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abstract: This paper studies dispersiveness of semiflows on fiber bundles. The
main result says that a right invariant semiflow on a fiber bundle is dispersive on
the base space if and only if there is no almost periodic point and the semiflow is
dispersive on the total space. A special result states that linear semiflows on vector
bundles are not dispersive.
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1. Introduction

A right invariant semiflow µt on the total space Q of a principal bundle Q→ B
induces a semiflow on the base space B and a semiflow on the associated bundle
E = Q×GF . Moreover, the semiflow µt generates a semigroup action on the typical
fiber F of the associated bundle E. The relationship between these dynamics
has been extensively studied in the literature. Morse decompositions and chain
recurrence for semiflows on fiber bundles were investigated in [4], [5], [6], [7], [9],
[10], and [13]. Lyapunov stability and attraction for semiflows on fiber bundles
were studied in [11]. A generalization of Lyapunov stability and attraction for
semigroup actions on fiber bundles was recently published ( [3]). The present paper
contributes to the studies of recursiveness and dispersiveness for semiflows on fiber
bundles.

A topological method of studying dynamical concepts on nonmetric spaces was
formulated by Patrão and San Martin [8]. They introduced the notion of admissible
family of open coverings to study chain recurrence and Morse decomposition of
semiflows on topological spaces. The concept of admissible family of open coverings
was reformulated in [12] by adding the direct set property. A topological space
that admits an admissible family of open covering is called an admissible space.
Recently, one discoveries that a topological space is uniformizable if and only if it
is admissible ( [1]). In the case of a locally trivial bundle, an admissible family of
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open coverings of the total space can be constructed by means of the admissible
family of open coverings of the base space, in such a way that the projection become
uniformly continuous ( [9]).

If π : Q → B is a principal bundle with structure group G and µ is a right
invariant semiflow on Q, the collection of the limit sets and the prolongational
limit sets is G-invariant (Proposition 3.3). It follows that every point in the fiber
qG is forward Poisson stable (nonwandering) whenever q is forward Poisson stable
(nonwandering). Therefore, if Q is a homogeneous space of G, all the points in
Q are forward Poisson stable (nonwandering) if there is a forward Poisson stable
point (nonwandering point). In particular, if Q is a compact homogeneous space
of G, then every point in Q is Poisson stable. On the other hand, the semiflow is
dispersive if J (q) = ∅ for some q ∈ Q, where J (q) means the prolongational limit
set of q. By speaking on the associated bundle E = Q ×G F , a forward Poisson
stable point v in the fiber F induces forward Poisson stable points [q, v] in E and
π (q) in B (Theorem 3.8). This fact implies that linear semiflows on vector bundles
are not dispersive. Similarly, a nonwandering point v in F induces nonwandering
points [q, v] in E and π (q) in B. If the semiflow induced on the base space B is
dispersive, then all the semiflows on Q, E, and F are dispersive. On the other
hand, if there is no almost periodic point in B and the semiflow is dispersive on E
then the semiflow on B is dispersive (Theorem 3.18).

2. Recursiveness and dispersiveness

This section contains the basic definitions and properties of recursiveness and
dispersiveness for semiflows on admissible spaces.

Let µ : R+ ×M → M be a continuous semiflow on the Hausdorff space M .
We denote by µt : M → M the map defined by µt (x) = µ (t, x). For t ∈ R

+ and
X ⊂M we define the sets

µ+
t (X) =

⋃

s≥t

µs (X) and µ−
t (X) =

⋃

s≥t

µ−1
s (X) .

The forward and backward orbits of X are the sets µ+ (X) = µ+
0 (X) and µ− (X) =

µ−
0 (X), respectively. We say that X is forward invariant if µ+ (X) ⊂ X ; it is

backward invariant if µ− (X) ⊂ X ; and it is invariant if it is forward and backward
invariant. The ω-limit set of X is defined as

ω(X) =
⋂

t>0

cls(µ+
t (X)),

and the ω∗-limit set of X is defined by

ω∗(X) =
⋂

t>0

cls(µ−
t (X)).

In general, ω (X) is forward invariant and cls (µ+ (x)) = µ+ (x) ∪ ω (x) for every
x ∈M .
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A set N ⊂ M is a (forward) minimal set if N is nonempty, closed, forward
invariant, and N has no proper subset with these properties. It is well-known that
a set N is a minimal set if and only if cls

(

µ+
t (x)

)

= N for all x ∈ N and t ∈ R
+.

Moreover, if X ⊂ M is a compact forward invariant set then there is a compact
minimal set in X . A point x ∈ M is said to be almost periodic if cls (µ+ (x)) is a
minimal set. In particular, singular points and periodic points are almost periodic.

Note that the singular points, the periodic trajectories, and the almost periodic
trajectories of the semiflow lie in the limit sets. This property of the limit sets
reveals their aspect of stability, which is stated as follows.

Definition 2.1. A nonempty subset X ⊂ M is said to be forward recursive with
respect to the nonempty subset Y ⊂ M if for every t > 0, µ+

t (Y ) ∩ X 6= ∅;
the set X is said to be backward recursive with respect to the set Y if for every
t > 0, µ−

t (Y ) ∩ X 6= ∅. A point x ∈ M is said to be forward Poisson stable if
every neighborhood V of x is forward recursive with respect to the single set {x},
the point x is said to be backward Poisson stable if every neighborhood V of x is
backward recursive with respect to the set {x}. The point x is Poisson stable if x
is forward and backward Poisson stable.

It is easily seen that the point x ∈ M is forward Poisson stable if and only if
x ∈ ω (x), which is equivalent to ω (x) = cls

(

µ+
t (x)

)

for every t > 0. The singular
points, the periodic points, and the almost periodic points are Poisson stable.

Let U,V be two open coverings ofM . We write V 6 U if V is a refinement of U.
This relation is a preorder on the set of all open coverings of M . We write V 6

1
2U

if for every V, V ′ ∈ V, with V ∩ V ′ 6= ∅, there is U ∈ U such that V ∪ V ′ ⊂ U .
For a covering U of M and a subset X ⊂ M , the star of X with respect to U

is the set
St [X,U] =

⋃

{U ∈ U : X ∩ U 6= ∅} .

Definition 2.2. A family O of open coverings of M is said to be admissible if it
satisfies the following properties:

1. For each U ∈ O, there is V ∈ O such that V 6
1
2U;

2. Let N ⊂ M be an open set and K a compact of M contained in N . Then
there is an open covering U ∈ O such that St [K,U] ⊂ N ;

3. For any U,V ∈ O, there is W ∈ O such that W 6 U and W 6 V.

The space M is said to be admissible if it admits an admissible family of open
coverings.

As mentioned in the introduction, the topological space M is admissible if and
only if it is uniformizable. The stars St [x,U], for U in the admissible family, form
a neighborhood base at x in the topology of M .

From now on, we assume that M is an admissible space endowed with the
admissible family O of open coverings of M .
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Definition 2.3. Let x ∈M and t ∈ R
+. The forward and backward t-prolongations

of x are respectively the sets

D+(x, t) =
⋂

U∈O

cls
(

µ+
t (St [x,U])

)

and D−(x, t) =
⋂

U∈O

cls
(

µ−
t (St [x,U])

)

.

We denote D+(x) = D+(x, 0) and D−(x) = D−(x, 0) for all x ∈ M . The
forward and backward prolongations of a set X ⊂ M are defined as D+ (X, t) =
⋃

x∈X D+ (x, t) and D− (X, t) =
⋃

x∈X D− (x, t), respectively. It is easily seen
that D+ (X, t) is forward invariant, because each D+ (x, t) is forward invariant.
Moreover, if X is compact, then D+ (X, t) is closed ( [3, Proposition 2.9]).

Definition 2.4. The forward prolongational limit set of x ∈M is defined as

J (x) =
⋂

t∈R+

D+ (x, t) =
⋂

t∈R+

⋂

U∈O

cls
(

µ+
t (St [x,U])

)

and the backward prolongational limit set of x as

J∗ (x) =
⋂

t∈R+

D− (x, t) =
⋂

t∈R+

⋂

U∈O

cls
(

µ−
t (St [x,U])

)

.

The forward and backward prolongational limit sets of a set X ⊂ M are de-
fined as J (X) =

⋃

x∈X J (x) and J∗ (X) =
⋃

x∈X J∗ (x), respectively. Since the
admissible family O is directed by refinements we have

J (x) =

{

y ∈M : there are nets tλ → +∞ and xλ → x
such that µ (tλ, xλ) → y

}

,

J∗ (x) =

{

y ∈M : there are nets tλ → +∞ and yλ → y
such that µ (tλ, yλ) → x

}

.

In particular, y ∈ J (x) if and only if x ∈ J∗ (y). This description shows that
the concept of prolongational limit set does not depend on the admissible family
of open coverings.

Note that the forward prolongational limit set J (x) contains the limit set ω (x),
while the backward prolongational limit set J∗ (x) contains the limit set ω∗ (x).
The following theorem is proved in [2, Theorem 4.3, Chapter II] for the case of
dynamical systems on metric spaces. The proof for semiflows on admissible spaces
follows analogously by using nets.

Theorem 2.5. For any x ∈M ,

1. D+ (x) = µ+ (x) ∪ J (x) = cls (µ+ (x)) ∪ J (x) .

2. If µt is an open map for every t, then J∗ (x) is backward invariant.

3. Both J (x) and J∗ (x) are forward invariant.
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The following result is proved in [11, Proposition 2.2] and describes the limit
sets and the prolongational limit sets under conjugation.

Proposition 2.6. Let σ : R+ ×N → N be a semiflow on the admissible space N .
Assume that f : M → N is a continuous semiconjugation between µ and σ, that
is, f (µ (t, x)) = σ (t, f (x)) for all x ∈ M and t > 0. For X ⊂ M , the following
inclusions hold:

1. f(ω(X)) ⊂ ω(f(X));

2. f(D+(X, t)) ⊂ D+(f(X), t);

3. f(J(X)) ⊂ J(f(X)).

Another aspect of recursiveness is represented in terms of the nonwandering
points. There are situations in which a point is Poisson unstable but lies in its
prolongational limit set.

Definition 2.7. A point x ∈ M is nonwandering if every neighborhood U of x is
forward recursive with respect to itself, that is, µ+

t (U) ∩ U 6= ∅ for all t > 0.

By [14, Theorem 4.1], the following statements are equivalent:

1. x is nonwandering.

2. x ∈ J (x).

3. For every neighborhood U of x and t > 0, µ−
t (U) ∩ U 6= ∅.

4. x ∈ J∗(x).

The dispersiveness is characterized by the absence of recursiveness, as follows.

Definition 2.8. Let x ∈M .

1. The point x is called forward Poisson unstable if x /∈ ω (x), backward Poisson
unstable whenever x /∈ ω∗ (x), and Poisson unstable if it is both forward and
backward Poisson unstable.

2. The point x is called wandering whenever x /∈ J(x).

Definition 2.9. The semiflow µ is said to be:

1. Forward (backward) Poisson unstable if each x ∈ M is forward (backward)
Poisson unstable, and Poisson unstable whenever it is both forward and back-
ward Poisson unstable.

2. completely unstable if every x ∈M is wandering.

3. dispersive if for every pair of points x, y ∈ M there are neighborhoods Ux of
x and Uy of y such that Ux is not forward recursive with respect to Uy , that
is, there is t ≥ 0 such that Ux ∩ µ+

t (Uy ) = ∅.
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The following result shows how the prolongational limit sets play in dispersive
semiflows.

Theorem 2.10. The following statements are equivalent:

1. The semiflow µ is dispersive.

2. For each pair of points x, y ∈M , y /∈ J (x).

3. For any point x ∈M , J (x) = ∅.

4. D+ (x) = µ+ (x), for every x ∈ M , and there is no almost periodic point in
M .

Proof. See [14, Theorem 5.1]. ✷

We may also describe the dispersive semiflows by means of the Lagrange insta-
bility.

Definition 2.11. Let x ∈ M . The motion µx is said to be forward Lagrange

stable if cls (µ+ (x)) is a compact set; the motion µx is called forward Lagrange

unstable if cls (µ+ (x)) is not compact. The semiflow µ is said to be forward

Lagrange unstable if for each x ∈M the motion µx is forward Lagrange unstable.

Theorem 2.12. The semiflow µ is dispersive if and only if µ is forward Lagrange
unstable and D+ (x) = µ+ (x), for every x ∈M .

Proof. Suppose that µ is forward Lagrange unstable andD+ (x) = µ+ (x), for every
x ∈M . If the semiflow was not dispersive, then a periodic trajectory µx (t) would
exist. By taking τ > 0 such that µx (τ ) = x, it would follow that cls (µ+ (x)) =
µx ([0, τ ]) is compact, and therefore µx would be forward Lagrange stable. As to
the converse, suppose that µ is dispersive. Then D+ (x) = µ+ (x), for every x ∈M ,
and there is no minimal set in M . As the forward orbits are forward invariant sets,
it follows that there is no Lagrange stable motion. ✷

3. Semiflows on fiber bundles

This section contains the main results of the paper. We present a criteria for
dispersive semiflow on fiber bundle.

Let G be a topological group acting on the right on a topological space Q. We
denote by (q, g) ∈ Q×G→ qg ∈ Q the right action of G on Q, and assume that the
action is free. A principal bundle is a quadruplet (Q, π,B,G) where π : Q → B is
an open and surjective map such that π (qg) = π (q) for all q ∈ Q and g ∈ G. The
space B is the base space, the space Q is the total space, and G is the structure
group. Assume that G acts on the left on a topological space F . Then G acts on
the right on Q × F by (q, v) g =

(

qg, g−1v
)

. The quotient space E = Q ×G F is
called bundle associated to the principal bundle (Q, π,B,G), and is indicated by
(E, π,B, F,Q). We denote an element of E as [q, v]. The projection πE : E → B
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defined by π ([q, v]) = π (q). Each fiber Ex = π−1
E (x) of the associated bundle is

homeomorphic with the topological space F , which is called the typical fiber of the
associated bundle.

A principal bundle (Q, π,B,G) is locally trivial, that is, there is an open covering
{Ui}i∈I of the base space B such that, for each i ∈ I, there is a homeomorphism
ψi : π−1 (Ui) → Ui × G, ψi = (π, υi), where υi : π−1 (Ui) → G is a continuous
mapping satisfying υi (qg) = υi (q) g, for all q ∈ π−1 (Ui) and g ∈ G. The family
Ψ = {(Ui, ψi)}i∈I is called a map of M . For each i ∈ I, the application υEi :

π−1
E (Ui) → F given by υEi ([q, u]) = υi (q)u is open, and ψE

i : π−1
E (Ui) → Ui × F

given by ψE
i =

(

πE , υ
E
i

)

is a homeomorphism. Thus, the associated bundle is

locally trivial and the family ΨE =
{(

Ui, ψ
E
i

)}

i∈I
is a map of E.

Let µ : R+ ×Q→ Q be a semiflow on the total space Q of the principal bundle
(Q, π,B,G) which commutes with the right action of G, that is, µt (qg) = µt (q) g
for all q ∈ Q, t ∈ R

+, and g ∈ G. Then µ is a right invariant semiflow and each
map µt : Q → Q is called an endomorphism of Q. The semiflow µ induces the
semiflow µB : R+ ×B → B on the base space defined by µB (t, π (q)) = π (µ (t, q)),
and µ induces the semiflow µE : R

+ × E → E on the associated bundle E =
Q ×G F defined as µE (t, [q, v]) = [µ (t, q) , v]. In particular, the projection π is a
continuous conjugation between the semiflows µE and µB. We often indicate both
the semiflows µB and µE by µ, if there is no confusion.

The semiflow µ induces a semigroup action on the fiber F of the associated
bundle E. For q ∈ Q we define the set

R
+
q = {g ∈ G : there is t ∈ R

+ such that µ (t, q) = qg},

which is a subsemigroup of G. We often denote by gt the element of R+
q such

that µ (t, q) = qgt. Then g0 = 1 ∈ R
+
q , where 1 is the identity of G. Moreover,

gtgs = gt+s for all gt, gs ∈ R
+
q .

There are situations where the semigroup R
+
q is an one-parameter subgroup of

G.

Example 3.1. Let G be a topological group and H ⊂ G a closed subgroup of
G. The quotient map π : G → G/H of G onto the homogeneous space G/H is
a principal bundle with structural group H. Let γ : R → H be a one-parameter
subgroup of H, that is, a homomorphism of R into H. Define µ : R × G → G
by µ (t, g) = γ (t) g. Then µ is a right invariant flow on the principal bundle
(G, π,G/H,H). If 1 is the identity in G, then R1 = {γ (t)}t∈R

. For h ∈ H, we

have µ (t, h) = γ (t) h = hh−1γ (t)h. Hence, Rh =
{

h−1γ (t)h
}

t∈R
= h−1

R1h, for
every h ∈ H, that is, Rh is the conjugation of R1 by h. If H is a normal subgroup
of G, then Rg = g−1

R1g, for every g ∈ G.

Example 3.2. Let π : V → B be an n-dimensional real vector bundle. For x ∈ B,
a frame σx on x is an invertible linear map σx : Rn → Vx where Vx is the fiber of
V above x. The set of all frames is denoted by BV . The bundle of frames of V
is the bundle p : BV → B defined as p (σx) = x. The structural group of BV is
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G = GL (n,R) that acts on the right on BV by σg = σ ◦ g, σ ∈ BV , g ∈ GL (n,R).
The vector bundle π : V → B is recovered from BV as the associated bundle
obtained by the standard linear action of GL (n,R) in R

n. Let µ : R+ × V → V be
a right invariant semiflow which is linear and invertible on fibers. Then µ lifts to a
semiflow on BV by putting µt (σ) = µt ◦σ. It is easily seen that µt (σg) = µt (σ) g,
for all σ ∈ BV and g ∈ GL (n,R). Suppose that the fiber Vx is invariant by µ.
Then µt is an automorphism of Vx for all t ∈ R

+. For a given frame σx on x, there
is gt ∈ GL (n,R) such that µt ◦ σx = σx ◦ gt, that is, σ−1

x ◦ µt ◦ σx = gt. Hence,
we have R

+
σx

=
{

σ−1
x ◦ µt ◦ σx

}

t∈R+ , that may be extended to a one-parameter

subgroup
{

σ−1
x ◦ µt ◦ σx

}

t∈R
in GL (n,R).

There are cases in which the semigroup R
+
q is the trivial subgroup {1}. If q ∈ Q

is a rest point, then R
+
q = {1} with gt = 1 for all t ∈ R

+; if q is not a rest point,
but the trajectory through q is periodic, then R

+
q = {1} with gnτ = 1 for some

τ > 0 and every n ∈ N. In general, if R+
q 6= {1} then µB (t, π (q)) is a periodic

trajectory in the base space B.
For studying limit behavior for the action of R+

q on F , we assume that there is
gt ∈ R

+
q with t > 0. Then gnt = gnt ∈ R

+
q for every n ∈ N, and nt → +∞. For a

given set K ⊂ F , the ω-limit and the ω∗-limit set of K are defined as

ω (K) =

{

v ∈ F : there are nets (tλ) in R
+ and (xλ) in K

such that tλ → +∞ and gtλxtλ → v

}

,

ω∗ (K) =

{

v ∈ F : there are nets (tλ) in R
+ and (xλ) in K

such that tλ → +∞ and g−1
tλ
xtλ → v

}

.

For v ∈ F , the forward and the backward prolongational limit sets of v are defined
by

J (v) = {u ∈ F : there are nets tλ → +∞ and vλ → v such that gtλvλ → u} ,

J∗ (v) = {u ∈ F : there are nets tλ → +∞ and uλ → u such that gtλuλ → v} .

Since R
+
q is a subsemigroup of a group, we have

J∗ (v) =
{

u ∈ F : there are nets tλ → +∞ and vλ → v such that g−1
tλ
vλ → u

}

.

The following result is partially proved in the setting of semigroup actions on
fiber bundles ( [3, Theorem 4.1]). We complete the proof for semiflows.

Proposition 3.3. Let µ : R+ ×Q → Q be a right invariant semiflow on the total
space Q of the principal bundle (Q, π,B,G). Then ω (q) g = ω (qg), ω∗ (q) g =
ω∗ (qg), J (q) g = J (qg), and J∗ (q) g = J∗ (qg), for all q ∈ Q and g ∈ G.

Proof. If p ∈ ω (q) then there is tλ → +∞ such that µ (tλ, q) → p. For g ∈ G, it
follows that µ (tλ, qg) → pg, and therefore pg ∈ ω (qg). Hence, ω (q) g ⊂ ω (qg).
On the other hand, ω (qg) = ω (qg) g−1g ⊂ ω (q) g, and therefore ω (q) g = ω (qg).
If p ∈ ω∗ (q) and g ∈ G, take an open neighborhood U of pg. Then Ug−1 is an
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open neighborhood of p. For t > 0, we have Ug−1 ∩ µ−
t (q) 6= ∅, which implies

that U ∩ µ−
t (qg) 6= ∅. Hence, pg ∈ cls

(

µ−
t (qg)

)

. It follows that pg ∈ ω∗ (qg), and
therefore ω∗ (q) g ⊂ ω∗ (qg). The inclusion ω∗ (qg) ⊂ ω∗ (q) g is easy of checking.
Now, take p ∈ J (q) and g ∈ G. There are nets tλ → +∞ and qλ → q such that
µ (tλ, qλ) → p. Hence, qλg → qg and µ (tλ, qλg) → pg, and therefore pg ∈ J (qg).
Thus, J (q) g = J (qg). Finally, if p ∈ J∗ (q), then q ∈ J (p). Hence, qg ∈ J (pg),
and therefore pg ∈ J∗ (qg). It follows that J∗ (q) g = J∗ (qg). ✷

In other words, the collection of the limit sets and the prolongational limit sets
is invariant by G. This property implies the following results.

Corollary 3.4. Let µ : R+ × Q → Q be a right invariant semiflow on the total
space Q of the principal bundle (Q, π,B,G). The following statements hold:

1. If q ∈ Q is forward (backward) Poisson stable, then all points in the fiber qG
are forward (backward) Poisson stable;

2. If q ∈ Q is nonwandering, then all points in the fiber qG are nonwandering.

Corollary 3.5. Assume that G acts transitively on the right on Q (Q is a homo-
geneous space of G) and let µ : R+ ×Q→ Q be a right invariant semiflow.

1. If there exists a forward (backward) Poisson stable point in Q, then all the
points in Q are forward (backward) Poisson stable;

2. If there exists a nonwandering point in Q, then all the points in Q are non-
wandering.

3. If Q is compact, then every point in Q is Poisson stable.

4. If there exists a forward (backward) Poisson unstable point in Q, then the
semiflow is forward (backward) Poisson unstable

5. If there exists a wandering point in Q, then the semiflow is completely unsta-
ble.

6. If J (q) = ∅ for some q ∈ Q, then the semiflow is dispersive.

Example 3.6. Consider the differential equation g′ = Ag on G = GL (2,R) with
A skew-symmetric. The flow associated to this equation is given by µ (t, g) =
exp (tA) g, where exp (tA) ∈ SO (2,R). Hence, the trajectories of this flow are
periodic, and therefore every point in G is Poisson stable.

Example 3.7. Consider the differential equation g′ = Ag on G = GL (n,R) where
A is a diagonalizable matrix with non-negative eigenvalues. The flow associated to
this equation is given by µ (t, g) = exp (tA) g, where exp (tA) → 0 as t→ −∞. Let
1 be the identity matrix. If x ∈ J∗ (1), then there are sequences tn → −∞ and
xn → 1 such that exp (tnA) xn → x. As exp (tnA) → 0, it follows that x = 0.
Hence, J∗ (1) = ∅, and therefore J∗ (g) = ∅ for all g ∈ G. Thus, the flow is
dispersive.
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The following result is proved in [11, Proposition 3.2].

Theorem 3.8. Suppose that (E, π,B, F,Q) is an associated bundle. Fix q ∈ Q and
consider the action of R+

q on the fiber F . For [q, v] ∈ E, the following statements
hold:

1. [q, ω (v)] ⊂ ω ([q, v]) ;

2. [q, J (v)] ⊂ J ([q, v]) ;

3. [q, J∗ (v)] ⊂ J∗ ([q, v]) .

We have the following consequence from Theorem 3.8.

Corollary 3.9. Suppose that (E, π,B, F,Q) is an associated bundle. Fix q ∈ Q
and consider the action of R+

q on the fiber F . The following statements hold:

1. If v ∈ F is forward Poisson stable, then [q, v] ∈ E is forward Poisson stable;

2. If v ∈ F is nonwandering, then [q, v] ∈ E is nonwandering.

3. If [q, v] ∈ E is forward Poisson unstable, then v is forward Poisson unstable.

4. If [q, v] ∈ E is wandering, then v is wandering.

5. If the semiflow on E is completely unstable, then the semigroup action on F
is completely unstable.

6. If the semiflow on E is dispersive, then the semigroup action on F is disper-
sive.

7. If the fiber F is compact, then there is a forward Poisson stable point in E.
In particular, the semiflow is not dispersive.

Proof. Items (1) − (6) are immediate consequences from Theorem 3.8. For item
(7), there is an R

+
q -minimal set M ⊂ F , since F is compact. Hence, every point in

M is forward Poisson stable. Thus, every point in [q,M ] ⊂ E is forward Poisson
stable. ✷

Because of item 7 of Corollary 3.9, for a dispersive semiflow on fiber bundle
with compact typical fiber, gt ∈ R

+
q if and only if t = 0.

Proposition 3.10. Suppose that (E, π,B, F,Q) is an associated bundle. The fol-
lowing statements hold:

1. If [q, v] ∈ E is forward Poisson stable, then π (q) ∈ B is forward Poisson
stable;

2. If [q, v] ∈ E is nonwandering, then π (q) ∈ B is nonwandering.
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Proof. Since π is a continuous conjugation between the semiflows µE and µB, the
result follows by Proposition 2.6. ✷

The following results are consequences from Theorem 3.8 and Proposition 3.10.

Corollary 3.11. Suppose that (E, π,B, F,Q) is an associated bundle.

1. If the semiflow on the base space B is forward Poisson unstable, then both the
semiflow on E and the semigroup action on F are forward Poisson unstable;

2. If the semiflow on the base space B is completely unstable, then both the
semiflow on E and the semigroup action on F are completely unstable;

3. If the semiflow on the base space B is dispersive, then both the semiflow on
E and the semigroup action on F are dispersive.

Corollary 3.12. Let µ : R+ × V → V be a right invariant semiflow on the n-
dimensional vector bundle π : V → B which is linear and invertible on fibers.
Assume that the fibers are µ-invariant. Then every point in the section {[σ, 0]}σ∈BV

is forward Poisson stable.

Proof. Consider the notation as in Example 3.2. For each σ ∈ BV , we have the
one-parameter subgroup R

+
σ =

{

σ−1 ◦ µt ◦ σ
}

t∈R
of GL (n,R). Hence, ω (0) = {0}.

By Theorem 3.8, it follows that [σ, 0] ∈ ω ([σ, 0]). ✷

Example 3.13. Consider the trivial bundle π : B×GL (n,R) → B and define the
flow µ : R×B ×GL (n,R) → B ×GL (n,R) by µ (t, (x, g)) = (x, etg). This flow is
dispersive. For indeed, suppose that (y, h) ∈ J∗ (x, g). Then, there are nets tλ →
−∞ and (xλ, gλ) → (x, g) such that (xλ, e

tλgλ) → (y, h). Then y = x and h = 0.
But (x, 0) /∈ B × GL(n,R). Hence, J∗ (x, g) = ∅, for all (x, g) ∈ B × GL (n,R).
It follows that J (x, g) = ∅ for all (x, g) ∈ B × GL(n,R), that is, the flow on
B ×GL (n,R) is dispersive. However, since the flow induced on the base space B
is trivial, then it is Poisson stable on B. Thus, the converse to Proposition 3.10 is
not true.

Example 3.14. Let M be an n-dimensional manifold and TM the tangent bundle.
Then the projection π : TM → M is an n-dimensional vector bundle. Denote by
BM the bundle of frames of TM . Let

µ : R×BM → BM be the right invariant flow given by µ(t, σ) = etσ. This flow
induces the flow µt ([σ, v]) = [etσ, v] = [σ, etv] on TM = BM ×Gl(n,R) R

n, which is
linear on fibers. As in Example 3.13, this flow is dispersive on BM . Nevertheless,
the flow is not dispersive on the tangent bundle. In fact, for σ ∈ BV , Rσ is
the one-parameter subgroup {et1}t∈R. It is easily seen that ω∗ (0) = ω (0) = {0}.
Hence, 0 is Poisson stable. Take u, v ∈ R

n such that u ∈ J∗ (v). Then there
are nets tλ → −∞ and vλ → v such that etλvλ → u. As etλvλ → 0, we have
u = 0. Hence, J∗ (v) = {0} for every v ∈ R

n. But etλv → 0 as tλ → −∞.
Thus, ω∗ (v) = J∗ (v) = {0} for every v ∈ R

n. Now, suppose that J (v) 6= ∅
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and take u ∈ J (v). Then v ∈ J∗ (u) = {0}. Thus, J (v) 6= ∅ if and only if
v = 0. Moreover, J (0) = R

n. For indeed, if u ∈ R
n, we have ene−nu = u → u,

and e−nu → 0 as n → +∞. By Theorem 3.8, we have [σ, 0] ∈ ω ([σ, 0]) and
[σ,Rn] ⊂ J ([σ, 0]). Thus, the points in the section {[σ, 0]}σ∈BM are Poisson stable.
Moreover, J ({[σ, 0]}) = TM .

We now discuss the situation in what a dispersive semiflow on the associated
bundle yields a dispersive semiflow on the base space of a fiber bundle. Assume
that G acts on the left on a compact metric space (F, d) and let πE : E → B be
the bundle associated to π, where E = Q ×G F . Consider a trivializing covering

{Ui}i∈I of Q and take the map ΨE =
{(

Ui, ψ
E
i

)}

i∈I
of E. The total space E is

locally compact, since it is locally trivial and F is compact.

Let O be the family of all open coverings of B. Since B is paracompact, O is
admissible. Given ε > 0 and U ∈ O, a Ψ-adapted covering of E is defined as

Uε =

{

(

ψE
i

)−1

((U ∩ Ui)×Bε (u)) : U ∈ U, i ∈ I, u ∈ F

}

.

We denote OΨ (E) the family of all Ψ-adapted coverings. The family OΨ (E) is
admissible (see [9, Section 3.2]).

Lemma 3.15. For any q ∈ Q and Uε ∈ OΨ (E), one has the inclusions

π−1
E (St [π (q) ,V]) ⊂ St

[

Eπ(q),Uε

]

⊂ π−1
E (St [π (q) ,U])

where V refines both U and {Ui}i∈I .

Proof. If [p, u] ∈ π−1
E (St [π (q) ,V]), then π (p) ∈ St [π (q) ,V]. Hence, there are V ∈

V such that π (p) , π (q) ∈ V . As V refines both U and {Ui}i∈I , there are U ∈ U and
i ∈ I such that V ⊂ U ∩Ui. Thus, π (p) , π (q) ∈ U ∩Ui. Take w = υi (p)u and v =

υi (q)
−1 w. We have ψE

i ([p, u]) = (π (p) , w) and ψE
i ([q, v]) = (π (q) , w). Hence,

[p, u] , [q, v] ∈
(

ψE
i

)−1

((U ∩ Ui)×Bε (w)), and therefore [p, u] ∈ St [[q, v] ,Uε]. It

follows that π−1
E (St [π (q) ,V]) ⊂ St

[

Eπ(q),Uε

]

. Now, let [p, u] ∈ St
[

Eπ(q),Uε

]

.
Then, there are U ∈ U, i ∈ I, w ∈ F , and [q, v] ∈ Eπ(q) such that [p, u] , [q, v] ∈
(

ψE
i

)−1

((U ∩ Ui)×Bε (w)). It follows that πE ([p, u]) , πE ([q, v]) ∈ U ∩ Ui, that

is, πE ([p, u]) ∈ St [π (q) ,U]. Therefore, St
[

Eπ(q),Uε

]

⊂ π−1
E (St [π (q) ,U]). ✷

Proposition 3.16. Let the assumptions be as in the last paragraph above. For
each q ∈ Q,

π−1
E

(

D+ (π (q))
)

=
⋂

Uε∈OΨ(E)

cls
(

µ+
(

St
[

Eπ(q),Uε

]))

.
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Proof. It is easily seen that

π−1
E

(

D+ (π (q))
)

= π−1
E

(

⋂

U∈O

cls
(

µ+ (St [π (q) ,U])
)

)

=
⋂

U∈O

π−1
E

(

cls
(

µ+ (St [π (q) ,U])
))

.

Since πE is an open map, we have

π−1
E

(

D+ (π (q))
)

=
⋂

U∈O

cls
(

π−1
E

(

µ+ (St [π (q) ,U])
))

.

Now, let [p, u] ∈ π−1
E (µ+ (St [π (q) ,U])). Then, π (p) ∈ µ+ (St [π (q) ,U]), that is,

there are t ∈ R
+ and π (r) ∈ St [π (q) ,U] such that π (p) = π (µt (r)). Hence,

there is g ∈ G such that p = µt (rg). It follows that [p, u] = µt ([rg, u]) with
πE ([rg, u]) = π (r) ∈ St [π (q) ,U]. Hence, [p, u] ∈ µt

(

π−1
E (St [π (q) ,U])

)

, and

therefore π−1
E (µ+ (St [π (q) ,U])) ⊂ µ+

(

π−1
E (St [π (q) ,U])

)

. On the other hand,

as πE is a conjugation, we have πE

(

µ+
(

π−1
E (St [π (q) ,U])

))

= µ+ (St [π (q) ,U]).

Hence, µ+
(

π−1
E (St [π (q) ,U])

)

⊂ π−1
E (µ+ (St [π (q) ,U])), and therefore

π−1
E

(

µ+ (St [π (q) ,U])
)

= µ+
(

π−1
E (St [π (q) ,U])

)

.

We now have

π−1
E

(

D+ (π (q))
)

=
⋂

U∈O

cls
(

µ+
(

π−1
E (St [π (q) ,U])

))

,

and the proof follows by Lemma 3.15. ✷

This result implies that the prolongations in the base space relate to the pro-
longations in the total space, as follows.

Theorem 3.17. For each x ∈ B,

π−1
E

(

D+ (x)
)

= D+ (Ex) .

Proof. Let x = π (q). Since the fiber Eπ(q) is compact, the prolongationD+
(

Eπ(q)

)

is closed. By Proposition 2.6, we have πE

(

D+
(

Eπ(q)

))

⊂ D+ (π (q)). Hence,

D+
(

Eπ(q)

)

⊂ π−1
E (D+ (π (q))). On the other hand, take [p, u] ∈ π−1

E (D+ (π (q)))
and neighborhood N of [p, u]. Since E is locally compact, there is a neighborhood
V of [p, u] such that cls (V ) is compact and cls (V ) ⊂ N . For Uε ∈ OΨ (E),
there are tUε

∈ R
+ and [qUε

, vUε
] ∈ St

[

Eπ(q),Uε

]

such that µ (tUε
, [qUε

, vUε
]) ∈

V ∩ µ+
(

St
[

Eπ(q),Uε

])

, because of Proposition 3.16. Since cls (V ) and the fiber
Eπ(q) are compact sets, we can assume that the net ([qUε

, vUε
]) converges to some

[q, v] ∈ Eπ(q) and (µ (tUε
, [qUε

, vUε
])) converges to some x ∈ cls (V ). Hence, x ∈

D+ ([q, v]) ∩N , and therefore [p, u] ∈ cls
(

D+
(

Eπ(q)

))

= D+
(

Eπ(q)

)

. ✷
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Finally, we present the necessary and sufficient conditions to the dispersiveness
on the base space of the fiber bundle.

Theorem 3.18. The semiflow on the base space B is dispersive if and only if
there is no almost periodic point and the semiflow on the associated bundle E is
dispersive.

Proof. If the semiflow on B is dispersive, then there is no almost periodic point,
because the limit sets are empty. Furthermore, Corollary 3.11 assures that the
semiflow on E is dispersive. As to the converse, suppose that there is no almost
periodic point and the semiflow on E is dispersive. By Theorem 2.5, D+ ([q, u]) =
µ+ ([q, u]), for every [q, u] ∈ E. Hence, D+ (Ex) = µ+ (Ex), for every x ∈ B. By
Theorem 3.17, it follows that D+ (x) = µ+ (x) for every x ∈ B. Since there is no
almost periodic point, Theorem 2.10 says that the semiflow in B is dispersive. ✷
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Universidade Tecnológica Federal do Paraná,
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