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On New Applications of Fractional Calculus
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abstract: In the present paper author derive a number of integrals concerning
various special functions which are applications of the one of Osler result. Osler
provided extensions to the familiar Leibniz rule for the nth derivative of product of
two functions.
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1. Introduction

One of the most frequently encountered tools in the theory of fractional calculus
(that is, differentiation and integration of an arbitrary real or complex order) is
furnished by the familiar differentiable operator aD

q
x defined and represented by

Oldham and Spanier [18]:

aD
q
x =

1

Γ(−q)

∫ x

a

(x− y)−q−1f(y)dy (a ∈ C,ℜ(q) < 0) , (1.1)

and

aD
q
x = Dn

x

[

1

Γ(n− q)

∫ x

a

(x− y)n−q−1f(y)dy

]

= Dn
x

[

aD
q−n
x f(x)

]

,

(1.2)

where n is the least positive integer such that n > q.

The operator aD
q
x provides a generalization of the familiar differential and in-

tegral operator, viz., D
(

≡ d
dx

)

and D−1. For a = 0 the operator Dq
x is given

by:
Dq

x =a Dq
x (q ∈ C) , (1.3)
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corresponding essentially to the classical Riemann-Liouville fractional derivative
(or integral) of order q (or −q). Moreover, when a → ∞, Equation (1) may be
identified with the definition of the familiar Weyl fractional derivative (or integral)
of order q (or −q ).

In recent years there has appeared a great deal of literature discussing the ap-
plication of the aforementioned fractional calculus operators in a number of areas
of mathematical analysis (such as ordinary and partial differential equations, in-
tegral equations, summation of series, et cetera) and now stands on fairly firm
footing through the research contribution of various authors (cf., e.g., [1,2,3,4,5,6,
7,8,9,10,11,12,14,16,17] ). Here, we aim derive some summations series concerning
generalized hypergeometric function which are applications of the one of Samko
result.

The integral analog of the generalized Leibnitz rule in the theory of fractional
calculus was given by Osler [19] in the following form:

Dα
z [u(z) v(z)] =

∫ ∞

−∞

(

α

η

)

Dα−η
z [u(z)]Dη

z [v(z)] (α, η ∈ C) (1.4)

The generalized hypergeometric function of one variable viz., pFq[.; .; z] defined as
(see, for details, Srivastava and Karisson 1985, [20, p.19]):

pFq[z] = pFq

[

(ap);
(bq);

z

]

=
∞
∑

n=0

∏p
j=1(aj)n

∏q
j=1(bj)n

zn

n!
,

(1.5)

provided p ≦, p = q + 1 and |z| < 1.

2. Main Results

Here, we establish certain summations of series formulas for the generalized
hypergeometric function.

1. For ℜ(λ+ µ) > 1
∫ ∞

−∞

(

α

η

)

[1F1(µ;µ− α+ η; iaz) + 1F1(µ;µ− α+ η;−iaz)]

Γ(λ− η) Γ(µ− α+ η)

[1F1(λ;λ− η; ibz) + 1F1(λ;λ− η;−ibz)]

=
Γ(µ+ λ− 1)

Γ(µ) Γ(λ) Γ(µ+ λ− α− 1)
[1F1(µ+ λ− 1;µ+ λ− α− 1; i(a+ b)z)

+1F1(µ+ λ− 1;µ+ λ− α− 1;−i(a+ b)z)

+1F1(µ+ λ− 1;µ+ λ− α− 1; i(a− b)z)

+1F1(µ+ λ− 1;µ+ λ− α− 1;−i(a− b)z)]
(2.1)
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2. For ℜ(λ+ µ) > 1

∫ ∞

−∞

(

α

η

)

[1F1(µ;µ− α+ η; iaz)− 1F1(µ;µ− α+ η;−iaz)]

Γ(λ− η) Γ(µ− α+ η)

[1F1(λ;λ− η; ibz) + 1F1(λ;λ− η;−ibz)]

= 2
Γ(µ+ λ− 1)

Γ(µ) Γ(λ) Γ(µ+ λ− α− 1)
[1F1(µ+ λ− 1;µ+ λ− α− 1; i(a+ b)z)

− 1F1(µ+ λ− 1;µ+ λ− α− 1;−i(a+ b)z)

+ 1F1(µ+ λ− 1;µ+ λ− α− 1; i(a− b)z)

−1F1(µ+ λ− 1;µ+ λ− α− 1;−i(a− b)z)]
(2.2)

3. For ℜ(λ+ µ) > 1

∫ ∞

−∞

(

α

η

)

2F2(a+m+ 1, µ; a+ 1, µ− α+ η;−k1z)

Γ(λ− η) Γ(µ− α+ η)
1F1(λ;λ− η; k1z)

=
Γ(µ+ λ− 1)

Γ(µ) Γ(λ) Γ(µ+ λ− α− 1)
2F2(−m,µ+ λ− 1; a+ 1, µ+ λ− α− 1; k1z)

(2.3)

4. For ℜ(λ+ µ) > 1

∫ ∞

−∞

(

α

η

)

1F1

(

µ; 1
2 , µ− α+ η + n; −a2z

4

)

Γ(λ − η − n) Γ(µ− α+ η + n)
1F1

(

λ;
1

2
, λ− η − n;

−b2z

4

)

=
Γ(µ+ λ− 1)

2Γ(µ+ λ− α− 1)

[

1F1

(

µ+ λ− 1;
1

2
, µ+ λ− α− 1;−

(a+ b)2z

4

)

+1F1

(

µ+ λ− 1;
1

2
, µ+ λ− α− 1;−

(a− b)2z

4

)]

(2.4)

5. For ℜ(λ+ µ) > 1

∫ ∞

−∞

(

α

η

)

[f(α, µ, η, z)g(λ, η, z)]

=

[

C1F1

(

µ+ λ− 1;
1

2
, µ+ λ− α− 1;

(a+ b)2z

4

)

z−1

+D1F2

(

µ+ λ−
1

2
;
3

2
, µ+ λ− α−

1

2
;
(a+ b)2z

4

)

z−1/2

]

,

(2.5)
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where

f(α, µ, η, z) =
Γ(µ)

(µ− α+ η)
1F2

(

µ;
1

2
, µ− α+ η;

a2z

4

)

z−1/2

+
aΓ

(

µ+ 1
2

)

(

µ− α+ η + 1
2

) 1F2

(

µ+
1

2
;
3

2
, µ− α+ η +

1

2
;
a2z

4

)

g(λ, η, z) =
Γ(λ)

(λ− η)
1F2

(

λ;
1

2
, λ− η;

b2z

4

)

z−1/2

+
bΓ

(

λ+ 1
2

)

(

λ− η + 1
2

) 1F2

(

λ+
1

2
;
3

2
, λ− η +

1

2
;
b2z

4

)

C =
Γ(µ+ λ− 1)

(µ+ λ− α− 1)

D =
(a+ b)Γ

(

µ+ λ− 1
2

)

(

µ+ λ− α− 1
2

)

3. Method of derivation

Let L and R are the left-hand and right-hand sides of the result (1.4). By
choosing specific following values of u(z) and v(z)

u(z) = zµ−1 cos az (3.1)

v(z) = zλ−1 cos bz (3.2)

Then LHS of (1.4), becomes

L = Dα
z [u(z)v(z)] (3.3)

Dα
z

[

1

2
zµ+λ−2{cos(a+ b)z + cos(a− b)z}

]

(3.4)

and using known results [15, p.189], we obtain

=
1

4

Γ(µ+ λ− 1)

Γ(µ+ λ− α− 1)
[1F1(µ+ λ− 1;µ+ λ− α− 1; i(a+ b)z) (3.5)

+1F1(µ+ λ− 1;µ+ λ− α− 1;−i(a+ b)z) (3.6)

+1F1(µ+ λ− 1;µ+ λ− α− 1; i(a− b)z) (3.7)

+1F1(µ+ λ− 1;µ+ λ− α− 1;−i(a− b)z)] zµ+λ−α−2 (3.8)

For R. H. S., we similarly have

R =

∫ ∞

−∞

(

α

η

)

Dα−η
z

[

zµ−1 cos az
]

Dη
z

[

zλ−1 cos bz
]

, where (3.9)
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Dα−η
z

[

zµ−1 cos az
]

=
Γ(µ)

2Γ(µ− α+ η)
[1F1(µ;µ− α+ η; iaz) (3.10)

+1F1(µ;µ− α+ η;−iaz)] zµ−α+η−1. (3.11)

Dη
z

[

zλ−1 cos bz
]

=
Γ(λ)

2Γ(λ− η)
[1F1(λ;λ− η; ibz) + 1F1(λ;λ− η;−ibz)] zλ−η−1

(3.12)
By using (1.4), we get the desired result (2.1).
Summation series from (2.2) to (3.1) are similarly established by choosing;

{

u(z) = zµ−1 sin az
v(z) = zλ−1 cos bz

(3.13)

{

u(z) = zµ−1Lα
m(k1z)e

−k1z

v(z) = zλ−1ek1z (3.14)

{

u(z) = zµ−1 cos
(

az1/2
)

v(z) = zλ−1 cos
(

bz1/2
) (3.15)

in (1.3) and using known results [15, p.189,Eq.(26) and (32); p.193, Eq.(51),
p.192, Eq.(50) and p.187, Eq. (14); p. 190,Eq. (35); p.188, Eq.(21)], respectively.

4. Special Cases

In view of the large number of parameters involved in the results established
above, these integrals are capable of yielding a number of known results and new
interesting results including integrals due to Arora and Koul [13, p.932, Eqs. (2.1)
and (2.2)]. These are not record here for lack of space.
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