generalize the important formulas of Frahm [11]. Here we just
consider the ordinary part of the formulas, that is, for r > 0; the delta part will be
considered in Section 6. For example for derivatives of the forth order we have,

∇
4
(
rλ
)
= λ (λ− 2) (λ− 4) (λ− 6)x4rλ−8 (4.6)

+ 6λ (λ− 2) (λ− 4)x2
δrλ−6 + 3λ (λ− 2) δ2rλ−4.

Here and in similar formulas, ∇N denotes the symmetric tensor of order N with
components ∇i1 · · · ∇iN , x

N is the tensor with components xi1 · · ·xiN , while δ is
the tensor of the second order with componets δi1i2 . If S and T are symmetric
tensors, then ST is their symmetric product, that is, the symmetrization of their
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tensor product S⊗T; the notation SQ will be used for the symmetric product of
S with itself Q times. For example, x2

δ is a forth order tensor with components

1

4!

∑

σ∈S4

xσ(1)xσ(2)δσ(3)σ(4) =
1

6

∑

{i,j}∪{k,l}={1,2,3,4}

xixjδkl . (4.7)

The Theorem 4.1 then yields

Y (∇)
(
rλ
)
= λ (λ− 2) (λ− 4) (λ− 6)Y (x) rλ−8, Y ∈ H4 (R

n) . (4.8)

In the case of order N, ∇N
(
rλ
)
consists of a sum of [[ N/2 ]]+ 1 terms, and so does,

in general, p (∇)
(
rλ
)
if p ∈ PN (Rn) . However, if Y is a harmonic polynomial of

degree N then Y (∇)
(
rλ
)
reduces to just the first term,

Y (∇)
(
rλ
)
= λ (λ− 2) · · · (λ−N + 2)Y (x) rλ−2N , Y ∈ HN (Rn) .

Since [2,9] any polynomial p in Rn can be expressed, uniquely, as a sum of

terms of the form |x|
2j
Yk,j (x) , Yk,j ∈ Hk (R

n) , one can, in principle, employ this
theorem to find p (∇) (f (r)) for any polynomial p.

Example 4.1. Let p (x) = x·Ax = aijxixj , where A = (aij) . Then p is harmonic
if and only if tr (A) = 0, so that we write aij = (aij − (tr (A) /n) δij)+(tr (A) /n) δij
to obtain p (x) = Y2 (x) + (tr (A) /n) |x|

2
, Y2 (x) = (aij − (tr (A) /n) δij)xixj and

thus

p (∇) (f (r)) = Y2 (x)L
2 (f)+

tr (A)

n

(
r2L2 + nL

)
(f) = p (x)L2 (f)+ tr (A)L (f) .

(4.9)

5. Radial and related distributions

We shall now consider radial distributions and distributions that are radial
multiples of a harmonic homogeneous polynomial. In order to fix the notation,
we shall give the details in the spaces S (Rn) and S′ (Rn) , but naturally the same
considerations apply in the spaces D (Rn) and D′ (Rn) , the spaces E (Rn) and
E′ (Rn) , or other dual pairs, without much change. A test function φ ∈ S (Rn) is
called radial if it is a function of r, φ (x) = ϕ (r) , for some even function ϕ ∈ S (R) ;
the space of all radial test functions of S (Rn) is denoted as Srad (R

n) . Similarly,
we denote as S′rad (R

n) the space of all radial tempered distributions; a distribution
f ∈ S′ (Rn) is radial if f (τx) = f (x) for any τ ∈ O (n) , and this actually means
that f (x) = f1 (r) for some distribution of one variable f1. Notice, however, that
while ϕ is uniquely determined by φ, for a given f ∈ S′rad (R

n) there are several
possible distributions f1 ∈ S′ (R) . When n = 1 then Srad (R) and S′rad (R) become
the spaces of even rapidly decreasing test functions and tempered distributions,
respectively, and are also denoted as Seven (R) and S′even (R) .

Observe that the space S′rad (R
n) is naturally isomorphic to the dual space

(Srad (R
n))

′
, that is to say, if the action of a radial distribution is known in all
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radial test functions, then it can be obtained for arbitrary test functions. Indeed,
if f ∈ S′rad (R

n) and φ ∈ S (Rn) , then

〈f (x) , φ (x)〉 =
〈
f (x) , φ̃ (x)

〉
, (5.1)

where φ̃ ∈ Srad (R) is given as φ̃ (x) = φo (|x|) , φo ∈ Seven (R) being defined as

φo (r) =
1

C

∫

S

φ (rθ) dσ (θ) . (5.2)

Following [12], we shall denote by Rn = rn−1Seven (R) . Also [5], if A is a
subspace of S (R) we shall denote by A[0,∞) the space of restrictions of elements
of A to [0,∞). The operator J : S′rad (R

n) → R′
n[0,∞), given by F = J (f) ,

〈
F (r) , φo (r) rn−1

〉
R′

n[0,∞)×Rn[0,∞)
=

1

C
〈f (x) , φ (x)〉

S′(Rn)×S(Rn) . (5.3)

is an isomorphism [5]. What this means is that when considering a radial dis-
tribution of S′ (Rn) , we can express it, in a unique fashion, as f = F (r) , where
F ∈ R′

n[0,∞).
It is interesting to observe that a radial distribution with support {0} should

have the form
∑N

j=0 αj∇
2jδ (x) , for some N and some constants αj , 0 ≤ j ≤ N.

Notice also the formulas

J
(
∇

2jδ (x)
)
=

(−1)
n−1

δ(n+2j−1) (r)

(n+ 2j − 1)!cj,m
, (5.4)

where the cj,m are given in (2.1).
Let now Y ∈ Hk (R

n) be a solid harmonic and consider the multiplication map
MY : S′rad (R

n) → S′ (Rn) given by MY (f) = fY. A distribution of S′ (Rn) will be
called a radial multiple of Y if it belongs to the image of the map,MY (S′rad (R

n)) =
S′rad (R

n)Y, that is, if it is of the form F (r) Y (x) for some distribution of one
variable F. As we explained, we can take F ∈ R′

n[0,∞), but actually we shall now
show that a better choice will be F ∈ R′

n+2k[0,∞) since the operator MY is not
injective, but rather has a non trivial kernel.

Proposition 5.1. Let f be a radial distribution and let Y ∈ Hk (R
n) . Then fY =

MY (f) = 0 if and only if

f (x) =

k−1∑

j=0

αj∇
2jδ (x) , (5.5)

for some constants αj , 0 ≤ j < k.

Proof: Indeed, if fY = 0 then supp f = {0} , so that, because f is radial, f (x) =∑N
j=0 αj∇

2jδ (x) for someN and some constants αj . However [7] Y (x)∇2mδ (x) =
0, if m < k, while if m ≥ k then

Y (x)∇2mδ (x) =
(−1)

k
2km!

(m− k)!
Y (∇)∇2m−2kδ (x) . (5.6)
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The result follows. ✷

Collecting ideas we can give the ensuing representation of radial multiples of a
solid harmonic.

Proposition 5.2. Let Y ∈ Hk (R
n) . There is an isomorphism Jk : S′rad (R

n)Y →
R′

n+2k[0,∞), so that any radial multiple of Y can be written as F (r) Y (x) for some
F ∈ R′

n+2k[0,∞).

Proof: Let g ∈ S′rad (R
n) Y. Then there exists f ∈ R′

n[0,∞) such that g (x) =
f (r) Y (x) . Define Jk (g) = f |

Rn+2k[0,∞) . Then Jk (g) is well defined, since if

g (x) = f1 (r) Y (x) = f2 (r) Y (x) then (f1 (r) − f2 (r))Y (x) = 0, hence for some

constants αj , 0 ≤ j < k, f1 (r) − f2 (r) = J−1(
∑k−1

j=0 αj∇
2jδ (x)), that is f1 (r) −

f2 (r) equals
∑k−1

j=0{(−1)n−1 αj/ (n+ 2j − 1)!cj,m}δ(n+2j−1) (r) , and consequently
this gives (f1 − f2)|Rn+2k[0,∞) = 0. ✷

It also important to point out that (Srad (R
n)Y )′ is naturally isomorphic to

S′rad (R
n)Y. If g ∈ S′rad (R

n)Y and φ ∈ Srad (R
n)Y, φ (x) = ϕ (|x|)Y (x) , then

〈g (x) , φ (x)〉
S′(Rn)×S(Rn) = A

〈
Jk (g) (r) , r

2k+n−1ϕ (r)
〉
R′

n+2k
[0,∞)×Rn+2k[0,∞)

,

(5.7)
where A =

∫
S
Y 2 (θ) dσ (θ) .

6. Derivatives of radial distributions

Our next task is to show that the Theorem 4.1 holds in the distributional
sense for the derivatives of radial distributions. This will follow from a careful
examination of the operator L.

Proposition 6.1. The derivative operator d/dr, f → df/dr is a well defined
operator from R′

n[0,∞) to R′
n+1[0,∞). If q ∈ Z, then the operator M rq , f (r) →

rqf (r) , is a well defined operator from R′
n[0,∞) to R′

n−q[0,∞).

Proof: The results follow immediately by considering the transpose operators. In-

deed, we have
(
d/dr

)T
= −d/dr which sends Rn+1[0,∞) to Rn[0,∞) and

(
M rq

)T
=

Mrq sends Rn−q[0,∞) to Rn[0,∞). ✷

Therefore we obtain the following for the operator L.

Proposition 6.2. The operator L given by

L (f) (r) =
1

r
f ′ (r) , (6.1)

sends R′
n[0,∞) to R′

n+2[0,∞).
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Applying the Proposition 6.1 again, we obtain that, in general if a is a constant,

then the operator r2L
2
+ aL sends R′

n[0,∞) to R′
n+2[0,∞). Nevertheless, in the

special case when a = n, then more is true.

Proposition 6.3. The operator

Dn = r2L
2
+ nL , (6.2)

sends R′
n[0,∞) to itself.

Proof: We just need to verify that
(
Dn

)T
sends Rn[0,∞) to itself, but this is clear

since
(
Dn

)T
ϕ (r) = (r−1 (rϕ)

′
)′ − n

(
r−1ϕ

)′
. ✷

We can now state the formula for the application of harmonic polynomial deriva-
tive operators to radial distributions.

Theorem 6.4. Let f0 be a radial tempered distribution in n variables, f0 (x) =
f (r) for f ∈ R′

n[0,∞). Then

Yk
(
∇
)
∆

j
(f (r)) = Λ

{n}

k,j (f) |x|
2j
Yk (x) , Yk ∈ Hk (R

n) , (6.3)

where Λ
{n}

k,j is the operator from R′
n[0,∞) to R′

n+2k[0,∞) given by

Λ
{n}

k,j (f) =
1

r2j
L
k
D

j
(f) . (6.4)

Proof: The Theorem 4.1 tells us that (6.3) holds if the distribution f is a regular
distribution corresponding to a smooth function. Since such regular distributions
are dense in the space of all distributions, the result is obtained. ✷

Let us now consider the distributional derivatives of the inverse power poten-
tials r−α. Since r−α is not integrable at the origin if α ≥ n, it does not give a
distribution directly, so that we need to employ a regularization8. We shall employ
the Hadamard regularization or pseudofunction [23] Pf (r−α) , 〈Pf (r−α) , φ (x)〉 =
F.p.

∫
Rn |x|

−α
φ (x) dx, the Hadamard finite part of the divergent integral. It is

proved in [17] that the distributional derivatives ∇
N
Pf (r−α) are also pseudofunc-

tions unless α is an integer q and q − n is even, say q − n = 2m; in that case we

have that ∇
N
Pf (r−α) has the expression

[[ N/2 ]]∑

j=0

(−1)
N−j

2N−2jΓ (α/2 +N − j)N !

Γ (α/2) (N − 2j)!j!
δ
jxN−2jPf

(
r−α−2N+2j

)
. (6.5)

8 Regularization methods are considered in the texts on distributions [16,17,23].
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Hence, Yk
(
∇
)
Pf (r−α) is given as

2NΓ (α/2 + k)

Γ (α/2)
Pf

(
r−α−2k

)
Yk (x) , Yk ∈ Hk (R

n) , (6.6)

and, more generally, since

∆
j
Pf

(
r−α

)
= Bα,jPf

(
r−α−2j

)
, (6.7)

where
Bα,j = α · · · (α+ 2j − 2) (α+ 2− n) · · · (α+ 2j − n) , (6.8)

we obtain that Yk
(
∇
)
∆

j
Pf (r−α) equals

=
2NΓ (α/2 + k)Bα,j

Γ (α/2)
Pf

(
r−α−2k−2j

)
Yk (x) , Yk ∈ Hk (R

n) . (6.9)

On the other hand, when we replace α by q, with q = n+ 2m, we obtain [17]

∇
N
Pf

(
r−q

)
=

[[ N/2 ]]∑

j=0

(−1)
N−j

2N−2jΓ (q/2 +N − j)N !

Γ (q/2) (N − 2j)!j!
δ
jxN−2jPf

(
r−q−2N+2j

)

−

[[ N/2 ]]∑

j=(|m|−m)/2

N !Γ (q/2 + j) cm+j,nβN,j

(N − 2j)!Γ (q/2) j! (2m+ 2j)!
δ
j
∇

N
∆

m+j
δ (x) .

(6.10)

Here

βN,0 =
1

q
+

1

q + 2
+ · · ·+

1

q + 2N − 2
=

1

2

(
ψ
(q
2
+N

)
− ψ

(q
2

))
, (6.11)

where ψ (s) = Γ′ (s) /Γ (s) is the digamma function, and if l ≥ 1,

βN,l =
1

2

l∑

j=0

(
l

j

)
(−1)

j
ψ
(q
2
+N − j

)
. (6.12)

We thus obtain that if Yk ∈ Hk (R
n) , then

Yk
(
∇
)
Pf

(
r−q

)
=

2NΓ (q/2 + k)

Γ (q/2)
Pf

(
r−q−2k

)
Yk (x)

+
cm,nβN,0

(2m)!
Yk

(
∇
)
∆

m
δ (x) . (6.13)

We would like to finish by pointing out that the structure of the Fourier trans-
form in n variables can be studied by employing our ideas. However, the results
obtained are hardly new. In fact Watson in the Section 11.5 of his treatise [26]
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gives the most relevant formulas — several addition theorems for Bessel functions
— citing the work of Bauer in 1859 for the 3 dimensional case and the work of
Gegenbauer of 1874 in the general case. Interestingly, Erdélyi [4] actually employs
these addition theorems in his study of the n dimensional Funk-Hecke formula.
Such developments of the Fourier kernel are called Rayleigh expansions in the
Physics literature, where they are still employed in the study of Fourier transforms
[1].
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