A Short Note On Hyper Zagreb Index

Suresh Elumalai, Toufik Mansour, Mohammad Ali Rostami and G.B.A. Xavier

ABSTRACT: In this paper, we present and analyze the upper and lower bounds on the Hyper-Zagreb index $\chi^{2}(G)$ of graph G in terms of the number of vertices (n), number of edges (m), maximum degree (Δ), minimum degree (δ) and the inverse degree $(I D(G))$. In addition, a counter example on the upper bound of the second Zagreb index for Theorems 2.2 and 2.4 from [20] is provided. Finally, we present the lower and upper bounds on $\chi^{2}(G)+\chi^{2}(\bar{G})$, where \bar{G} denotes the complement of G.

Key Words: First Zagreb index, Second Zagreb index, Hyper Zagreb index.

Contents

1 Introduction

2 Upper bounds for $\chi^{2}(G)$
3 Lower bounds for $\chi^{2}(G)$

1. Introduction

Let G be a simple graph with the vertex set $V(G)$ and the edge set $E(G)$. As usual, we denote the degree of a vertex by $d_{i}=d\left(v_{i}\right)$ for $i=1,2, \ldots, n$ such that $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$, with the maximum, second maximum and the minimum vertex degree of G are denoted by $\Delta=\Delta(G), \Delta_{2}=\Delta_{2}(G)$ and $\delta=\delta(G)$ respectively. \bar{G} denotes the complement of G, with the same vertex set such that two vertices u and v are adjacent in \bar{G} if and only if they are not adjacent in G. A line graph $L(G)$ obtained from G in which $V(L(G))=E(G)$, where two vertices of $L(G)$ are adjacent if and only if they are adjacent edges of G.

In 1972, the first and second Zagreb indices are introduced by Gutman and Trinajstić $[13,14]$ and are defined as

$$
M_{1}^{2}(G)=\sum_{v \in V(G)} d(v)^{2} \text { and } M_{2}^{1}(G)=\sum_{u v \in E(G)} d(u) d(v) .
$$

In 1987, the inverse degree first attracted attention through conjectures of the computer program Graffiti [11]. The inverse degree of a graph G with no isolated vertices are defined as

$$
I D(G)=\sum_{u \in V(G)} \frac{1}{d(u)}
$$

2010 Mathematics Subject Classification: 05C07, 05C90.
Submitted September 09, 2015. Published April 22, 2017

In 2005, Li and Zheng [15] introduced the generalized version of the first Zagreb index. For $\alpha \in \mathbb{R}$ and G be any graph which satisfies the important identity (1.1)

$$
\begin{equation*}
M_{1}^{\alpha+1}(G)=\sum_{v \in V(G)} d(v)^{\alpha+1}=\sum_{u v \in E(G)}\left[d(u)^{\alpha}+d(v)^{\alpha}\right] . \tag{1.1}
\end{equation*}
$$

In 2010, Ashrafi, Došlić and Hamzeha introduced the concept of sum of nonadjacent vertex degree pairs of the graph G, known as first and second Zagreb coindices [2] and are defined as

$$
\bar{M}_{1}^{2}=\bar{M}_{1}^{2}(G)=\sum_{u v \notin E(G)}[d(u)+d(v)] \text { and } \bar{M}_{2}^{1}=\bar{M}_{2}^{1}(G)=\sum_{u v \notin E(G)} d(u) d(v) .
$$

In 2013, Shirdel, Rezapour, and Sayadi [16] defined the Hyper-Zagreb index as

$$
\begin{equation*}
H M(G)=\sum_{u v \in E(G)}[d(u)+d(v)]^{2} . \tag{1.2}
\end{equation*}
$$

In 2015, Fortula and Gutman [12,13] introduced the forgotten topological index and for $\alpha=2$ in (1.1) turns it as a very special case formula, defined by

$$
M_{1}^{3}(G)=\sum_{v \in V(G)} d(v)^{3}=\sum_{u v \in E(G)}\left[d(u)^{2}+d(v)^{2}\right] .
$$

As usual $P_{n}, K_{1, n-1}, C_{n}, K_{n}$ denotes the path, star, cycle and complete graphs on n vertices respectively. The wheel graph W_{n} is join of the graphs C_{n-1} and K_{1}. Bidegreed graph is a graph whose vertices have exactly two vertex degrees Δ and δ. The Helm graph H_{n} is obtained from W_{n} by adjoining a pendant edge at each vertex of the cycle. Let G and H be any graph. Then $\sigma_{G}(H)$ represents the total number of distinct subgraphs of the graph G which are isomorphic to H. The tensor product of the two simple graphs G and H are denoted by $G \times H$, whose vertex set is $V(G) \times V(H)$ in which $\left(g_{1}, h_{1}\right)$ and (g_{2}, h_{2}) are adjacent whenever $g_{1} g_{2}$ is an edge in G and $h_{1} h_{2}$ is an edge in H.

For computational purposes, we use the software GraphTea [1] considering various phases of testing. GraphTea is a graph visualization software designed specifically to visualize and explore graph algorithms and topological indices interactively.

2. Upper bounds for $\chi^{2}(G)$

An equivalent formula for the Hyper-Zagreb index was already in use, pertaining to the first and second Zagreb index. In 2010, Zhou and Trinajstić [21] proposed the general sum-connectivity index defined as

$$
\begin{equation*}
\chi^{\alpha}=\chi^{\alpha}(G)=\sum_{u v \in E(G)}[d(u)+d(v)]^{\alpha} \tag{2.1}
\end{equation*}
$$

Obviously, $\chi^{0}(G)=m, \chi^{1}(G)=M_{1}^{2}(G)$. For $\alpha=2$, in (2.1) turns the HyperZagreb index as its special case. At first we give the identity for the Hyper-Zagreb index.

Lemma 2.1. Let G be any simple graph, then

$$
\begin{equation*}
\chi^{2}(G)=6 \sigma_{G}\left(K_{1,3}\right)+2 \sigma_{G}\left(P_{4}\right)+10 \sigma_{G}\left(P_{3}\right)+6 \sigma_{G}\left(C_{3}\right)+6 m . \tag{2.2}
\end{equation*}
$$

Proof. By the definition of the general sum-connectivity index and using (1.1), we get

$$
\begin{equation*}
\chi^{2}(G)=\sum_{u \in V(G)} d(u)^{3}+2 \sum_{u v \in E(G)} d(u) d(v) \tag{2.3}
\end{equation*}
$$

Thus, by using $M_{1}^{2}(G), M_{1}^{3}(G)$ and $M_{2}^{1}(G)$ from [4], we complete the proof.
It is easy to see that, an upper bound for either $M_{2}^{1}(G)$ or $M_{1}^{3}(G)$ suits for $\chi^{2}(G)$. In the preparations of presenting the upper bounds for $\chi^{2}(G)$ through the existing upper bounds for the second Zagreb index, we encountered the following upper bounds

Theorem 2.2. [20] For a simple connected graph G,

$$
\begin{equation*}
M_{2}^{1}(G) \leq 2 \Delta m \tag{2.4}
\end{equation*}
$$

Theorem 2.3. [20] For a simple connected graph G,

$$
\begin{equation*}
M_{2}^{1}(G) \leq \Delta n(n-1)-\overline{M_{1}^{2}(G)} \tag{2.5}
\end{equation*}
$$

Remark 2.4. Counterexamples for the above two theorems. For any edge $u v \in E(G)$, it is clear that $d(u) d(v) \leq d(u) \Delta$. But $\sum_{u v \in E(G)} d(u) \leq \sum_{u \in V(G)} d(u)$ need not be true for all graphs. For $K_{1,3}, \sum_{u \in V(G)} d(u)=6$, and for $\sum_{u v \in E(G)} d(u)$ we have the following combinations $3,5,7,9$. Therefore Inequality (2.4) is not true in general. In addition, for the helm H_{3} (See Figure 1) with $\Delta=4$ and second Zagreb index is 96, but the $2 \Delta m$ is 72.

Figure 1: The Helm H_{3} and its Line graph $L\left(H_{3}\right)$.
In analogy, Inequality (2.5) is also not true in general. By considering $L\left(H_{3}\right)$ with the first Zagreb coindex is 126 and $\Delta n(n-1)-\overline{M_{1}^{2}(G)}$ is 306 , but the second

Zagreb index of $L\left(H_{3}\right)$ is 516. Let $\sum[d(u)+d(v)]$ denote the total number of combinations of sum of the vertices u, v in G and is represented as

$$
\sum[d(u)+d(v)]=\sum_{u v \in E(G)}[d(u)+d(v)]+\sum_{u v \notin E(G)}[d(u)+d(v)]
$$

For any simple graph G with $\delta \geq 2$ then, it is easy to see that $d(u)+d(v) \leq$ $d(u) d(v)$ for all $u v \in E(G)$. By adding over all the edges, we have $M_{1}^{2}(G) \leq$ $M_{2}^{1}(G)$, utilizing the result we get $M_{2}^{1}(G) \geq \sum[d(u)+d(v)]-\overline{M_{1}^{2}(G)}$, but this inequality is mentioned in the Theorem 2.4 of [20] in reverse order, which leads to the counterexample in Figure 1.

Note that forgotten topological index [12] has only few lower bounds. At first, we give an upper bound for $M_{1}^{3}(G)$ which leads to the upper bound for $\chi^{2}(G)$.

Theorem 2.5. Let G be any simple graph with no isolated vertices. Then

$$
\begin{equation*}
\chi^{2}(G) \leq 2 M_{2}^{1}(G)+(\Delta+\delta)\left(M_{1}^{2}(G)-n\right)+2 m-\Delta \delta(2 m-I D(G)) \tag{2.6}
\end{equation*}
$$

equality if and only if G is regular or bidegreed graph.
Proof. Let $a, A \in \mathbb{R}$ and x_{i}, y_{i} be two sequences with the property $a y_{i} \leq x_{i} \leq$ $A y_{i}$ for $i=1,2, \ldots, n$ and w_{i} be any sequence of positive real numbers, it holds $w_{i}\left(A y_{i}-x_{i}\right)\left(x_{i}-a y_{i}\right) \geq 0$. Since w_{i} is a positive sequence, choose $w_{i}=m_{i}-n_{i}$ such that $m_{i} \geq n_{i}$. we get

$$
\begin{equation*}
\sum_{i=1}^{n}\left(m_{i}-n_{i}\right)\left[(A+a) x_{i} y_{i}-x_{i}^{2}-A a y_{i}^{2}\right] \geq 0 \tag{2.7}
\end{equation*}
$$

By setting $A=\Delta, a=\delta, x_{i}=d\left(v_{i}\right), y_{i}=1, m_{i}=d\left(v_{i}\right)$ and $n_{i}=d\left(v_{i}\right)^{-1}$, we obtain

$$
\begin{gathered}
(\Delta+\delta) \sum_{i=1}^{n} d\left(v_{i}\right)^{2}-\sum_{i=1}^{n} d\left(v_{i}\right)^{3}-\Delta \delta \sum_{i=1}^{n} d\left(v_{i}\right) \geq(\Delta+\delta) \sum_{i=1}^{n} 1-\sum_{i=1}^{n} d\left(v_{i}\right)-\Delta \delta \sum_{i=1}^{n} \frac{1}{d\left(v_{i}\right)} \\
(\Delta+\delta) M_{1}^{2}(G)-M_{1}^{3}(G)-2 m \Delta \delta \geq(\Delta+\delta) n-2 m-\Delta \delta I D(G) .
\end{gathered}
$$

Substituting the above inequality into (2.1) completes the proof and the equality holds if and only if G is regular.

Theorem 2.6. Let G be any simple graph with n vertices and m edges. Then

$$
\begin{equation*}
\chi^{2}(G) \leq 2 M_{2}^{1}(G)+(\Delta+\delta+1) M_{1}^{2}(G)-(2 m-n \Delta) \delta-2 m \Delta(\delta+1) \tag{2.8}
\end{equation*}
$$

equality if and only if G is regular or bidegreed graph.
Proof. The proof follows by using similar arguments as in the proof of Theorem 2.5 with setting $m_{i}=d\left(v_{i}\right)$ and $n_{i}=1$.

Remark 2.7. The upper bounds (2.6) and (2.8) are incomparable. For the graphs H_{3} and $L\left(H_{3}\right)$ depicted in Figure 1, (2.6) is better than (2.8) and for the graphs $H_{3} \times H_{3}, H_{3} \times L\left(H_{3}\right)$ and $L\left(H_{3}\right) \times L\left(H_{3}\right)$, (2.8) is better than (2.6), as shown in the next table

	H_{3}	$L\left(H_{3}\right)$	$H_{3} \times H_{3}$	$H_{3} \times L\left(H_{3}\right)$	$L\left(H_{3}\right) \times L\left(H_{3}\right)$
n	7	9	49	63	81
m	9	21	162	378	882
$\chi^{2}(G)$	414.0	2136	86148.0	443232.0	2283840.0
(2.6)	419.333	2767.8	145902.778	746861.4	3666048.84
(2.8)	418.0	2790.0	145756.0	745236.0	3659652.0

3. Lower bounds for $\chi^{2}(G)$

Zhou and Trinajstić [21] obtained the following lower bound for $\chi^{2}(G)$.
Theorem 3.1. [21] Let G be a simple graph G with $m \geq 1$ edges. Then

$$
\begin{equation*}
\chi^{2}(G) \geq \frac{M_{1}^{2}(G)^{2}}{m} \tag{3.1}
\end{equation*}
$$

equality holds if and only if $d(u)+d(v)$ is a constant for any edge uv.
Theorem 3.2. Let G be a simple graph with n vertices and m edges, then

$$
\begin{equation*}
\chi^{2}(G) \geq 4 M_{2}^{1}(G) \tag{3.2}
\end{equation*}
$$

equality holds if and only if G is regular.
Proof. For any two non-negative real numbers a, b we have $\frac{1}{4}(a+b)^{2} \geq a b$. Thus, by fixing $a=d(u)$ and $b=d(v)$ for $u v \in E(G)$, then adding over all the edges of G yields

$$
\frac{1}{4} \sum_{u v \in E(G)}(d(u)+d(v))^{2} \geq \sum_{u v \in E(G)} d(u) d(v)
$$

which completes the proof, and the equality holds if and only if G is regular.
Theorem 3.3. Let G be a simple graph with no isolated vertices. Then

$$
\begin{equation*}
\chi^{2}(G) \geq 2 M_{2}^{1}(G)+\frac{1}{2 m}\left(M_{1}^{2}(G)^{2}+2 m I D(G)-n^{2}\right) \tag{3.3}
\end{equation*}
$$

equality holds if and only if G is regular.
Proof. Consider $w_{1}, w_{2}, \ldots, w_{n}$ be the non-negative weights, then we have the weighted version of Cauchy-Schwartz inequality

$$
\sum_{i=1}^{n} w_{i} a_{i}^{2} \sum_{i=1}^{n} w_{i} b_{i}^{2} \geq\left(\sum_{i=1}^{n} w_{i} a_{i} b_{i}\right)^{2}
$$

Since w_{i} is non-negative, we assume that $w_{i}=m_{i}-n_{i}$ such that $m_{i} \geq n_{i} \geq 0$. Thus

$$
\begin{equation*}
\sum_{i=1}^{n} m_{i} a_{i}^{2} \sum_{i=1}^{n} m_{i} b_{i}^{2}-\left(\sum_{i=1}^{n} m_{i} a_{i} b_{i}\right)^{2} \geq \sum_{i=1}^{n} n_{i} a_{i}^{2} \sum_{i=1}^{n} n_{i} b_{i}^{2}-\left(\sum_{i=1}^{n} n_{i} a_{i} b_{i}\right)^{2} \geq 0 \tag{3.4}
\end{equation*}
$$

Set $m_{i}=d\left(v_{i}\right), n_{i}=\frac{1}{d\left(v_{i}\right)}, a_{i}=d\left(v_{i}\right)$ and $b_{i}=1$, for all $i=1,2, \cdots, n$ in the above, we get

$$
\sum_{i=1}^{n} d\left(v_{i}\right)^{3} \sum_{i=1}^{n} d\left(v_{i}\right)-\left(\sum_{i=1}^{n} d\left(v_{i}\right)^{2}\right)^{2} \geq \sum_{i=1}^{n} d\left(v_{i}\right) \sum_{i=1}^{n} \frac{1}{d\left(v_{i}\right)}-\left(\sum_{i=1}^{n} 1\right)^{2}
$$

By combining the above inequality with (2.1), we complete the proof and the equality holds if and only if G is regular.

Theorem 3.4. Let G be a simple graph with n vertices and m edges, then

$$
\begin{equation*}
\chi^{2}(G) \geq 2 M_{2}^{1}(G)+\frac{1}{2 m}\left(M_{1}^{2}(G)^{2}+n M_{1}^{2}(G)-4 m^{2}\right) \tag{3.5}
\end{equation*}
$$

equality holds if and only if G is regular.
Proof. The proof follows from the same terminology of Theorem 3.4 by choosing $m_{i}=d\left(v_{i}\right), n_{i}=1, a_{i}=d\left(v_{i}\right)$ and $b_{i}=1$, for all $i=1,2, \cdots, n$.

Remark 3.5. For every simple graph G, the lower bound in (3.5) is always better than the lower bound in (3.3). For this, we have to show that

$$
\begin{equation*}
n M_{1}^{2}(G)-4 m^{2} \geq 2 m I D(G)-n^{2} \tag{3.6}
\end{equation*}
$$

by fixing $a_{i}=d\left(v_{i}\right), b_{i}=1, m_{i}=1$ and $n_{i}=d\left(v_{i}\right)^{-1}$ in (3.4), we achieve our required claim.
Remark 3.6. The lower bounds in (3.1), (3.2) and (3.3) are not comparable.

	H_{4}	$L\left(H_{4}\right)$	$L\left(L\left(H_{4}\right)\right)$
$\chi^{2}(G)$	612	3564	43764
(3.1)	588	3499.2	43201.09
(3.2)	576	3456	43296
(3.3)	583.875	3477.867	43248.65
(3.5)	589.5	3482.4	43255.91

In [21], the following lower and upper bound for $\chi^{2}(G)+\chi^{2}(\bar{G})$ was established:

$$
\frac{n(n-1)^{3}}{2} \leq \chi^{2}(G)+\chi^{2}(\bar{G}) \leq 2 n(n-1)^{3}
$$

By using Theorems 2.5 and 3.4, we deduce a finer bound for $\chi^{2}(G)+\chi^{2}(\bar{G})$.

Theorem 3.7. Let G be a graph of order n with m edges. Then

$$
\text { (i) } \begin{aligned}
\chi^{2}(G)+\chi^{2}(\bar{G}) & \leq 2 n(n-1)^{3}-12 m(n-1)^{2}+4 m^{2} \\
& +(5 n-6)[(\Delta+\delta)(2 m-n)+2 m-\Delta \delta(n-I D(G))]
\end{aligned}
$$

equality holds if and only if G is regular.

$$
\text { (ii) } \begin{aligned}
\chi^{2}(G)+\chi^{2}(\bar{G}) & \geq 2 n(n-1)^{3}-12 m(n-1)^{2}+4 m^{2} \\
& +\frac{(5 n-6)}{n}\left[2 m I D(G)+4 m^{2}-n^{2}\right]
\end{aligned}
$$

equality holds if and only if G is regular.
Proof. One of the present author with Song [17] have established the following identity

$$
M_{1}^{3}(G)+M_{1}^{3}(\bar{G})=n(n-1)^{3}-6 m(n-1)^{2}+3(n-1) M_{1}^{2}(G) .
$$

From [7], we have

$$
M_{2}^{1}(G)+M_{2}^{1}(\bar{G})=\frac{n(n-1)^{3}}{2}-3 m(n-1)^{2}+2 m^{2}+\left(n-\frac{3}{2}\right) M_{1}^{2}(G)
$$

By using the above results in Lemma 2.1, we get

$$
\chi^{2}(G)+\chi^{2}(\bar{G})=2 n(n-1)^{3}-12 m(n-1)^{2}+4 m^{2}+(5 n-6) M_{1}^{2}(G)
$$

By setting $A=\Delta, a=\delta, x_{i}=d\left(v_{i}\right), y_{i}=m_{i}=1$ and $n_{i}=d\left(v_{i}\right)^{-1}$ in (2.7) and using (3.6) in the above relation, we get the required result.

References

1. M. Ali Rostami, H. Martin Bücker and A. Azadi, Illustrating a Graph Coloring Algorithm Based on the Principle of Inclusion and Exclusion Using GraphTea, LNCS, Springer 8719 (2014) 514-517.
2. A.R. Ashrafi, T. Došlić and A.Hamzeha, The Zagreb coindices of graph operations, Discrete Appl. Math. 158 (2010) 571-578.
3. M. Bianchi, A. Cornaro, J.L. Palacious, A. TOrriero, New bounds of degree-based topological indices for some classes of c-cyclic graphs. Discrete Math. $\mathbf{1 8 4}$ (2015), 62-75.
4. G. Britto Antony Xavier and E. Suresh and I. Gutman, Counting relations for general Zagreb indices, Kragujevac J. Math. 38 (2014) 95-103.
5. P. Dankelmann, A. Hellwig, L. Volkmann, Inverse degree and edge-connectivity, Discrete Math. 309 (2009) 2943-2947.
6. P. Dankelmann, H. C. Swart, P. Van Den Berg, Diameter and inverse degree, Discrete Math. 308 (2008) 670-673.
7. K.C. Das and I. Gutman, Some properties of the second Zagreb index, MATCH Commun Math Comput Chem. 52 (2004) 103-112.
8. K.C. Das, K. Xu and J. Nam, Zagreb indices of graphs, Front. Math. China, 10 (2015) 567-582.
9. K.C. Das, K. Xu, J. Wang, On Inverse degree and topological indices of graphs, Fiolmat. In Press.
10. P. Erdös, J. Pach, J. Spencer, On the mean distance between points of a graph, Congr Numer, 64 (1988), 121-124.
11. S. Fajtlowicz, On conjectures of graffiti II, Congr. Numer. 60 (1987) 189-197.
12. B. Fortula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184-190.
13. I. Gutman and N. Trinajstić, Graph theory and molecular orbitals, Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
14. I. Gutman and B. Ruščić, N. Trinajstić and C.F. Wilcox, Graph theory and molecular orbitals, XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.
15. X. Li and J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195-208.
16. G. H. Shirdel, H. Rezapour, and A. M. Sayadi, The Hyper Zagreb Index of Graph Operations, Iranian J. Math. Chem. 4 (2013) 213-220.
17. T. Mansour and C. Song, The a and (a, b) - Analogs of Zagreb Indices and Coindices of Graphs, Intern. J. Combin. (2012) ID 909285.
18. T. Mansour, M.A. Rostami, E. Suresh and G.B.A. Xavier, New sharp lower bounds for the first Zagreb index, Appl. Math. Inform. and Mech. 8(1), (2016) 11-24.
19. S. Nikolić, G. Kovačević, A. Milićević, N. Trinajstić, The Zagreb indices 30 years after. Croat Chem Acta, 76 (2003) 113-124.
20. P.S. Ranjini, V. Lokesha, M. Bindusree and M. Phani Raju, New Bounds on Zagreb indices and the Zagreb Co-indices, Bol. Soc. Paran. Mat. 31 (2013) 51-55.
21. B. Zhou and N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47 (2010) 210-218.
[^0]
[^0]: Suresh Elumalai,
 Department of Mathematics, Velammal Engineering College, Surapet, Chennai-600066, Tamil Nadu, India.
 E-mail address: sureshkako@gmail.com
 and
 T. Mansour,

 Department of Mathematics, University of Haifa, 3498838 Haifa, Israel.
 E-mail address: tmansour@univ.haifa.ac.il
 and
 M. A. Rostami,

 Institute for Computer Science, Friedrich Schiller University Jena,
 Germany
 E-mail address: a.rostami@uni-jena.de
 and
 G.B.A. Xavier,

 Department of Mathematics, Sacred Heart College, Tirupattur-635601, Tamil Nadu, India.
 E-mail address: brittoshc@gmail.com

