

(3s.) **v. 37** 2 (2019): 67–84. ISSN-00378712 IN PRESS doi:10.5269/bspm.v37i2.28014

Almost Slightly νg -open and Almost Slightly νg -closed Mappings

S. Balasubramanian

ABSTRACT: The aim of this paper is to introduce and study the concepts of almost slightly νg -open and almost slightly νg -closed mappings and the interrelationship between other such maps.

Key Words: νg -open set, νg -open map, νg -closed map, Aalmost slightlyclosed map, Almost slightly-pre closed map, Almost slightly νg -open, Almost slightly νg -closed map, Almost slightly νg -open and Almost slightly νg -closed map.

Contents

1	Introduction	67
2	Preliminaries	68
3	Almost Slightly ν g-open mappings	69
4	Almost Slightly ν g-closed mappings	76

1. Introduction

T.M.Nour introduced slightly semi-continuous functions during the year 1995. After him T.Noiri and G.I.Chae further studied slightly semi-continuous functions on 2000. During 2001 T.Noiri individually studied slightly β -continuous functions. C.W.Baker introduced slightly precontinuous functions. Erdal Ekici and M. Caldas studied slightly γ -continuous functions. Arse Nagli Uresin and others studied slightly δ -precontinuous functions. The Author of the present paper studied slightly $\nu-{\rm continuous}$ functions, Almost Slightly Continuity, Slightly open and Slightly closed mappings, Almost Slightly semi-Continuity, Slightly semi-open and Slightly semi-closed mappings, Almost Slightly pre-continuity, Slightly pre-open and Slightly pre-closed mappings in the year 2013. S. Balasubramanian, C. Sandhya and P.A.S. Vyjayanthi studied Slightly ν -open mappings in the year 2013. S. Balasubramanian and C. Sandhya studied Almost Slightly β -continuity, Slightly β -open and Slightly β -closed mappings in the year 2013. Recently in the year 2014 S. Balasubramanian, P.A.S. Vyjaanthi and C. Sandhya studied Slightly ν -closed mappings. Inspired with these developments we introduce in this paper a new variety of slightly open and closed functions called slightly νq -open and slightly νq -closed function and study its basic properties; interrelation with other type of such functions available in the literature. Throughout the paper a space X means a topological space (X,τ) .

²⁰¹⁰ Mathematics Subject Classification: 54C10, 54C08, 54C05.

Submitted June 01, 2015. Published July 05, 2016

2. Preliminaries

Definition 2.1. $A \subset X$ is said to be

(i) ν -open [resp: regular α -open or $r\alpha$ -open] if there exists a regular open set Osuch that $O \subseteq A \subseteq (\overline{O})$ [resp: $O \subseteq A \subseteq \alpha(\overline{O})$]. (ii)Regular open [resp: semi-open, α -open; pre-open; β -open] if $A = (\overline{A})^o$ [resp: $A \subseteq (\overline{A^o}); A \subseteq ((\overline{A^o}))^o; A \subseteq (\overline{A})^o; A \subseteq (\overline{A})^o$]. (iii)Regular closed [resp: semi-closed; α -closed; pre-closed; β -closed] if $A = \overline{A^o}$ [resp: $(\overline{A})^o \subseteq A; ((\overline{A^o}))^o \subseteq A; (\overline{A^o}) \subseteq A; (\overline{A})^o \subseteq A$]. (iv) resp: ν -closed if its complement is ν -open. (v)g-closed [resp: rg-closed] if $\overline{A} \subseteq U$ whenever $A \subseteq U$ and U is [resp: regular] open in X. (vi)sg-closed [gs-closed] if $s(\overline{A}) \subseteq U$ whenever $A \subseteq U$ and U is semi-open [open] in X. (vii) pg-closed [gp-closed; gpr-closed] if $p(\overline{A}) \subseteq U$ whenever $A \subseteq U$ and U is preopen [open; regular-open] in X. (viii) α g-closed [g\alpha-closed; rg\alpha-closed] if $\alpha(\overline{A}) \subseteq U$ whenever $A \subseteq U$ and U is preopen [open; regular-open] in X.

(viii) αg -closed [$g\alpha$ -closed; $rg\alpha$ -closed] if $\alpha(A) \subseteq U$ whenever $A \subseteq U$ and U is $\{\alpha - open \ [open \ r\alpha - open] \ in \ X.$

 $(ix)\nu g$ -closed if $\nu(\overline{A}) \subseteq U$ whenever $A \subseteq U$ and U is ν -open in X.

 $(x)\beta g$ -closed if $\beta(\overline{A}) \subseteq U$ whenever $A \subseteq U$ and U is β -open in X.

Definition 2.2. A function $f: X \to Y$ is said to be

(i) continuous[resp: semi-continuous; pre-continuous; nearly-continuous; ν -continuous; α -continuous; $r\alpha$ -continuous; β -continuous] if the inverse image of every open set is open[resp: semi-open; pre-open; rgular-open; ν -open; α -open; $r\alpha$ -open; β -open]

(ii) irresolute [resp:pre-irresolute; nearly-irresolute; ν -irresolute; α -irresolute; $r\alpha$ -irresolute; β -irresolute] if the inverse image of every semi-open [resp:pre-open; regular-open; ν -open; α -open; $r\alpha$ -open; β -open] set is semi-open[resp:pre-open; regular-open; ν -open; α -open; $r\alpha$ -open; β -open]

(iii) g-continuous [resp: sg-continuous; pg-continuous; rg-continuous; νg -continuous; αg -continuous; $rg\alpha$ -continuous; βg -continuous] if the inverse image of every closed set is g-closed [resp: sg-closed; pg-closed; rg-closed; νg -closed; αg -closed; $rg\alpha$ -closed; βg -closed]

(iv) g-irresolute [resp: sg-irresolute; pg-irresolute; rg-irresolute; νg -irresolute; αg -irresolute; $rg\alpha$ -irresolute; βg -irresolute] if the image of every g-closed [resp: sg-closed; pg-closed; rg-closed; αg -closed; rg α -closed; βg -closed] set is g-closed [resp: sg-closed; pg-closed; rg-closed; νg -closed; αg -closed; αg -closed; rg α -closed; βg -closed; βg -closed; βg -closed]

Note 1. From the definition 2.1 we have the following implication diagram.

Definition 2.3. X is said to be $T_{\frac{1}{2}}[resp: s - T_{\frac{1}{2}}; p - T_{\frac{1}{2}}; \alpha - T_{\frac{1}{2}}; r - T_{\frac{1}{2}}; \nu - T_{\frac{1}{2}}]$ if every generalized/resp: semi-generalized; pre-generalized; α -generalized; regulargeneralized; ν -generalized/ closed set is closed/resp: semi-closed; pre-closed; α -clo-

sed; regular-closed; ν -closed]

3. Almost Slightly ν g-open mappings

Definition 3.1. A function $f: X \to Y$ is said to be almost slightly νg -open if the image of every r-clopen set in X is νg -open in Y.

Example 3.2. Let $X = Y = \{a, b, c\}$; $\tau = \{\phi, \{a\}, \{b, c\}, X\}$; $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, Y\}$. Let $f : X \to Y$ be defined f(a) = c, f(b) = a and f(c) = b. Then f is almost slightly νg -open, almost slightly rg-open and almost slightly rg α -open but not almost slightly open, almost slightly semi-open, almost slightly pre-open, almost slightly π -open, almost slightly g-open, almost slightly g-open.

Example 3.3. Let $X = Y = \{a, b, c, d\}; \tau = \{\phi, \{a, b\}, \{c, d\}, X\}; \sigma = \{\phi, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, X\}$. Let $f : X \to Y$ be defined f(a) = b, f(b) = a, f(c) = d and f(d) = c. Then f is not almost slightly νg -open.

Theorem 3.4. We have the following interrelation among the following almost slightly open mappings

(i) al.sl.g.open al.sl.gs.open \downarrow \checkmark $\mathrm{al.sl.rg}\alpha.\mathrm{open} \rightarrow \mathrm{al.sl.rg.open} \rightarrow al.sl.\nu g.open \leftarrow \mathrm{al.sl.sg.open} \leftarrow \mathrm{al.sl.\betag.open}$ 1 ↑ ↑ ↑ \nearrow al.sl.
 $r\alpha.open \rightarrow$ al.sl. $\nu.open \searrow$ ↑ $al.sl.r.open \rightarrow al.sl.\pi.open \rightarrow al.sl.open \rightarrow al.sl.\alpha.open \rightarrow al.sl.s.open \rightarrow al.sl.\beta.open$ ` ↓ <u>></u> \searrow \swarrow al.sl. π g.open al.sl.p.open \rightarrow al.sl. $\omega.open \not\leftrightarrow$ al.sl.g $\alpha.open$ \searrow al.sl.gpr.open \leftarrow al.sl.gp.open \leftarrow al.sl.pg.open al.sl.r ω .open None is reversible. (ii) sl.g.open sl.gs.open $\downarrow \downarrow \checkmark$ $\mathrm{sl.rg}\alpha.\mathrm{open} \rightarrow \mathrm{sl.rg.open} \rightarrow al.sl.\nu g.open \leftarrow \mathrm{sl.sg.open} \leftarrow \mathrm{sl.sg.open}$ ↑ ↑ ↑ ↑ ↑ \nearrow sl. $r\alpha$.open \rightarrow sl. ν .open \searrow ↑ ↑ $\mathrm{sl.r.open} \rightarrow \mathrm{sl.}\pi.\mathrm{open} \rightarrow \mathrm{sl.open} \rightarrow \mathrm{sl.}\alpha.\mathrm{open} \rightarrow \mathrm{sl.}\beta.\mathrm{open}$ $\downarrow \searrow$ \searrow $sl.p.open \rightarrow sl.\omega.open \not\leftrightarrow sl.g\alpha.open$ $sl.\pi g.open$ \searrow \mathbf{Y} $sl.r\omega$.open None is reversible. $sl.gpr.open \leftarrow sl.gp.open \leftarrow sl.pg.open$ (iii) If $\nu GO(Y) = RO(Y)$, then the reverse relations hold for all almost slightly open maps. al.sl.g.open al.sl.gs.open $\begin{array}{cccc} & & & & & & \\ & \uparrow & & & & \\ \text{al.sl.rg}\alpha.\text{open} \leftrightarrow \text{al.sl.rg.open} \leftrightarrow \text{al.sl.}\beta\text{g.open} \\ & \uparrow & \uparrow & & \uparrow & \\ & \uparrow & & \uparrow & & \uparrow & \\ \end{array}$ \$ \nearrow al.sl. $r\alpha$.open \leftrightarrow al.sl. ν .open \swarrow \$ \mathbf{Y} al.sl.r.open \leftrightarrow al.sl. π .open \leftrightarrow al.sl. σ .open \leftrightarrow al.sl. β .open

Theorem 3.5. (i) If (Y, σ) is discrete, then f is almost slightly open of all types. (ii) If f is almost slightly open and g is νg -open then $g \circ f$ is almost slightly νg -open. (iii) If f is open and g is almost slightly νg -open then $g \circ f$ is almost slightly νg -open.

Corollary 3.6. If f is almost slightly open and g is $g - [rg -; sg -; gs -; \beta g -; r\alpha g -; rg\alpha -; r\alpha -; \alpha -; \alpha -; s -; p -; \beta -; \nu -; \pi -; r -]$ open then $g \circ f$ is almost slightly νg -open.

Corollary 3.7. If f is open[r-open] and g is $al - sl - g - [al - sl - rg-; al - sl - sg-; al - sl - \beta g-; al - sl - r\alpha g-; al - sl - rg\alpha -; al - sl - r\alpha -; al - sl - \alpha -; al - sl - s -; al - sl - p-; al - sl - \beta -; al - sl - \pi -] open then <math>g \circ f$ is almost slightly νg -open.

Theorem 3.8. If $f: X \to Y$ is almost slightly νg -open, then $f(A^o) \subset \nu g(f(A))^o$

Proof. Let $A \subseteq X$ be r-clopen and $f: X \to Y$ is almost slightly νg -open gives $f(A^o)$ is νg -open in Y and $f(A^o) \subset f(A)$ which in turn gives $\nu g(f(A^o))^o \subset \nu g(f(A))^o - -$

(1) Since $f(A^o)$ is νg -open in Y, $\nu g(f(A^o))^o = f(A^o) - \cdots - (2)$ combining (1) and (2) we have $f(A^o) \subset \nu g(f(A))^o$ for every subset A of X. \Box

Remark 3.9. Converse is not true in general.

Corollary 3.10. If $f: X \to Y$ is $al - sl - g - [al - sl - rg -; al - sl - sg -; al - sl - sg -; al - sl - gs -; al - sl - \beta g -; al - sl - r\alpha g -; al - sl - rg\alpha -; al - sl - r\alpha -; al - sl - \alpha -; al - sl - s -; al - sl - \beta -; al - sl - \beta -; al - sl - \pi -]$ open, then $f(A^o) \subset \nu g(f(A))^o$

Theorem 3.11. If $f: X \to Y$ is almost slightly νg -open and $A \subseteq X$ is open, f(A) is $\tau_{\nu g}$ -open in Y.

Proof. Let *A* ⊂ *X* be r-clopen and *f* : *X* → *Y* is almost slightly νg -open \Rightarrow $f(A^o) \subset \nu g(f(A))^o \Rightarrow f(A) \subset \nu g(f(A))^o$, since $f(A) = f(A^o)$. But $\nu g(f(A))^o \subset f(A)$. Combining we get $f(A) = \nu g(f(A))^o$. Hence f(A) is νg -open in Y. □

Corollary 3.12. If $f: X \to Y$ is $al - sl - g - [al - sl - rg -; al - sl - sg -; al - sl - gs -; al - sl - \beta g -; al - sl - r\alpha g -; al - sl - rg\alpha -; al - sl - r -; al - sl - r\alpha -; al - sl - \alpha -; al - sl - s -; al - sl - p -; al - sl - \beta -; al - sl - \nu -; al - sl - \pi -] open, then <math>f(A)$ is $\tau_{\nu g}$ open in Y if A is open set in X.

Theorem 3.13. If $\nu g(A)^o = r(A)^o$ for every $A \subset Y$, then the following are equivalent: a) $f: X \to Y$ is almost slightly νg -open map

b) $f(A^o) \subset \nu g(f(A))^o$

Proof. (a) \Rightarrow (b) follows from Theorem 3.8. (b) \Rightarrow (a) Let A be any r-clopen set in X, then $f(A) = f(A^o) \subset \nu g(f(A))^o$ by hypothesis. We have $f(A) \subset \nu g(f(A))^o$, which implies f(A) is νg -open. Therefore fis almost slightly νg -open.

Theorem 3.14. If $\nu(A)^o = r(A)^o$ for every $A \subset Y$, then the following are equivalent:

a) $f: X \to Y$ is almost slightly νg -open map b) $f(A^o) \subset \nu g(f(A))^o$

Proof. (a) \Rightarrow (b) follows from Theorem 3.8. (b) \Rightarrow (a) Let A be any r-clopen set in X, then $f(A) = f(A^o) \subset \nu g(f(A))^o$ by hypothesis. We have $f(A) \subset \nu g(f(A))^o$, which implies f(A) is νg -open. Therefore f is almost slightly νg -open. \Box

Theorem 3.15. $f: X \to Y$ is almost slightly νg -open iff for each subset S of Y and each r-clopen set U containing $f^{-1}(S)$, there is an νg -open set V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof. Assume $f: X \to Y$ is almost slightly νg -open. Let $S \subseteq Y$ and U be r-clopen set U containing $f^{-1}(S)$. Then X-U is r-clopen in X and f(X-U) is νg -open in Y as f is almost slightly νg -open and V = Y - f(X-U) is νg -open in Y. $f^{-1}(S) \subseteq U \Rightarrow S \subseteq f(U) \Rightarrow S \subseteq V$ and $f^{-1}(V) = f^{-1}(Y - f(X - U)) = f^{-1}(Y) - f^{-1}(f(X - U)) = f^{-1}(Y) - (X - U) = X - (X - U) = U.$

Conversely Let F be r-clopen in $X \Rightarrow F^c$ is r-clopen. Then $f^{-1}(f(F^c)) \subseteq F^c$. By hypothesis there exists a νg -open set V of Y, such that $f(F^c) \subseteq V$ and $f^{-1}(V) \supset F^c$ and so $F \subseteq [f^{-1}(V)]^c$. Hence $V^c \subseteq f(F) \subseteq f[f^{-1}(V)^c] \subseteq V^c \Rightarrow f(F) \subseteq V^c \Rightarrow$ $f(F) = V^c$. Thus f(F) is νg -open in Y. Therefore f is almost slightly νg -open. \Box

Remark 3.16. Composition of two almost slightly νg -open maps is not almost slightly νg -open in general.

Theorem 3.17. Let X, Y, Z be topological spaces and every νg -open set is r-clopen in Y. Then the composition of two almost slightly νg -open maps is almost slightly νg -open.

Proof. (a) Let f and g be almost slightly νg -open maps. Let A be any r-clopen set in $X \Rightarrow f(A)$ is r-clopen in Y (by assumption) $\Rightarrow g(f(A)) = g \circ f(A)$ is νg -open in Z. Therefore $g \circ f$ is almost slightly νg -open.

Corollary 3.18. Let X, Y, Z be topological spaces and every $g - [rg-; sg-; gs-; \beta g-; r\alpha g-; rg\alpha-; r\alpha-; \alpha-; s-; p-; \beta-; \pi-]$ open set is r-clopen [r-clopen] in Y. Then the composition of two $al - sl - g - [al - sl - rg-; al - sl - sg-; al - sl - gs-; al - sl - \beta g-; al - sl - r\alpha g-; al - sl - rg\alpha-; al - sl - r\alpha -; al - sl - \alpha -; al - sl - s-; al - sl - p-; al - sl - \beta -; al - sl - \nu-; al - sl - \pi-; al - sl - r-] open maps is almost slightly <math>\nu g$ -open.

Example 3.19. Let $X = Y = Z = \{a, b, c\}; \tau = \{\phi, \{a\}, \{a, b\}, X\}; \sigma = \{\phi, \{a, c\}, Y\}$ and $\eta = \{\phi, \{a\}, \{b, c\}, Z\}$. $f: X \to Y$ be defined f(a) = c, f(b) = b and f(c) = a and $g: Y \to Z$ be defined g(a) = b, g(b) = a and g(c) = c, then g, f and $g \circ f$ are almost slightly νg -open.

Theorem 3.20. If $f: X \to Y$ is almost slightly g-open[almost slightly rg-open], $g: Y \to Z$ is νg -open and Y is $T_{\frac{1}{2}}[r - T_{\frac{1}{2}}]$ then $g \circ f$ is almost slightly νg -open.

Proof. (a) Let A be r-clopen in X. Then f(A) is g-open and so open in Y as Y is $T_{\frac{1}{2}} \Rightarrow g(f(A)) = g \circ f(A)$ is νg -open in Z (since g is νg -open). Hence $g \circ f$ is almost slightly νg -open.

Corollary 3.21. If $f: X \to Y$ is almost slightly g-open [almost slightly rg-open], $g: Y \to Z$ is $g - [rg-; sg-; gs-; \beta g-; r\alpha g-; rg\alpha-; r\alpha-; \alpha-; s-; p-; \beta-; \nu-; \pi-; r-]$ and Y is $T_{\frac{1}{3}}[r - T_{\frac{1}{3}}]$ then $g \circ f$ is almost slightly νg -open.

Theorem 3.22. If $f: X \to Y$ is g-open[rg-open], $g: Y \to Z$ is almost slightly ν g-open and Y is $T_{\frac{1}{2}}[r - T_{\frac{1}{2}}]$ then $g \circ f$ is almost slightly ν g-open.

Proof. (a) Let A be r-clopen in X. Then f(A) is g-open and so open in Y as Y is $T_{\frac{1}{2}} \Rightarrow g(f(A)) = g \circ f(A)$ is νg -open in Z (since g is almost slightly νg -open). Hence $g \circ f$ is almost slightly νg -open.

Corollary 3.23. If $f: X \to Y$ is g-open/[rg-open], $g: Y \to Z$ is $al - sl - g - [al - sl - rg -; al - sl - sg -; al - sl - gs -; al - sl - \beta g -; al - sl - r\alpha g -; al - sl - rg\alpha -; al - sl - \alpha -; al - sl - s -; al - sl - p -; al - sl - \beta -; al - sl - \pi -] open and Y is <math>T_{\frac{1}{2}}[rT_{\frac{1}{2}}]$, then $g \circ f$ is almost slightly νg -open.

Theorem 3.24. If $f: X \to Y$, $g: Y \to Z$ be two mappings such that $g \circ f$ is almost slightly νg -open then the following statements are true.

a) If f is continuous [r-continuous] and surjective then g is almost slightly νg -open. b) If f is g-continuous[resp: rg-continuous], surjective and X is $T_{\frac{1}{2}}$ [resp: $rT_{\frac{1}{2}}$]] then g is almost slightly νg -open.

Proof. For A r-clopen in Y, $f^{-1}(A)$ open in X $\Rightarrow (g \circ f)(f^{-1}(A)) = g(A) \nu g$ -open in Z. Hence g is almost slightly νg -open.

Similarly one can prove the remaining parts and hence omitted. \Box

Corollary 3.25. If $f: X \to Y$, $g: Y \to Z$ be two mappings such that $g \circ f$ is $al - sl - g - [al - sl - rg -; al - sl - sg -; al - sl - gs -; al - sl - \beta g -; al - sl - r\alpha g -; al - sl - rg\alpha -; al - sl - r\alpha -; al - sl - \alpha -; al - sl - s -; al - sl - p -; al - sl - \beta -; al - sl - \nu -; al - sl - \pi -; al - sl - r -] open then the following statements$

are true. a) If f is continuous [r-continuous] and surjective then g is almost slightly νg -open.

b) If f is g-continuous [rg-continuous], surjective and X is $T_{\frac{1}{2}}[rT_{\frac{1}{2}}]$ then g is almost slightly νg -open.

Theorem 3.26. If $f: X \to Y$, $g: Y \to Z$ be two mappings such that $g \circ f$ is νg -open then the following statements are true.

a) If f is almost slightly-continuous [almost slightly-r-continuous] and surjective then g is almost slightly νg -open.

b) If f is almost slightly-g-continuous[almost slightly-rg-continuous], surjective and X is $T_{\frac{1}{2}}[resp: rT_{\frac{1}{2}}]$ then g is almost slightly ν g-open.

Proof. For A r-clopen in Y, $f^{-1}(A)$ open in X $\Rightarrow (g \circ f)(f^{-1}(A)) = g(A) \nu g$ -open in Z. Hence g is almost slightly νg -open.

Corollary 3.27. If $f: X \to Y$, $g: Y \to Z$ be two mappings such that $g \circ f$ is $g - [rg-; sg-; gs-; \beta g-; r\alpha g-; rg\alpha-; r\alpha-; \alpha-; s-; p-; \beta-; \nu-; \pi-; r-]$ open then the following statements are true.

a) If f is almost slightly-continuous [almost slightly-r-continuous] and surjective then g is almost slightly νg -open.

b) If f is almost slightly-g-continuous[almost slightly-rg-continuous], surjective and X is $T_{\frac{1}{2}}[rT_{\frac{1}{2}}]$ then g is almost slightly νg -open.

Theorem 3.28. If X is νg -regular, $f: X \to Y$ is r-open, r-continuous, almost slightly νg -open surjective and $A^o = A$ for every νg -open set in Y then Y is νg -regular.

Corollary 3.29. If X is νg -regular, $f: X \to Y$ is r-open, r-continuous, almost slightly νg -open, surjective and $A^o = A$ for every open set in Y then Y is νg -regular.

Theorem 3.30. If $f: X \to Y$ is almost slightly νg -open and A open in X, then $f_A: (X, \tau_A) \to (Y, \sigma)$ is almost slightly νg -open.

Proof. Let F be a r-clopen set in A. Then $F = A \cap E$ for some open set E of X and so F is open in $X \Rightarrow f(A)$ is νg -open in Y. But $f(F) = f_A(F)$. Therefore f_A is almost slightly νg -open.

Theorem 3.31. If $f: X \to Y$ is almost slightly νg -open, X is $T_{\frac{1}{2}}[rT_{\frac{1}{2}}]$ and A is g-open [rg-open] set of X then $f_A: (X, \tau_A) \to (Y, \sigma)$ is almost slightly νg -open.

Proof. Let F be a r-clopen set in A. Then $F = A \cap E$ for some open set E of X and so F is open in $X \Rightarrow f(A)$ is νg -open in Y. But $f(F) = f_A(F)$. Therefore f_A is almost slightly νg -open.

Corollary 3.32. If $f: X \to Y$ is $al - sl - g - [al - sl - rg -; al - sl - sg -; al - sl - gs -; al - sl - \beta g -; al - sl - r\alpha g -; al - sl - rg\alpha -; al - sl - r -; al - sl - r\alpha -; al - sl - \alpha -; al - sl - s -; al - sl - p -; al - sl - \beta -; al - sl - \nu -; al - sl - \pi -]$ open and A open in X, then $f_A: (X, \tau_A) \to (Y, \sigma)$ is almost slightly νg -open.

Theorem 3.33. If $f_i : X_i \to Y_i$ be almost slightly νg -open for i = 1, 2. Let $f: X_1 \times X_2 \to Y_1 \times Y_2$ be defined as $f(x_1, x_2) = (f_1(x_1), f_2(x_2))$. Then $f: X_1 \times X_2 \to Y_1 \times Y_2$ is almost slightly νg -open.

Proof. Let $U_1 \times X_2 \subseteq X_1 \times X_2$ where U_i is r-clopen in X_i for i = 1, 2. Then $f(U_1 \times U_2) = f_1(U_1) \times f_2(U_2)$ is νg -open set in $Y_1 \times Y_2$. Hence f is almost slightly νg -open. \Box

Corollary 3.34. If $f_i: X_i \to Y_i$ be $al - sl - g - [al - sl - rg -; al - sl - sg -; al - sl - sg -; al - sl - r\alpha g -; al - sl - rg\alpha -; al - sl - rg -; al - sl - r -; al - sl - r\alpha -; al - sl - \alpha -; al - sl - s -; al - sl - p -; al - sl - \beta -; al - sl - \nu -; al - sl - \pi -] open for <math>i = 1, 2$. Let $f: X_1 \times X_2 \to Y_1 \times Y_2$ be defined as $f(x_1, x_2) = (f_1(x_1), f_2(x_2))$, then $f: X_1 \times X_2 \to Y_1 \times Y_2$ is almost slightly νg -open.

Theorem 3.35. Every νg -open and contra νg -closed is almost slightly νg -open map but not conversely.

Proof. Let A be any r-clopen set in X, then A is both open and closed in X. For, f is ν g-open and contra ν g-closed, f(A) is ν g-open. Hence f is almost slightly ν g-open.

Example 3.36. Let $X = Y = \{a, b, c, d\}; \tau = \{\phi, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, X\}$. Let $f \colon X \to Y$ be defined f(a) = b, f(b) = a, f(c) = d and f(d) = c. Then f is almost slightly νg -open but not contra νg -closed and almost contra νg -closed.

Example 3.37. Let $X = Y = \{a, b, c, d\}; \tau = \{\phi, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, X\}$. Let $f : X \to Y$ be defined f(a) = c, f(b) = d, f(c) = a and f(d) = b. Then f is almost slightly νg -open but not νg -open and almost νg -open.

Corollary 3.38. If f is $g-[rg-;sg-;gs-;\beta g-;r\alpha g-;r\alpha g-;r-;r\alpha-;\alpha-;s-;p-;\beta-;\nu-;\pi-]$ open and $c-g-[c-rg-;c-sg-;c-gs-;c-\beta g-;c-r\alpha g-;c-rg\alpha-;c-r-;c-r\alpha-;c-\alpha-;c-s-;c-p-;c-\beta-;c-\nu-;c-\pi-]$ closed then f is almost slightly νg -open.

Proof. Let A be any r-clopen set in X, then A is both open and closed in X. For, f is g-open and contra g-closed, f(A) is g-open and so ν g-open[by remark 1]. Hence f is almost slightly ν g-open.

Corollary 3.39. If f is open and g is $al - sl - g - [al - sl - rg -; al - sl - sg -; al - sl - gs -; al - sl - \beta g -; al - sl - r\alpha g -; al - sl - rg\alpha -; al - sl - r -; al - sl - r\alpha -; al - sl - \alpha -; al - sl - s -; al - sl - p -; al - sl - \beta -; al - sl - \nu -; al - sl - \pi -] open then <math>g \circ f$ is almost slightly νg -open.

4. Almost Slightly ν g-closed mappings

Definition 4.1. A function $f: X \to Y$ is said to be almost slightly νg -closed if the image of every r-clopen set in X is νg -closed in Y.

Example 4.2. Let $X = Y = \{a, b, c\}; \tau = \{\phi, \{a\}, \{b, c\}, X\}; \sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, Y\}$. Let $f : X \to Y$ be defined f(a) = c, f(b) = a and f(c) = b. Then f is almost slightly νg -closed, almost slightly rg-closed and almost slightly $rg\alpha$ -closed but not almost slightly closed, almost slightly semi-closed, almost slightly ν -closed, almost slightly $\tau\alpha$ -closed, almost sligh

Example 4.3. Let $X = Y = \{a, b, c, d\}; \tau = \{\phi, \{a, b\}, \{c, d\}, X\}; \sigma = \{\phi, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, X\}$. Let $f : X \to Y$ be defined f(a) = b, f(b) = a, f(c) = d and f(d) = c. Then f is not almost slightly νg -closed.

Theorem 4.4. We have the following interrelation among the following almost slightly closed mappings

(i) al.sl.g.closed al.sl.gs.closed $\mathrm{al.sl.rg} \alpha.\mathrm{closed} \rightarrow \mathrm{al.sl.rg}.\mathrm{closed} \rightarrow al.sl. \mathcal{P}g.closed \leftarrow \mathrm{al.sl}. \beta \mathrm{g}.\mathrm{closed} \leftarrow \mathrm{al.sl}. \beta \mathrm{g}.\mathrm{closed}$ ↑ ↑ ↑ $^{\alpha}$ al.sl. $r\alpha$.closed \rightarrow al.sl. ν .closed \searrow ↑ $al.sl.r.closed \rightarrow al.sl.\pi.closed \rightarrow al.sl.\alpha.closed \rightarrow al.sl.s.closed \rightarrow al.sl.\beta.closed \rightarrow al.sl.b.closed \rightarrow al.sl.b.closed \rightarrow al.sl.b.closed \rightarrow al.s$ $\downarrow \searrow$ al.sl. π g.closed $al.sl.p.closed \rightarrow al.sl.\omega.closed \not\leftrightarrow al.sl.g\alpha.closed$ \searrow \searrow $al.sl.gpr.closed \leftarrow al.sl.gp.closed \leftarrow al.sl.pg.closed$ al.sl.r ω .closed None is reversible. (ii) sl.g.closed sl.gs.closed L $\mathrm{sl.rg}\alpha.\mathrm{closed} \rightarrow \mathrm{sl.rg}.\mathrm{closed} \rightarrow al.sl.\nu g.closed \leftarrow \mathrm{sl.sg}.\mathrm{closed} \leftarrow \mathrm{sl.sg}.\mathrm{closed}$ ↑ $^{\rtimes}$ sl. $r\alpha$.closed \rightarrow sl. ν .closed \searrow ↑ ↑ $\mathrm{sl.r.closed} \rightarrow \mathrm{sl.}\pi.\mathrm{closed} \rightarrow \mathrm{sl.closed} \rightarrow \mathrm{sl.s.closed} \rightarrow \mathrm{sl.}\beta.\mathrm{closed}$ $\downarrow \searrow$ $sl.\pi g.closed$ $sl.p.closed \rightarrow sl.\omega.closed \not\leftrightarrow sl.g\alpha.closed$ $sl.gpr.closed \leftarrow sl.gp.closed \leftarrow sl.pg.closed$ sl.r ω .closed None is reversible. (iii) If $\nu GC(Y) = RC(Y)$, then the reverse relations hold for all almost slightly closed maps. al.sl.g.closed al.sl.gs.closed $al.sl.rg\alpha.closed \leftrightarrow al.sl.rg.closed \leftrightarrow al.sl.\nug.closed \leftrightarrow al.sl.\betag.closed$ \$ \$ \$ 1 \$ \nearrow al.sl. $r\alpha$.closed \leftrightarrow al.sl. ν .closed \swarrow $al.sl.r.closed \leftrightarrow al.sl.\pi.closed \leftrightarrow al.sl.closed \leftrightarrow al.sl.\alpha.closed \leftrightarrow al.sl.s.closed \leftrightarrow al.sl.\beta.closed$

Theorem 4.5. (i) If (Y, σ) is discrete, then f is almost slightly closed of all types. (ii) If f is almost slightly closed and g is νg -closed then $g \circ f$ is almost slightly νg -closed.

(iii) If f is closed and g is almost slightly νg -closed then $g \circ f$ is almost slightly νg -closed.

Corollary 4.6. If f is almost slightly closed and g is $g-[rg-; sg-; gs-; \beta g-; r\alpha g-; rg\alpha-; r\alpha-; \alpha-; \alpha-; s-; p-; \beta-; \nu-; \pi-; r-]$ closed then gof is almost slightly νg -closed.

Corollary 4.7. If f is closed[r-closed] and g is $al - sl - g - [al - sl - rg -; al - sl - sg -; al - sl - gs -; al - sl - \beta g -; al - sl - r\alpha g -; al - sl - rg\alpha -; al - sl - r\alpha -; al - sl - \alpha -; al - sl - s -; al - sl - p -; al - sl - \beta -; al - sl - \pi -] closed then <math>g \circ f$ is almost slightly νg -closed.

Theorem 4.8. If $f: X \to Y$ is almost slightly νg -closed, then $\nu g(\overline{(f(A))}) \subset f(\overline{(A)})$.

Proof. Let $A \subset X$ be r-clopen and $f: X \to Y$ is almost slightly νg -closed gives $f(\overline{A})$ is νg -closed in Y and $f(A) \subset f(\overline{(A)})$ which in turn gives $\nu g(\overline{(f(A))}) \subset \nu g(\overline{(f(\overline{A}))})$ -----(1) Since $f(\overline{(A)})$ is νg -closed in Y, $\nu g(\overline{(f(\overline{(A)}))}) = f(\overline{(A)})$ -----(2) From (1) and (2) we have $\nu g(\overline{(f(A))}) \subset f(\overline{(A)})$ for every subset A of X.

Remark 4.9. Converse is not true in general.

Corollary 4.10. If $f: X \to Y$ is $al - sl - g - [al - sl - rg -; al - sl - sg -; al - sl - sg -; al - sl - gs -; al - sl - \beta g -; al - sl - r\alpha g -; al - sl - rg\alpha -; al - sl - gs -; al - s$

Theorem 4.11. If $f: X \to Y$ is almost slightly νg -closed and $A \subseteq X$ is closed, f(A) is $\tau_{\nu g}$ -closed in Y.

Proof. Let $A \subset X$ be r-clopen and $f: X \to Y$ is almost slightly νg -closed implies $\nu g(\overline{(f(A))}) \subset f(\overline{(A)})$ which in turn implies $\nu g(\overline{(f(A))}) \subset f(A)$, since $f(A) = f(\overline{(A)})$. But $f(A) \subset \nu g(\overline{(f(A))})$. Combining we get $f(A) = \nu g(\overline{(f(A))})$. Hence f(A) is $\tau_{\nu g}$ -closed in Y. \Box

Corollary 4.12. If $f: X \to Y$ is $al - sl - g - [al - sl - rg -; al - sl - sg -; al - sl - gs -; al - sl - \beta g -; al - sl - r\alpha g -; al - sl - rg\alpha -; al - sl - r -; al - sl - r\alpha -; al - sl - \alpha -; al - sl - s -; al - sl - p -; al - sl - \beta -; al - sl - \nu -; al - sl - \pi -] closed, then <math>f(A)$ is $\tau_{\nu g}$ closed in Y if A is closed set in X.

Theorem 4.13. If $\nu g(\overline{(A)}) = r(\overline{(A)})$ for every $A \subset Y$ and X is discrete space, then the following are equivalent: a) $f: X \to Y$ is almost slightly νg -closed map b) $\nu g(\overline{(f(A))}) \subset \overline{f(A)})$

Proof. (a) ⇒ (b) follows from Theorem 4.8 (b) ⇒ (a) Let A be any r-clopen set in X, then $f(A) = f(\overline{(A)}) \supset \nu g(\overline{(f(A))})$ by hypothesis. We have $f(A) \subset \nu g(\overline{(f(A))})$. Combining we get $f(A) = \nu g(\overline{(f(A))}) = r(\overline{(f(A))})$ [by given condition] which implies f(A) is r-closed and hence νg -closed. Thus f is almost slightly νg -closed.

Theorem 4.14. If $\nu(\overline{(A)}) = r(\overline{(A)})$ for every $A \subset Y$ and X is discrete space, then the following are equivalent: a) $f: X \to Y$ is almost slightly νg -closed map b) $\nu g(\overline{(f(A))}) \subset \overline{f(A)})$

Proof. (a) \Rightarrow (b) follows from Theorem 4.8 (b) \Rightarrow (a) Let A be any r-clopen set in X, then $f(A) = f(\overline{(A)}) \supset \nu g(\overline{(f(A))})$ by hypothesis. We have $f(A) \subset \nu g(\overline{(f(A))})$. Combining we get $f(A) = \nu g((f(A))) = r(\overline{(f(A))})$ [by given condition] which implies f(A) is r-closed and hence νg -closed. Thus f is almost slightly νg -closed.

Theorem 4.15. $f: X \to Y$ is almost slightly νg -closed iff for each subset S of Y and each r-clopen set U containing $f^{-1}(S)$, there is an νg -closed set V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof. Assume $f: X \to Y$ is almost slightly νg -closed. Let $S \subseteq Y$ and U be r-clopen set containing $f^{-1}(S)$. Then X-U is r-clopen in X and f(X - U) is νg -closed in Y as f is almost slightly νg -closed and V = Y - f(X - U) is νg -closed in Y. $f^{-1}(S) \subseteq U \Rightarrow S \subseteq f(U) \Rightarrow S \subseteq V$ and $f^{-1}(V) = f^{-1}(Y - f(X - U)) = f^{-1}(Y) - f^{-1}(f(X - U)) = f^{-1}(Y) - (X - U) = X - (X - U) = U.$

Conversely Let F be r-clopen in $X \Rightarrow F^c$ is r-clopen. Then $f^{-1}(f(F^c)) \subseteq F^c$. By hypothesis there exists an νg -closed set V of Y, such that $f(F^c) \subseteq V$ and $f^{-1}(V) \supset F^c$ and so $F \subseteq [f^{-1}(V)]^c$. Hence $V^c \subseteq f(F) \subseteq f[f^{-1}(V)^c] \subseteq V^c \Rightarrow f(F) \subseteq V^c \Rightarrow f(F) = V^c$. Thus f(F) is νg -closed in Y. Therefore f is almost slightly νg -closed. \Box

Remark 4.16. Composition of two almost slightly νg -closed maps is not almost slightly νg -closed in general.

Theorem 4.17. Let X, Y, Z be topological spaces and every νg -closed set is rclopen in Y. Then the composition of two almost slightly νg -closed maps is almost slightly νg -closed.

Proof. (a) Let f and g be almost slightly νg -closed maps. Let A be any r-clopen set in $X \Rightarrow f(A)$ is r-clopen in Y (by assumption) $\Rightarrow g(f(A)) = g \circ f(A)$ is νg -closed in Z. Therefore $g \circ f$ is almost slightly νg -closed.

Corollary 4.18. Let X, Y, Z be topological spaces and every $g - [rg -; sg -; gs -; \beta g -; r\alpha g -; rg \alpha -; r\alpha -; \alpha -; s -; p -; \beta -; \pi -] closed set is r-clopen in Y. Then the composition of two <math>al - sl - g - [al - sl - rg -; al - sl - sg -; al - sl - gs -; al - sl - \beta g -; al - sl - r\alpha g -; al - sl - rg \alpha -; al - sl - r\alpha -; al - sl - \alpha -; al - sl - s -; al - sl - p -; al - sl - \beta -; al - sl - \nu -; al - sl - \pi -; al - sl - r -] closed maps is almost slightly <math>\nu q$ -closed.

Example 4.19. Let $X = Y = Z = \{a, b, c\}; \tau = \{\phi, \{a\}, \{a, b\}, X\}; \sigma = \{\phi, \{a, c\}, Y\}$ and $\eta = \{\phi, \{a\}, \{b, c\}, Z\}$. $f: X \to Y$ be defined f(a) = c, f(b) = bandf(c) = a and $g: Y \to Z$ be defined g(a) = b, g(b) = aandg(c) = c, then g, f and $g \circ f$ are almost slightly νg -closed.

Theorem 4.20. If $f: X \to Y$ is almost slightly g-closed[almost slightly rg-closed], $g: Y \to Z$ is νg -closed and Y is $T_{\frac{1}{2}}[r - T_{\frac{1}{2}}]$ then $g \circ f$ is almost slightly νg -closed.

Proof. (a) Let A be r-clopen in X. Then f(A) is g-closed and so closed in Y as Y is $T_{\frac{1}{2}} \Rightarrow g(f(A)) = g \circ f(A)$ is νg -closed in Z (since g is νg -closed). Hence $g \circ f$ is almost slightly νg -closed.

Corollary 4.21. If $f: X \to Y$ is almost slightly g-closed [almost slightly rg-closed], $g: Y \to Z$ is $g - [rg-; sg-; gs-; \beta g-; r\alpha g-; rg\alpha-; r\alpha-; \alpha-; s-; p-; \beta-; \nu-; \pi-; r-]$ closed and Y is $T_{\frac{1}{2}}[r - T_{\frac{1}{2}}]$ then $g \circ f$ is almost slightly νg -closed.

Theorem 4.22. If $f: X \to Y$ is g-closed[rg-closed], $g: Y \to Z$ is almost slightly νg -closed and Y is $T_{\frac{1}{2}}[r - T_{\frac{1}{2}}]$ then $g \circ f$ is almost slightly νg -closed.

Proof. (a) Let A be r-clopen in X. Then f(A) is g-closed and so closed in Y as Y is $T_{\frac{1}{2}} \Rightarrow g(f(A)) = g \circ f(A)$ is νg -closed in Z (since g is almost slightly νg -closed). Hence $g \circ f$ is almost slightly νg -closed.

Corollary 4.23. If $f: X \to Y$ is g-closed [rg-closed], $g: Y \to Z$ is $al - sl - g - [al - sl - rg -; al - sl - sg -; al - sl - gs -; al - sl - \beta g -; al - sl - r\alpha g -; al - sl - rg -; al - sl - r\alpha -; al - sl - gs -; al - sl - \beta g -; al - sl - r\alpha g -; al - sl - \alpha -; al - sl - s -; al - sl - \beta -; al - sl - \beta -; al - sl - \pi -] closed and Y is <math>T_{\frac{1}{2}}[r - T_{\frac{1}{2}}]$ then $g \circ f$ is almost slightly νg -closed.

Theorem 4.24. If $f: X \to Y$, $g: Y \to Z$ be two mappings such that $g \circ f$ is almost slightly νg -closed then the following statements are true.

a) If f is continuous [r-continuous] and surjective then g is almost slightly νg -closed. b) If f is g-continuous[resp: rg-continuous], surjective and X is $T_{\frac{1}{2}}[resp: rT_{\frac{1}{2}}]$ then g is almost slightly νg -closed.

Proof. For A r-clopen in Y, $f^{-1}(A)$ closed in X $\Rightarrow (g \circ f)(f^{-1}(A)) = g(A) \nu g$ -closed in Z. Hence g is almost slightly νg -closed.

Similarly one can prove the remaining parts and hence omitted.

Corollary 4.25. If $f: X \to Y$, $g: Y \to Z$ be two mappings such that $g \circ f$ is $al - sl - g - [al - sl - rg -; al - sl - sg -; al - sl - gs -; al - sl - \beta g -; al - sl - r\alpha g -; al - sl - rg\alpha -; al - sl - r\alpha -; al - sl - \alpha -; al - sl - s -; al - sl - p -; al - sl - \beta -; al - sl - \nu -; al - sl - \pi -; al - sl - r -] closed then the following statements are true.$

a) If f is continuous [r-continuous] and surjective then g is almost slightly νg -closed. b) If f is g-continuous[rg-continuous], surjective and X is $T_{\frac{1}{2}}[rT_{\frac{1}{2}}]$] then g is almost slightly νg -closed.

Theorem 4.26. If $f: X \to Y$, $g: Y \to Z$ be two mappings such that $g \circ f$ is νg -closed then the following statements are true.

a) If f is almost slightly-continuous [almost slightly-r-continuous] and surjective then g is almost slightly νg -closed.

b) If f is almost slightly-g-continuous[almost slightly-rg-continuous], surjective and X is $T_{\frac{1}{2}}[resp: rT_{\frac{1}{2}}]$ then g is almost slightly ν g-closed.

Proof. For A r-clopen in Y, $f^{-1}(A)$ closed in X $\Rightarrow (g \circ f)(f^{-1}(A)) = g(A) \nu g$ -closed in Z. Hence g is almost slightly νg -closed.

Corollary 4.27. If $f: X \to Y$, $g: Y \to Z$ be two mappings such that $g \circ f$ is $g-[rg-;sg-;gs-;\beta g-;r\alpha g-;rg\alpha-;r\alpha-;\alpha-;s-;p-;\beta-;\nu-;\pi-;r-]$ closed then the following statements are true.

a) If f is almost slightly-continuous [almost slightly-r-continuous] and surjective then g is almost slightly νg -closed.

b) If f is almost slightly-g-continuous[almost slightly-rg-continuous], surjective and X is $T_{\frac{1}{2}}[rT_{\frac{1}{2}}]$ then g is almost slightly ν g-closed.

Theorem 4.28. If X is νg -regular, $f: X \to Y$ is r-closed, nearly-continuous, almost slightly νg -closed surjection and $\overline{A} = A$ for every νg -closed set in Y, then Y is νg -regular.

Corollary 4.29. If X is νg -regular, $f : X \to Y$ is r-closed, nearly-continuous, almost slightly νg -closed surjection and $\overline{A} = A$ for every closed set in Y then Y is νg -regular.

Theorem 4.30. If $f: X \to Y$ is almost slightly νg -closed and A closed in X, then $f_A: (X, \tau_A) \to (Y, \sigma)$ is almost slightly νg -closed.

Proof. Let F be an r-clopen set in A. Then $F = A \cap E$ for some closed set E of X and so F is closed in $X \Rightarrow f(A)$ is νg -closed in Y. But $f(F) = f_A(F)$. Therefore f_A

is almost slightly νg -closed. \Box

Theorem 4.31. If $f: X \to Y$ is almost slightly νg -closed, X is $rT_{\frac{1}{2}}$ and A is rgclosed set of X then $f_A: (X, \tau_A) \to (Y, \sigma)$ is almost slightly νg -closed.

Proof. Let F be a r-clopen set in A. Then $F = A \cap E$ for some closed set E of X and so F is closed in X \Rightarrow f(A) is νg -closed in Y. But $f(F) = f_A(F)$. Therefore f_A is almost slightly νg -closed.

Corollary 4.32. If $f: X \to Y$ is $al - sl - g - [al - sl - rg -; al - sl - sg -; al - sl - gs -; al - sl - \beta g -; al - sl - r\alpha g -; al - sl - rg\alpha -; al - sl - r -; al - sl - r\alpha -; al - sl - \alpha -; al - sl - s -; al - sl - p -; al - sl - \beta -; al - sl - \nu -; al - sl - \pi -]$ closed and A closed in X, then $f_A: (X, \tau_A) \to (Y, \sigma)$ is almost slightly νg -closed.

Theorem 4.33. If $f_i : X_i \to Y_i$ be almost slightly νg -closed for i = 1, 2. Let $f: X_1 \times X_2 \to Y_1 \times Y_2$ be defined as $f(x_1, x_2) = (f_1(x_1), f_2(x_2))$. Then $f: X_1 \times X_2 \to Y_1 \times Y_2$ is almost slightly νg -closed.

Proof. Let $U_1 \times X_2 \subseteq X_1 \times X_2$ where U_i is r-clopen in X_i for i = 1, 2. Then $f(U_1 \times U_2) = f_1(U_1) \times f_2(U_2)$ is νg -closed set in $Y_1 \times Y_2$. Hence f is almost slightly νg -closed.

Corollary 4.34. If $f_i: X_i \to Y_i$ be $al - sl - g - [al - sl - rg -; al - sl - sg -; al - sl - gs -; al - sl - \beta g -; al - sl - r\alpha g -; al - sl - rg\alpha -; al - sl - r -; al - sl - r\alpha -; al - sl - \alpha -; al - sl - s -; al - sl - p -; al - sl - \beta -; al - sl - \nu -; al - sl - \pi -] closed for <math>i = 1, 2$. Let $f: X_1 \times X_2 \to Y_1 \times Y_2$ be defined as $f(x_1, x_2) = (f_1(x_1), f_2(x_2))$, then $f: X_1 \times X_2 \to Y_1 \times Y_2$ is almost slightly νg -closed.

Theorem 4.35. Every νg -closed and contra νg -open map is almost slightly νg -closed map but not conversely.

Proof. Let A be any r-clopen set in X, then A is both open and closed in X. For, f is ν g-closed and contra ν g-open, f(A) is ν g-open. Hence f is almost slightly ν g-closed.

Example 4.36. Let $X = Y = \{a, b, c, d\}; \tau = \{\phi, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, X\}$. Let $f : X \to Y$ be defined f(a) = b, f(b) = a, f(c) = d and f(d) = c. Then f is almost slightly νg -closed but not contra νg -open and almost contra νg -open.

Example 4.37. Let $X = Y = \{a, b, c, d\}; \tau = \{\phi, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, X\}$. Let $f : X \to Y$ be defined f(a) = c, f(b) = d, f(c) = a and f(d) = b. Then f is almost slightly νg -closed but not νg -closed and almost νg -closed.

Corollary 4.38. If f is $g-[rg-;sg-;gs-;\beta g-;r\alpha g-;r\alpha g-;r-;r\alpha-;\alpha-;\alpha-;s-;p-;\beta-;\nu-;\pi-]$ closed and $c-g-[c-rg-;c-sg-;c-gs-;c-\beta g-;c-r\alpha g-;c-rg\alpha-;c-rg\alpha-;c-r-;c-r\alpha-;c-\alpha-;c-s-;c-p-;c-\beta-;c-\nu-;c-\pi-]$ open then f is almost slightly νg -closed.

Proof. Let A be any r-clopen set in X, then A is both open and closed in X. For, f is g-closed and contra g-open, f(A) is g-closed and so ν g-closed[by remark 1]. Hence f is almost slightly ν g-closed.

Corollary 4.39. If f is closed and g is al-sl-g-[al-sl-rg-;al-sl-sg-;al-sl-gg-;al-sl-gg-;al-sl-gg-;al-sl-rag-;al-sl-rga-;al-sl-r

Conclusion

In this paper author defined new open and closed mappings called almost slightly νg -open and almost slightly νg -Closed mappings and studied their interrelations with other types of almost slightly-continuous functions.

Acknowledgments

The author would like to thank the referee(s) for the comments and suggestions on the manuscript.

References

- 1. Arse Nagli Uresin, Aynur kerkin, T.Noiri, slightly δ -precontinuous functions, Commen, Fac. Sci. Univ. Ark. Series 41.56(2)(2007)1-9.
- 2. C.W.Baker, Slightly precontinuous functions, Acta Math Hung, 94(1-6)(2002) 45-52.
- Balasubramanian.S., Almost Slightly Continuity, Slightly open and Slightly closed mappings - Indian Journal of Science, Vol.5, No.13 (Oct 2013)29 - 36.
- 4. Balasubramanian.S., Almost Slightly semi-Continuity, Slightly semi-open and Slightly semi-closed mappings Indian Journal of Engineering, Vol.5, No.13 (Oct 2013)44 52.
- 5. Balasubramanian.S., Sandhya.C., and Aruna Swathi Vyjayanthi.P., Slightly ν -open mappings Aryabhatta Journal of Mathematics and Informatics, Vol.5, No.02(2013), 313 320.
- Balasubramanian.S., Almost Slightly pre-continuity, Slightly pre-open and Slightly pre-closed mappings - International Journal of Mathematical Archive, Vol.4, No.11(2013)45-57.
- Balasubramanian.S., and Sandhya.C., Almost Slightly β-continuity, Slightly β-open and Slightly β-closed mappings - International Journal of Mathematical Archive, Vol.4, No.11(2013)58-70.
- Balasubramanian.S., Aruna Swathi Vyjayanthi.P., and Sandhya.C., Slightly ν-closed mappings -General Mathematics Notes, Vol.20,No.1 (2014)1-11.

S. BALASUBRAMANIAN

- 9. Balasubramanian.S., Slightly νg -open and Slightly νg -closed mappings-(Communicated)
- 10. Erdal Ekici and M. Caldas, slightly $\gamma-{\rm continuous}$ functions, Bol.Sac.Paran.Mat(38)V.22.2,(2004)63-74.
- 11. T.Noiri and G.I.Chae, A Note on slightly semi continuous functions, Bull.Cal.Math.Soc 92(2)(2000) 87-92.
- 12. T.Noiri, slightly $\beta-{\rm continuous}$ functions, Internat. J. Math. & Math. Sci. 28(8) (2001) 469-478.
- 13. T.M.Nour, Slightly semi continuous functions Bull.Cal.Math.Soc 87, (1995) 187-190.

S. Balasubramanian, Department of Mathematics, Government Arts College (Autonomous), Karur-639 005(T.N.), Tamilnadu, India. E-mail address: mani55682@rediffmail.com