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abstract: The purpose of this paper is to study Ricci almost soliton and gradient
Ricci almost soliton in (k, µ)-paracontact metric manifolds. We prove the non-
existence of Ricci almost soliton in a (k, µ)-paracontact metric manifold M with
k < −1 or k > −1 and whose potential vector field is the Reeb vector field ξ.
Further, if the metric g of a (k, µ)-paracontact metric manifold M2n+1 with k 6= −1
is a gradient Ricci almost soliton, then we prove that either the manifold is locally
isometric to a product of a flat (n+ 1)-dimensional manifold and an n-dimensional
manifold of negative constant curvature equal to −4, or, M2n+1 is an Einstein
manifold. Finally, an illustrative example is given.
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1. Introduction

A Ricci soliton is a natural generalization of an Einstein metric [2]. In a pseudo-
Riemannian manifold (M, g) a Ricci soliton is defined by

£V g + 2S − 2λg = 0, (1.1)

where £V g is the Lie derivative of g along a vector field V (called the potential
vector field), S the Ricci tensor of type (0, 2) and λ a constant. Naturally, a Ricci
soliton with V zero or Killing is an Einstein metric. A Ricci soliton on a compact
manifold is a gradient Ricci soliton [18]. For details, we refer to Chow and Knopf
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[10], Bejan and Crasmareanu [1] about Ricci solitons and gradient Ricci solitons.
Ricci solitons and gradient Ricci solitons on several types of (almost) contact metric
manifolds were studied by several authors such as Cho [8,9], De and Matsuyama
[11], Deshmukh [12], Hamilton [14], Turan et al [21], Wang [22], Wang et al [23],
Yildiz et al [24] and many others.

Recently, Calvaruso and Perrone [4] studied Ricci solitons in three-dimensional
paracontact geometry. Also in [5], Calvaruso and Perrone proved that a paracon-
tact metric manifold is H-paracontact if and only if the Reeb vector field is a Ricci
eigenvector.

On the other hand, Pigola et al [19] introduced the notion of Ricci almost
soliton in the study of Riemannian manifolds, defined by the same equation (1.1)
in which λ is a smooth function. The Ricci almost soliton is said to be shrinking,
steady or expanding according as λ is positive, zero or negative, respectively. If
the complete vector field V is the gradient of a potential function f , then g is said
to be a gradient Ricci almost soliton and equation (1.1) takes the form

Hessf + S = λg, (1.2)

where Hessf denotes the Hessian of a smooth function f on M and defined by
Hessf = ∇∇f .

Sharma [20] studied Ricci almost solitons in K-contact geometry. Also Ghosh
[13] studied Ricci almost solitons and gradient Ricci almost solitons in (k, µ)-contact
geometry.

Motivated by these circumstances in this paper we study Ricci almost solitons
and gradient Ricci almost solitons in (k, µ)-paracontact metric manifolds. The
present paper is organized as follows: Section 2 contains some preliminary results
of (k, µ)-paracontact metric manifolds. In Section 3, we prove the non-existence
of Ricci almost soliton in a (k, µ)-paracontact metric manifold M with k < −1
or k > −1 and whose potential vector field is the Reeb vector field ξ. In the
next section, we study gradient Ricci almost soliton in a (k, µ)-paracontact metric
manifold M2n+1 with k 6= −1 and prove that if the metric g of M2n+1 is a gradient
Ricci almost soliton, then either the manifold is locally isometric to a product
of a flat (n + 1)-dimensional manifold and an n-dimensional manifold of negative
constant curvature equal to −4, or, M2n+1 is an Einstein manifold. Finally, an
illustrative example is given.

2. Preliminaries on (k, µ)-paracontact Metric Manifolds

A (2n+1)-dimensional smooth manifold M is said to be an almost paracontact
manifold if it admits an almost paracontact structure (φ, ξ, η), where φ is a (1, 1)-
tensor field, ξ a vector field and its dual 1-form η and for any vector field X on M

satisfying [15]
(i) φ2X = X − η(X)ξ,
(ii) φ(ξ) = 0, η ◦ φ = 0, η(ξ) = 1,
(iii) the tensor field φ induces an almost paracomplex structure on each fibre of
D = ker(η), that is, the eigendistributions D+

φ and D
−
φ of φ corresponding to the

eigenvalues 1 and −1, respectively, have same dimension n.
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An almost paracontact structure is said to be normal [25] if and only if the
(1, 2)-type torsion tensor Nφ = [φ, φ] − 2dη ⊗ ξ vanishes identically, where [φ, φ]
denotes the Nijenhuis tensor of φ. If an almost paracontact manifold M equipped
with a pseudo-Riemannian metric g of signature (n+ 1, n) such that

g(φX, φY ) = −g(X,Y ) + η(X)η(Y ), (2.1)

for all X,Y ∈ χ(M), where χ(M) is the Lie algebra of all smooth vector fields on
the manifold M , then (M, g) is called an almost paracontact metric manifold. An
almost paracontact structure is said to be a paracontact structure if g(X,φY ) =
dη(X,Y ) with the associated metric g [25]. For any almost paracontact metric man-
ifold (M2n+1, φ, ξ, η, g) admits (at least, locally) a φ-basis [25], that is, a pseudo-
orthonormal basis of vector fields of the form {ξ, E1, E2, ..., En, φE1, φE2, ..., φEn},
where ξ, E1, E2, ..., En are space-like vector fields and then, by (2.1) vector fields
φE1, φE2, ..., φEn are time-like. In a paracontact metric manifold there exists a
symmetric, trace-free (1, 1)-tensor h = 1

2£ξφ satisfying [25]

φh+ hφ = 0, hξ = 0, (2.2)

∇Xξ = −φX + φhX, (2.3)

where ∇ is Levi-Civita connection of the pseudo-Riemannian manifold and for all
X ∈ χ(M). It is clear that the tensor h satisfies h = 0 if and only if ξ is a
Killing vector field and then (φ, ξ, η, g) is said to be a K-paracontact manifold. An
almost paracontact manifold is said to be para-Sasakian if and only if the following
condition holds [25]

(∇Xφ)Y = −g(X,Y )ξ + η(Y )X, (2.4)

for any X,Y ∈ χ(M). A normal paracontact metric manifold is para-Sasakian and
satisfies

R(X,Y )ξ = −(η(Y )X − η(X)Y ), (2.5)

for any X,Y ∈ χ(M), but unlike contact metric geometry the relation (2.5) does
not imply that the paracontact manifold is para-Sasakian manifold. Every para-
Sasakian manifold is a K-paracontact manifold, but the converse is not always
true, as it is shown in three dimensional case [3]. Paracontact metric manifolds
have been studied by Cappelletti-Montano et al [6,7], Martin-Molina [16,17] and
many others.

According to Cappelletti-Montano et al [6] we have the following definition.

Definition 2.1. A paracontact metric manifold is said to be (k, µ)-paracontact
manifold if the curvature tensor R satisfies

R(X,Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ), (2.6)

for all vector fields X,Y ∈ χ(M) and k, µ are real constants.
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In a (k, µ)-paracontact manifold (M2n+1, φ, ξ, η, g), n > 1, the following rela-
tions hold [6]:

h2 = (k + 1)φ2, (2.7)

(∇Xφ)Y = −g(X − hX, Y )ξ + η(Y )(X − hX), for k 6= −1, (2.8)

QY = [2(1− n) + nµ]Y + [2(n− 1) + µ]hY

+[2(n− 1) + n(2k − µ)]η(Y )ξ, for k 6= −1, (2.9)

S(X, ξ) = 2nkη(X), (2.10)

Qξ = 2nkξ, (2.11)

(∇Xh)Y = −[(1 + k)g(X,φY ) + g(X,φhY )]ξ

+η(Y )φh(hX −X)− µη(X)φhY, for k 6= −1, (2.12)

Qφ− φQ = 2[2(n− 1) + µ]hφ, (2.13)

for any vector fields X,Y ∈ χ(M), where Q is the Ricci operator defined by
g(QX, Y ) = S(X,Y ). Making use of (2.3) we have

(∇Xη)Y = g(X,φY ) + g(φhX, Y ), (2.14)

for all vector fields X,Y ∈ χ(M).
First of all we recall some useful results:

Lemma 2.2. ( [26], Theorem 3.3) Let M2n+1, n > 1, be a paracontact metric
manifold satisfies R(X,Y )ξ = 0, for all X,Y ∈ χ(M). Then M2n+1 is locally
isometric to a product of a flat (n+1)-dimensional manifold and an n-dimensional
manifold of negative constant curvature equal to −4.

Lemma 2.3. ( [6], p.683, 687) Let (M,φ, ξ, η, g) be a (k, µ)-paracontact metric
manifold. Then for any vector fields X,Y ∈ χ(M) we have

(∇Xφh)Y = g(h2X − hX, Y )ξ + η(Y )(h2X − hX)

−µη(X)hY, for k > −1 (2.15)

(∇Xφh)Y = (1 + k)g(X,Y )ξ − g(hX, Y )ξ + η(Y )(h2X − hX)

−µη(X)hY, for k < −1. (2.16)

3. Ricci Almost Solitons in (k, µ)-paracontact Metric Manifolds

In this section we discuss about Ricci almost solitons in (k, µ)-paracontact man-
ifolds. We prove the following:

Theorem 3.1. There does not exist Ricci almost soliton in a (k, µ)-paracontact
metric manifold M2n+1 (n > 1) whose potential vector field is the Reeb vector field
ξ with k < −1 or k > −1.
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Proof: Suppose a (k, µ)-paracontact metric manifold admits a Ricci almost soliton
(g, ξ). Then we have from (1.1)

(£ξg)(Y, Z) + 2S(Y, Z)− 2λg(X,Y ) = 0. (3.1)

This is equivalent to

g(∇Y ξ, Z) + g(∇Zξ, Y ) + 2S(Y, Z)− 2λg(Y, Z) = 0. (3.2)

Using (2.3) in the above equation implies

g(φhY, Z) + S(Y, Z)− λg(Y, Z) = 0, (3.3)

that is,

φhY +QY − λY = 0. (3.4)

Taking covariant differentiation of (3.4) with respect to an arbitrary vector field
X , we have

(∇Xφh)Y + (∇XQ)Y − (Xλ)Y = 0. (3.5)

Now we split our discussions into two cases:
Case 1. Let k > −1. Applying (2.9) and (2.15) in (3.5) we have

(1 + k)g(X,Y )ξ − g(hX, Y )ξ + (k + 1)η(Y )X − (k + 1)η(X)η(Y )ξ

−η(Y )hX − µη(X)hY + {2(n− 1) + µ}(∇Xh)Y

+{2(n− 1) + n(2k − µ)}{(∇Xη)(Y )ξ + η(Y )∇Xξ} − (Xλ)Y = 0. (3.6)

With the help of (2.3), (2.12) and (2.14) we obtain from the above equation

(1 + k)g(X,Y )ξ − g(hX, Y )ξ + (k + 1)η(Y )X − (k + 1)η(X)η(Y )ξ

−η(Y )hX − µη(X)hY − {2(n− 1) + µ}{(k + 1)g(X,φY )ξ + g(X,φhY )ξ

−(k + 1)η(Y )φX + η(Y )φhX + µη(X)φhY }+ {2(n− 1) + n(2k − µ)}

{g(X,φY )ξ + g(φhX, Y )ξ − η(Y )φX + η(Y )φhX} − (Xλ)Y = 0. (3.7)

Contracting X in (3.7) we get

(2n+ 1)(k + 1)η(Y ) = Y λ. (3.8)

Also putting Y = Z = ξ in (3.3) yields λ = 2nk, which is a constant. Applying
this in (3.8) we have k = −1, which is a contradiction as we consider k > −1.
Case 2. Let k < −1. Making use of (2.9) and (2.16) in (3.5) we have

g((k + 1)φ2X,Y )ξ − g(hX, Y )ξ + (k + 1)η(Y )φ2X

−η(Y )hX − µη(X)hY + {2(n− 1) + µ}(∇Xh)Y

+{2(n− 1) + n(2k − µ)}{(∇Xη)(Y )ξ + η(Y )∇Xξ} − (Xλ)Y = 0. (3.9)
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Using (2.3), (2.12) and (2.14) in the above equation gives

g((k + 1)φ2X,Y )ξ − g(hX, Y )ξ + (k + 1)η(Y )φ2X

−η(Y )hX − µη(X)hY − {2(n− 1) + µ}{(k + 1)g(X,φY )ξ + g(X,φhY )ξ

−(k + 1)η(Y )φX + η(Y )φhX + µη(X)φhY }+ {2(n− 1) + n(2k − µ)}

{g(X,φY )ξ + g(φhX, Y )ξ − η(Y )φX + η(Y )φhX} − (Xλ)Y = 0. (3.10)

Contracting X in (3.10) we have

2n(k + 1)η(Y ) = Y λ. (3.11)

Again substituting Y = Z = ξ in (3.3) gives λ = 2nk, which is a constant. Using
this in (3.11) we obtain k = −1, which is a contradiction as we consider k < −1.
Combining the two cases our theorem follows. ✷

Next, we prove the following:

Theorem 3.2. If a (k, µ)-paracontact metric manifold M2n+1 (n > 1) admits a
Ricci almost soliton for k = −1 whose potential vector field is the Reeb vector field
ξ, then the Ricci almost soliton is expanding with Qξ = −2nξ.

Proof: Replacing Y by ξ in (3.4) we get Qξ = λξ. On the other hand from (2.11)
and k = −1 we have Qξ = −2nξ. Thus we obtain λ = −2n. This shows that the
Ricci almost soliton is expanding. ✷

Remark 3.3. Since λ= constant, the Ricci almost soliton in a (k, µ)-paracontact
metric manifold reduces to a Ricci soliton.

4. Gradient Ricci Almost Solitons in (k, µ)-paracontact Metric

Manifolds

This section is devoted to study gradient Ricci almost soliton in (k, µ)-paracontact
manifolds. We prove the following:

Theorem 4.1. Let (M, g) be a (2n + 1)-dimensional (n > 1) (k, µ)-paracontact
metric manifold with k 6= −1. If g is a gradient Ricci almost soliton, then either the
manifold is locally isometric to a product of a flat (n+1)-dimensional manifold and
an n-dimensional manifold of negative constant curvature equal to −4, or, M2n+1

is an Einstein manifold.

Proof: Let (M, g) be a (2n + 1)-dimensional (k, µ)-paracontact metric manifold
and g a gradient Ricci almost soliton. Then (1.2) reduces to

∇Y Df = −QY + λY, (4.1)

for any Y ∈ χ(M), where D denotes the gradient operator of g. From (4.1) it
follows that

R(X,Y )Df = (∇Y Q)X − (∇XQ)Y − (Y λ)X + (Xλ)Y. (4.2)
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Taking covariant differentiation of (2.9) along arbitrary vector field X and using
(2.14) we have

(∇XQ)Y = {2(n− 1) + n(2k − µ)}[g(X,φY )ξ + g(φhX, Y )ξ

−η(Y )φX + η(Y )φhX ] + {2(n− 1) + µ}(∇Xh)Y. (4.3)

Applying (2.12) in (4.3) gives

(∇XQ)Y − (∇Y Q)X = {2(n− 1) + µ}[−(k + 1){2g(X,φY )ξ + η(X)φY

−η(Y )φX}+ (1 − µ){η(X)φhY − η(Y )φhX}]

+{2(n− 1) + n(2k − µ)}[2g(X,φY )ξ + η(X)φY

−η(Y )φX + η(Y )φhX − η(X)φhY ]. (4.4)

Making use of (4.4) we have from (4.2)

R(X,Y )Df = {2(n− 1) + µ}[(k + 1){2g(X,φY )ξ + η(X)φY

−η(Y )φX}+ (µ− 1){η(X)φhY − η(Y )φhX}]

−{2(n− 1) + n(2k − µ)}[2g(X,φY )ξ + η(X)φY

−η(Y )φX + η(Y )φhX − η(X)φhY ]− (Y λ)X + (Xλ)Y.(4.5)

Taking inner product of (4.5) with ξ we obtain

g(R(X,Y )Df, ξ) = 2(µ− 2k + µk + nµ)g(X,φY )

−(Y λ)η(X) + (Xλ)η(Y ). (4.6)

Substituting X = ξ in (4.6) yields

g(R(ξ, Y )Df, ξ) = (ξλ)η(Y )− (Y λ). (4.7)

Also from (2.6) it follows that

R(ξ, Y )X = k{g(X,Y )ξ − η(X)Y }+ µ{g(hX, Y )ξ − η(X)hY }. (4.8)

Taking inner product of (4.8) with ξ gives

g(R(ξ, Y )Df, ξ) = kg(Y,Df − (ξf)ξ) + µg(hY,Df). (4.9)

In view of (4.7) and (4.9) we have

kg(Y,Df − (ξf)ξ) + µg(hY,Df)− (ξλ)η(Y ) + (Y λ) = 0, (4.10)

from which we obtain

kDf − k(ξf)ξ + µhDf +Dλ− (ξλ)ξ = 0. (4.11)

Contracting X in (4.2) and noticing that the scalar curvature of the manifold is
constant, we have QDf = −2nDλ. Applying this in (4.11) gives

2nkDf + 2nµhDf = QDf + 2n(k(ξf) + (ξλ))ξ. (4.12)
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Taking inner product of (4.12) with ξ and since Qξ = 2nkξ it follows that k(ξf) +
(ξλ) = 0. Using this in the above equation one gets

2nkDf + 2nµhDf = QDf. (4.13)

Putting X = ξ in (4.1) we obtain

∇ξDf = (λ− 2nk)ξ. (4.14)

Replacing X by φX and Y by φY in (4.6) and (2.6), respectively, then comparing
the right hand sides we have

(µ− 2k + µk + nµ)g(φX, Y ) = 0. (4.15)

Since dη 6= 0, it follows from the above equation

k =
µ(n+ 1)

2− µ
. (4.16)

Differentiating (4.13) along ξ implies

2nk∇ξDf + 2nµ(∇ξh)Df + 2nµh(∇ξDf) = (∇ξQ)Df +Q(∇ξDf). (4.17)

Making use of (2.12), (4.3) and (4.14) in (4.17) we obtain

µ{µ(2n− 1)− 2(n− 1)}hφDf = 0. (4.18)

Operating h on (4.18) and since k 6= −1 one obtains

µ{µ(2n− 1)− 2(n− 1)}φDf = 0. (4.19)

Thus we consider the following cases:
Case1. If µ = 0, then from (4.16) it follows that k = 0. Consequently (2.6) gives
R(X,Y )ξ = 0. Therefore, using Lemma 2.2 we can state M2n+1 is locally isometric
to a product of a flat (n+1)-dimensional manifold and an n-dimensional manifold
of negative constant curvature equal to −4.
Case2. If φDf = 0. Applying φ on both sides we obtain

Df = (ξf)ξ. (4.20)

Taking differentiation of (4.20) along any arbitrary vector fieldX , we have∇XDf =
X(ξf)ξ + (ξf)(−φX + φhX). Replacing X by φX and taking inner product with
φY we have

g(∇φXDf, φY ) = −(ξf){g(X,φY ) + g(hX, φY )}. (4.21)

Interchanging X and Y in the above equation yields

g(∇φY Df, φX) = −(ξf){g(Y, φX) + g(hY, φX)}. (4.22)
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Applying Poincaré’s lemma: On a contractible manifold, all closed forms are exact.
Therefore d2f(X,Y ) = 0, for all X,Y ∈ χ(M). From which we have

XY (f)− Y X(f)− [X,Y ]f = 0,

that is,
Xg(gradf, Y )− Y g(gradf,X)− g(gradf, [X,Y ]) = 0.

This is equivalent to

∇Xg(gradf, Y )− g(gradf,∇XY )−∇Y g(gradf,X) + g(gradf,∇Y X) = 0.

Since ∇g = 0, the above equation yields

g(∇Xgradf, Y )− g(∇Y gradf,X) = 0,

that is, g(∇XDf, Y ) = g(∇Y Df,X). Replacing X by φX and Y by φY in the
foregoing equation we obtain g(∇φXDf, φY ) = g(∇φY Df, φX). Applying this in
(4.21) and (4.22) we have (ξf)g(X,φY ) = 0, that is, (ξf)dη(X,Y ) = 0. Since
dη 6= 0, it follows that ξf = 0. Consequently from (4.20) we obtain Df = 0, this
implies f is constant. Therefore from (4.1) we have

S(X,Y ) = λg(X,Y ).

This shows the manifold is an Einstein manifold.
Case3. If µ(2n − 1) − 2(n − 1) = 0, that is, µ = 2(n−1)

2n−1 . Using (4.16) we get

k = n− 1
n
. From (2.9) and (4.13) we obtain

(2(1− n) + nµ− 2nk)(Df − (ξf)ξ) + (2(n− 1) + µ− 2nµ)hDf = 0. (4.23)

Making use of µ = 2(n−1)
2n−1 and k = n− 1

n
in the above equation and noticing n > 1

we have Df = (ξf)ξ. Proceeding in the same way as in Case 2 we obtain the
manifold is an Einstein manifold. This completes the proof of our theorem. ✷

5. Example of a 5-dimensional (k, µ)-paracontact Metric Manifold

In this section we give an example of a 5-dimensional (k, µ)-paracontact metric
manifold such that k = −2 and µ = 2. In [6], the authors construct an example of
a 5-dimensional (k, µ)-paracontact metric manifold. With the help of that example
we construct a new example as follows:

Let g be the Lie algebra of a Lie group G admits a basis {e1, e2, e3, e4, e5} such
that [6]

[e1, e5] = e1 + e2, [e2, e5] = e1 + e2, [e3, e5] = −e3 + e4,

[e4, e5] = e3 − e4, [e1, e2] = e1 + e2, [e1, e3] = e2 + e4 − 2e5,

[e1, e4] = e2 + e3, [e2, e3] = e1 − e4, [e2, e4] = e1 − e3 + 2e5,

[e3, e4] = −e3 + e4.
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We consider the metric such that

g(e1, e1) = g(e4, e4) = g(e5, e5) = 1,

g(e2, e2) = g(e3, e3) = −1 and g(ei, ej) = 0, for i 6= j.

Setting ξ = e5 and denote by η its dual 1-form. We define a tensor φ by φe1 =
e3, φe2 = e4, φe3 = e1, φe4 = e2, φe5 = 0. Therefore we have φ2X = X − η(X)ξ
and g(φX, φY ) = −g(X,Y ) + η(X)η(Y ). Thus (φ, ξ, η, g) makes G a paracontact
metric manifold.

Using the well known Koszul’s folmula we have the following:

∇e1e5 = e1 − e3,∇e2e5 = e2 − e4,∇e3e5 = −e1 − e3,∇e4e5 = −e2 − e4,

∇e5e1 = −e2 − e3,∇e5e2 = −e1 − e4,∇e5e3 = −e1 − e4,∇e5e4 = −e2 − e3,

∇e1e1 = e2 − e5,∇e1e2 = e1,∇e1e3 = e4 − e5,∇e1e4 = e3,

∇e2e1 = −e2,∇e2e2 = −e1 + e5,∇e2e3 = −e4,∇e2e4 = −e3 + e5,

∇e3e1 = −e2 + e5,∇e3e2 = −e1,∇e3e3 = −e4 − e5,∇e3e4 = −e3,

∇e4e1 = −e2,∇e4e2 = −e1 − e5,∇e4e3 = −e4,∇e4e4 = −e3 + e5,∇e5e5 = 0.

Comparing the above relations with (2.3) we get

he1 = e3, he2 = e4, he3 = −e1, he4 = −e2, he5 = 0.

Using the formula R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z, we may calculate
the following:

R(e1, e2)e1 = e2 − e4, R(e1, e2)e2 = e1 − e3, R(e1, e2)e3 = e2 − e4,

R(e1, e2)e4 = e1 − e3, R(e1, e3)e1 = −4e3, R(e1, e3)e2 = −2e4,

R(e1, e3)e3 = −4e1, R(e1, e3)e4 = −2e2, R(e1, e4)e1 = e2 − e4,

R(e1, e4)e2 = e1 + e3, R(e1, e4)e3 = e4 − e2, R(e1, e4)e4 = e1 + e3,

R(e1, e5)e1 = 2e5, R(e1, e5)e3 = 2e5, R(e1, e5)e5 = 2e3 − 2e1,

R(e2, e3)e1 = −e2 − e4, R(e2, e3)e2 = e3 − e1, R(e2, e3)e3 = −e2 − e4,

R(e2, e3)e4 = e1 − e3, R(e2, e4)e1 = 2e3, R(e2, e4)e2 = 4e4,

R(e2, e4)e3 = 2e1, R(e2, e4)e4 = 4e2, R(e2, e5)e2 = −2e5,

R(e2, e5)e4 = −2e5, R(e2, e5)e5 = 2e4 − 2e2, R(e3, e4)e1 = e2 + e4,

R(e3, e4)e2 = e1 + e3, R(e3, e4)e3 = −e2 − e4, R(e3, e4)e4 = −e1 − e3,

R(e3, e5)e1 = 2e5, R(e3, e5)e3 = −2e5, R(e3, e5)e5 = −2e1 − 2e3,

R(e4, e5)e2 = −2e5, R(e4, e5)e4 = 2e5, R(e4, e5)e5 = −2e2 − 2e4.

With the help of the expressions of the curvature tensor we conclude that the
manifold is a (k, µ)-paracontact metric manifold with k = −2 and µ = 2. Also
from the above expressions we obtain the following:

S(e1, e1) = S(e4, e4) = −4, S(e2, e2) = S(e3, e3) = S(e5, e5) = 0.

Using the above results it can be easily verified that such a manifold does not
satisfy the Equation (3.1). Thus Theorem 3.1 is verified.
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