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On the Stability of a Class of Cosine Type Functional Equations

J. M. Rassias, D. Zeglami and A. Charifi

abstract: The aim of this paper is to investigate the stability problem for the
pexiderized trigonometric functional equation

f1(xy) + f2(xσ(y)) = 2g1(x)g2(y), x, y ∈ G, (E)

where G is an arbitrary group, f1, f2, g1 and g2 are complex valued functions on
G and σ is an involution of G. Results of this paper also can be extended to the
setting of monoids (that is, a semigroup with identity) that need not be abelian.

Key Words: Stability, Superstability, D’Alembert’s equation, Trigonometric
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1. Introduction

Let V be a vector space. In [4], Baker et al. have been proved that the
functional equation

f(x+ y) = f(x)f(y), x, y ∈ V, (1.1)

is superstable in the class of functions f : V → R i.e. every such function satisfying
the inequality

|f(x+ y)− f(x)f(y)| ≤ ε, x, y ∈ V,

where ε is a fixed positive real number, either is bounded or satisfies (1.1).
The superstability of the cosine functional equation (also called classical d’Alem-

bert’s equation)

f(x+ y) + f(x− y) = 2f(x)f(y), x, y ∈ G, (C)

is studied by J. Baker [3], Badora [2] and Gàvruta [6], and the superstability
problem for the mixed trigonometric functional equations

f(x+ y)− f(x− y) = 2f(x)g(y), x, y ∈ G,

f(x+ y)− f(x− y) = 2g(x)f(y), x, y ∈ G,

on the abelian group (G,+), is investigated by Kim and Lee ( [10], [11]).
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The cosine functional equation (C) is generalized to the following functional
equations

f(x+ y) + f(x− y) = 2f(x)g(y), x, y ∈ G,

f(x+ y) + f(x− y) = 2g(x)f(y), x, y ∈ G,

f(x+ y) + f(x− y) = 2g(x)g(y), x, y ∈ G,

and their stabilities are explored by Kannappan and Kim ( [9], [12], [13]) and
Tyrala [23]. The superstability problem for the pexiderized cosine type functional
equation

f1(x+ y) + f2(x− y) = 2g1(x)g2(y), x, y ∈ G,

on the abelian group (G,+) is investigated by Kim [13] and Kusollerschariya and
Nakmahachalasint [14].

In this paper, let G be any group, e denotes its neutral element, C the field
of complex numbers. We may assume that f1, f2, g1 and g2 are nonzero complex
valued functions on G, δ is a nonnegative real constant, and σ is an involution of
G, i.e. σ(xy) = σ(y)σ(x) and σ(σ(x)) = x for all x, y ∈ G. For any complex-
valued function F on G we use the notation F̌ (x) := F (σ(x)), x ∈ G.

The functional equation

f1(xy) + f2(xσ(y)) = 2g1(x)g2(y), x, y ∈ G, (E)

contain four unknown functions. However, if we put F1 := f1+f2
2 and F2 := f1−f2

2
then (E) is equivalent to the two equations

F1(xy) + F1(xσ(y)) = 2g1(x)
g2(y) + g2(σ(y))

2
, x, y ∈ G,

F2(xy) − F2(xσ(y)) = 2g1(x)
g2(y)− g2(σ(y))

2
, x, y ∈ G.

So the study of (E) reduces to a study of equations of the forms

f(xy)∓ f(xσ(y)) = 2g(x)h(y), x, y ∈ G,

each containing only three unknown functions [19]. Studying these equations is
based on the solution of d’Alembert’s functional equation

f(xy) + f(xσ(y)) = 2f(x)f(y), x, y ∈ G, (A)

that has been solved, on an arbitrary group, by Davison in [5] and Stetkær in [20]
each in his own way. Their formulas of solutions involve harmonic analysis on G

and these make sense to solve other functional equations see e.g. [33].
In [18], Roukbi, Zeglami and Kabbaj proved the superstability of Wilson’s

functional equation

f(xy) + f(xσ(y)) = 2f(x)g(y), x, y ∈ G, (W )

where G is any group and σ is an involuon of G. Namely, the following Theorem
holds true.
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Theorem 1.1. ( [18]) Let δ > 0 be given. Assume that functions f, g : G → C

satisfy the inequality

|f(xy) + f(xσ(y))− 2f(x)g(y)| ≤ δ for all x, y ∈ G.

Then one of the following statements holds:
(i) f, g are bounded,
(ii) f is unbounded and g satisfies d’Alembert’s long functional equation

g(xy) + g(xσ(y)) + g(yx) + g(σ(y)x) = 4g(x)g(y), x, y ∈ G, (L.A)

(iii) g is unbounded and the pair (f, g) satisfies Eq. (W ).

The stability of the following equation

f(xy) + f(xσ(y)) = 2g(x)f(y), x, y ∈ G,

is investigated on an arbitrary group G by Zeglami, Kabbaj and Roukbi [25] in
the following Theorem:

Theorem 1.2. ( [25]) Let δ > 0 be given. Assume that functions f, g : G → C

satisfy the inequality

|f(xy) + f(xσ(y))− 2g(x)f(y)| ≤ δ for all x, y ∈ G.

Then one of the following statements holds:
(i) f, g are bounded,
(ii) g is unbounded and f̃ = 1

f(e)f satisfies Eq. (L.A),

(iii) f is unbounded and (f, g) satisfies the equation

g(xy) + g(xσ(y)) = 2g(x)f̃(y) for all x, y ∈ G.

The stability problem of the trigonometric type functional equation

f(xy)− f(xσ(y)) = 2f(x)g(y), x, y ∈ G, (T )

is also studied by Zeglami and Kabbaj in [27].

Theorem 1.3. ( [27]) Let δ > 0 be given. Assume that functions f, g : G → C

satisfy the inequality

|f(xy)− f(xσ(y))− 2f(x)g(y)| ≤ δ for all x, y ∈ G.

Then one of the following statements holds:
(i) f, g are bounded,
(ii) f is unbounded and g satisfies the functional equation

g(xy)− g(xσ(y))− g(yx) + g(σ(y)x) = 0, x, y ∈ G,

(iii) g is unbounded and the pair (f, g) satisfies Eq. (T ).
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In the present paper our approach is more general. We study, on any group,
not necessarily abelian, the stability problem of the pexiderezed cosine functional
equation

f1(xy) + f2(xσ(y)) = 2g1(x)g2(y), x, y ∈ G, (E)

where f1, f2, g1 and g2 are complex valued functions and σ is an involution of G.
As consequences, we obtain the stability of the following functional equations

f(xy)± f(xσ(y)) = 2f(x)f(y), x, y ∈ G,

f(xy)∓ f(xσ(y)) = 2g(x)f(y), x, y ∈ G,

f(xy)± f(xσ(y)) = 2g(x)g(y), x, y ∈ G,

f(xy)∓ f(xσ(y)) = 2g(x)h(y), x, y ∈ G,

f(xy) + g(xσ(y)) = 2g(x)f(y), x, y ∈ G,

f(xy) + g(xσ(y)) = 2f(x)g(y), x, y ∈ G.

The interested reader should refer to [1-4, 6-18, 21-32] for a thorough account on
the subject of stability of functional equations.

2. Stability of pexiderized trigonometric equations

Lemma 2.1. Let δ > 0 be given. Assume that the function f : G → C satisfies
the inequality

|f(xy)− f(xσ(y))− 2f(x)f(y)| ≤ δ,

for all x, y ∈ G. Then f is bounded.

Proof: [ [27], Corollary 1]. ✷

Lemma 2.2. Let δ > 0 be given. Assume that functions f1, f2, g1 and g2 : G → C

with g2(e) 6= 0 satisfy the inequality

|f1(xy) + f2(xσ(y))− 2g1(x)g2(y)| ≤ δ, (I)

for all x, y ∈ G. Then f1 + f2 is unbounded if and only if g1 is also unbounded.

Proof: Putting y = e in (I) we obtain

|f1(x) + f2(x) − 2g2(e)g1(x)| ≤ δ for all x ∈ G,

which shows, since g2(e) 6= 0, that f1 + f2 is unbounded is equivalent to g1 is also
unbounded. ✷

Lemma 2.3. Let δ > 0 be given. Assume that functions f1, f2, g1 and g2 : G → C

with g2(e) = 0 satisfy the inequality (I). Then f1 + f2 is bounded and for all
x, y ∈ G we have

|f1(xy)− f1(xσ(y))− 2g1(x)g2(y)| ≤ 2δ , (2.1)

and
|f2(xy)− f2(xσ(y)) + 2g1(x)g2(y)| ≤ 2δ .
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Proof: The proof of each inequality are very similar, so it suffices to show the
proof of (2.1). Putting y = e in (I) we obtain

|f1(x) + f2(x)| ≤ δ for all x ∈ G, (2.2)

which shows that f1 + f2 is bounded and

|f1(xy)− f1(xσ(y))− 2g1(x)g2(y)|

≤ |f1(xy) + f2(xσ(y))− 2g1(x)g2(y)|+ |f1(xσ(y)) + f2(xσ(y))| .

By (2.2) and (I) we get that

|f1(xy)− f1(xσ(y))− 2g1(x)g2(y)| ≤ 2δ,

for all x, y ∈ G. ✷

Lemma 2.4. Let δ > 0 be given. Assume that functions f1, f2, g1 and g2 : G → C

with g2(e) = 1 satisfy the inequality (I). Then

|g1(xy) + g1(xσ(y))− 2g1(x)h(y)| ≤ 2δ for all x, y ∈ G,

where

h =
g2 + ǧ2

2
.

Proof: Assume that g2(e) = 1. Putting y = e in the inequality (I). It is easy to
show that

|f1(x) + f2(x) − 2g1(x)| ≤ δ for all x ∈ G. (2.3)

By virtue of inequalities (I) and (2.3) we have

|g1(xy) + g1(xσ(y))− 2g1(x)h(y)|

=

∣

∣

∣

∣

g1(xy) + g1(xσ(y))− 2g1(x)
g2(y) + g2(σ(y))

2

∣

∣

∣

∣

= |g1(xy) + g1(xσ(y))− g1(x)g2(y)− g1(x)g2(σ(y))|

≤

∣

∣

∣

∣

−
1

2
f1(xy)−

1

2
f2(xy) + g1(xy)

∣

∣

∣

∣

+

∣

∣

∣

∣

−
1

2
f1(xσ(y))−

1

2
f2(xσ(y)) + g1(xσ(y))

∣

∣

∣

∣

+
1

2
|f1(xy) + f2(xσ(y))− 2g1(x)g2(y)|

+
1

2
|f1(xσ(y)) + f2(xy)− 2g1(x)g2(σ(y))|

≤
δ

2
+

δ

2
+

δ

2
+

δ

2
= 2δ.

✷

In the following theorem the stability of the pexiderized trigonometric functional
equation (E) will be investigated on an arbitrary group.
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Theorem 2.1. Let δ > 0 be given. Assume that functions f1, f2, g1 and g2 : G → C

with g2(e) 6= 0 satisfy the inequality (I). Then one of the following statements holds:
(i) g1 (or f1 + f2) and g2 + ǧ2 are bounded,

(ii) g1 (or f1 + f2) is unbounded and h = g2+ǧ2
2g2(e)

satisfies Eq. (L.A), i.e.

h(xy) + h(xσ(y)) + h(yx) + h(σ(y)x) = 4h(x)h(y), x, y ∈ G,

(iii) g2 + ǧ2 is unbounded and the pair (g1, g2) satisfies the equation

g1(xy) + g1(xσ(y)) = g1(x)
g2(y) + ǧ2(y)

g2(e)
, x, y ∈ G.

Proof: Assume that f1, f2, g1 and g2 satisfy the inequality (I) such that g2(e) 6= 0.
Dividing the two sides of the inequality (I) by α = g2(e) we find that

∣

∣

∣
f̃1(xy) + f̃2(xσ(y))− 2g1(x)g̃2(y)

∣

∣

∣
≤

δ

|α|
for all x, y ∈ G,

where f̃1 = f1
α

, f̃2 = f2
α

and g̃2 = g2
α
. We see that g̃2(e) = 1. By using Lemma 2.4

we obtain that

|g1(xy) + g1(xσ(y))− 2g1(x)h(y)| ≤ 2
δ

|α|
for all x, y ∈ G,

where

h =
g2 + ǧ2

2g2(e)
.

Using Theorem 1.1, we conclude that each functions f1, f2, g1 and g2 satisfying
(I) with g2(e) 6= 0 fall into one of the categories (i)-(iii) of Theorem 2.1. ✷

Corollary 2.2. Let δ > 0 be given. Assume that functions f, g : G → C satisfy
the inequality

|f(xy) + g(xσ(y))− 2f(x)g(y)| ≤ δ,

for all x, y ∈ G.

1) If g(e) 6= 0, then:
i) Either f is bounded or h = g+ǧ

2g(e) satisfies Eq. (L.A).

ii) Either g + ǧ is bounded or the pair (f, g) satisfies the equation

f(xy) + f(xσ(y)) = f(x)
g(y) + ǧ(y)

g(e)
for all x, y ∈ G.

2) If g(e) = 0, then either g (or f) is bounded or

f(xy)− f(xσ(y)) = 2f(x)g(y) for all x, y ∈ G.
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Proof: 1) (i) and (ii) are immediate consequences from Theorem 2.1 by taking
f1 = g1 = f and f2 = g2 = g.

2) If g is an unbounded function such that g(e) = 0 then f is also unbounded.
By virtue of Lemma 2.3, we have

|f(xy)− f(xσ(y))− 2f(x)g(y)| ≤ 2δ ,

for all x, y ∈ G. Applying (iii) of Theorem 1.3 we have

f(xy)− f(xσ(y)) = 2f(x)g(y) for all x, y ∈ G.

✷

As another result of Theorem 2.1 we have the following corollary

Corollary 2.3. Let δ > 0 be given. Assume that functions f and g : G → C satisfy
the inequality

|f(xy) + g(xσ(y))− 2g(x)f(y)| ≤ δ,

for all x, y ∈ G.
1) If f(e) 6= 0, then:

i) Either g is bounded or h = f+f̌
2f(e) satisfies Eq. (L.A).

ii) Either f + f̌ is bounded or the pair (f, g) satisfies the equation

g(xy) + g(xσ(y)) = g(x)
f(y) + f̌(y)

f(e)
for all x, y ∈ G.

2) If f(e) = 0, then either f (or g) is bounded or

−g(xy) + g(xσ(y)) = 2g(x)f(y) for all x, y ∈ G.

Proof: 1) The assertions (i) and (ii) are immediate consequences from Theorem
2.1 by taking f1 = g2 = f and f2 = g1 = g.

2) If f is an unbounded function such that f(e) = 0 then g is also unbounded.
By virtue of Lemma 2.3, we have

|g(xy)− g(xσ(y))− 2g(x)(−f(y))| ≤ 2δ,

for all x, y ∈ G. So, by (iii) of Theorem 1.3, we have

g(xy)− g(xσ(y)) = −2g(x)f(y), ∀x, y ∈ G.

✷

In the next four corollaries, the stability problem of the considered functional
equations will be obtained without any assumption on g2(e).
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Corollary 2.4. ( [30]) Let δ > 0 be given. Suppose that functions f, g1 and g2 :
G → C satisfy the inequality

|f(xy) + f(xσ(y))− 2g1(x)g2(y)| ≤ δ for all x, y ∈ G. (2.4)

Then one of the following statements holds:
(i) f, g1 and g2 are bounded,
(ii) g1 (or f) is unbounded and g2

g2(e)
satisfies Eq. (L.A),

(iii) g2 + ǧ is unbounded and the pair (g1, g2) satisfies the equation

g1(xy) + g1(xσ(y)) = g1(x)
g2(y) + ǧ2(y)

g2(e)
for all x, y ∈ G.

Proof: If g2(e) = 0. Putting y = e in (2.4) we get |f(x)| ≤ δ
2 for all x ∈ G i.e. f is

bounded. Let M = sup |f | and choose a, b ∈ G such that g1(a) 6= 0 and g2(b) 6= 0
then we get from the inequality (2.4) that

|g2(x)| ≤
1

2 |g1(a)|
(2M + δ) and |g1(x)| ≤

1

2 |g2(b)|
(2M + δ),

for all x ∈ G, i.e. g1 and g2 are also bounded. So we are in the case (i).
Suppose that g1 (or f) is unbounded. According to previous discussions g2(e) 6=

0. Replacing y by σ(y) in (2.4) results in

|f(xσ(y)) + f(xy)− 2g1(x)g2(σ(y))| ≤ δ for all x, y ∈ G.

From this last inequality and (2.4) we get

|2g1(x)| |g2(y)− g2(σ(y))| ≤ 2δ for all x, y ∈ G,

and then it follows also that g2 ◦ σ = g2 because g1 is unbounded. Using notation
of Theorem 2.1, the function h shall be equal to g2

g2(e)
. Finally, if g2 + g2 ◦ σ is

unbounded then g2(e) 6= 0 and so the rest of the proof is an immediate consequence
of Theorem 2.1. ✷

Corollary 2.5. ( [30]) Let δ > 0 be given. Suppose that functions f and g : G → C

satisfy the inequality

|f(xy) + f(xσ(y))− 2g(x)g(y)| ≤ δ for all x, y ∈ G. (2.5)

Then either g (or f) is bounded or the function g satisfies the equation

g(xy) + g(xσ(y)) = 2g(x)
g(y)

g(e)
for all x, y ∈ G.

Proof: It is obvious that g is bounded is equivalent to f is also bounded. Suppose
that g is an unbounded function satisfying (2.5) then g(e) 6= 0. Replacing y by
σ(y) in (2.5) and adding the result to (2.5) we arrive at the inequality

|g(x)(g(y) − g(σ(y)))| ≤ δ for all x, y ∈ G,
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from which it follows that g ◦ σ = g because g is unbounded. The rest of the proof
follows on putting g1 = g2 = g on Corollary 2.4 (iii). ✷

Corollary 2.6. ( [18]) Let δ > 0 be given. Suppose that the function f : G → C

satisfies the inequality

|f(xy) + f(xσ(y))− 2f(x)f(y)| ≤ δ for all x, y ∈ G. (2.6)

Then either f is bounded or f is a solution of Eq. (A).

Proof: If we replace y by e in (2.6) we see that if f is an unbounded function
satisfying (2.6) then f(e) = 1 and the proof follows on putting f = g on Corollary
2.5. ✷

Corollary 2.7. Let δ > 0 be given. Suppose that functions f, g : G → C satisfy
the inequality

|f(xy) + f(xσ(y))− 2g(x)f(y)| ≤ δ for all x, y ∈ G. (2.7)

If f (or g) fails to be bounded, then g satisfies the equation

g(xy) + g(xσ(y)) = 2g(x)
f(y)

f(e)
for all x, y ∈ G.

If, additionally the group G is abelian then f(xy) + f(xσ(y)) = 2g(x)f(y) and g is
a solution of Eq. (A).

Proof: Suppose that f (or g) is unbounded, it is easy to see that f(e) 6= 0 and
f = f ◦σ = f+f◦σ

2 . On putting g1 = g and g2 = f in Corollary 2.4 (iii) we get that
the pair (f, g) satisfies the equation

g(xy) + g(xσ(y)) = 2g(x)
f(y)

f(e)
for all x, y ∈ G. (2.8)

From (2.8) we deduce that f̃(xy)+ f̃(xσ(y))+ f̃(yx)+ f̃(σ(y)x) = 4f̃(x)f̃(y) for all
x, y ∈ G where f̃ = f

f(e) . If G is abelian or at least f is central (i.e. f(xy) = f(yx)

for all x, y ∈ G) then we have

f̃(xy) + f̃(xσ(y)) = 2f̃(x)f̃ (y), ∀x, y ∈ G. (2.9)

Dividing the two sides of the inequality (2.7) by α = f(e) we find that

∣

∣

∣
f̃(xy) + f̃(xσ(y))− 2g(x)f̃(y)

∣

∣

∣
≤

δ

|α|
. (2.10)

When we substitute (2.9) into (2.10) we get that

∣

∣

∣
2f̃(y)(f̃(x)− g(x))

∣

∣

∣
≤

δ

|α|
. (2.11)
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Since f is unbounded then so is f̃ . Consequently (2.11) implies g = f̃ thus g

satisfies (A). Substituting f̃ by g on the first factor of the right hand side of (2.9)
the expression reduces to f(xy) + f(xσ(y)) = 2g(x)f(y) for all x, y ∈ G. ✷

Proposition 2.8. Let δ > 0 be given. Suppose that functions f, g1, g2 : G → C

satisfy the inequality

|f(xy)− f(xσ(y))− 2g1(x)g2(y)| ≤ δ for all x, y ∈ G. (2.12)

i) If g1 is unbounded then g2 + g2 ◦ σ = 0.
ii) If g2 + g2 ◦ σ is unbounded then g1 = 0.

Proof: i) Suppose that g1 is unbounded. If we replace y by σ(y) in (2.12) we get

|f(xσ(y))− f(xy)− 2g1(x)g2(σ(y))| ≤ δ for all x, y ∈ G.

From this inequality and (2.12) we obtain

|2g1(x)| |g2(y) + g2(σ(y))| ≤ 2δ,

for all x, y ∈ G. Hence g2 + g2 ◦ σ = 0 because g1 is unbounded.
(ii) Follows from the previous discussion. ✷

Corollary 2.9. Let δ > 0 be given. Suppose that functions f, g : G → C satisfy
the inequality

|f(xy)− f(xσ(y))− 2g(x)f(y)| ≤ δ for all x, y ∈ G.

i) If g is unbounded then f + f̌ = 0.
ii) If f + f̌ is unbounded then g = 0.

Proof: The proof follows on putting g1 = g and g2 = f on Proposition 2.8. ✷

Lemma 2.5. Let δ > 0 be given. Assume that functions f1, f2, g1 and g2 : G → C

with f2 = f2 ◦ σ satisfy the inequality (I).
1) If g1(e) = 1 then

|g2(xy) + g2(xσ(y))− 2g1(x)h(y)| ≤ 2δ for all x, y ∈ G,

where

h =
g2 + ǧ2

2
.

2) If g1(e) = 0 then

|f1(xy)− f1(xσ(y))− 2g1(x)g2(y)| ≤ 2δ for all x, y ∈ G, (2.13)

and
|−f2(xy) + f2(xσ(y))− 2g1(x)g2(y)| ≤ 2δ for all x, y ∈ G.
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Proof: 1) Assume that g1(e) = 1 and f2 = f2 ◦ σ. Putting x = e in the inequality
(I). It is easy to show that

|f1(y) + f2(y)− 2g2(y)| ≤ δ for all x ∈ G. (2.14)

By the use of (2.14) and (I) we get for all x, y ∈ G that

|g2(xy) + g2(xσ(y))− 2g1(x)h(y)|

= |g2(xy) + g2(xσ(y))− g1(x)g2(y)− g1(x)g2(σ(y))|

≤

∣

∣

∣

∣

−
1

2
f1(xy)−

1

2
f2(xy) + g2(xy)

∣

∣

∣

∣

+

∣

∣

∣

∣

−
1

2
f1(xσ(y))−

1

2
f2(xσ(y)) + g2(xσ(y))

∣

∣

∣

∣

+
1

2
|f1(xy) + f2(xσ(y))− 2g1(x)g2(y)|

+
1

2
|f1(xσ(y)) + f2(xy)− 2g1(x)g2(σ(y))|

≤
δ

2
+

δ

2
+

δ

2
+

δ

2
= 2δ.

2) The proof of each inequality are very similar so it suffices to show the proof
of (2.13). Putting x = e in (I) we obtain

|f1(x) + f2(x)| ≤ δ for all x ∈ G,

which shows, using (I), that

|f1(xy)− f1(xσ(y))− 2g1(x)g2(y)|

≤ |f1(xy) + f2(xσ(y))− 2g1(x)g2(y)|+ |f1(xσ(y)) + f2(xσ(y))|

≤ 2δ,

for all x, y ∈ G. ✷

Theorem 2.10. Let δ > 0 be given. Assume that functions f1, f2, g1 and g2 : G →
C, with f2 = f̌2 and g1(e) 6= 0, satisfy the inequality (I). Then

i) Either g1 (or g2) (or f1 + f2) is bounded or g2+ǧ2
2g2(e)

satisfies Eq. (L.A).

ii) Either g2 + ǧ2 is bounded or the pair (g1, g2) satisfies the equation

g1(xy) + g1(xσ(y)) = g1(x)
g2(y) + ǧ2(y)

g2(e)
for all x, y ∈ G.

Assume that f1, f2, g1 and g2 : G → C, with f2 = f̌2 and g1(e) 6= 0, satisfy the
inequality (I). It is easy to see that g2 is bounded is equivalent to f1 + f2 is also
bounded. Dividing the two sides of the inequality (I) by β = g1(e) we find that

∣

∣

∣
f̃1(xy) + f̃2(xσ(y))− 2g̃1(x)g2(y)

∣

∣

∣
≤

δ

|β|
for all x, y ∈ G,
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where f̃1 = f1
β
, f̃2 = f2

β
and g̃1 = g1

β
. We see that f̃2(σ(y)) = f̃2(y) for all y ∈ G

and g̃1(e) = 1. According to Lemma 2.5. we have

|g2(xy) + g2(xσ(y))− 2g̃1(x)h(y)| ≤ 2
δ

|β|
for all x, y ∈ G,

where h = g2+g2◦σ
2 and the rest of the proof follows from Corollary 2.4.

Corollary 2.11. Let δ > 0 be given. Assume that functions f1, f2, g1 and g2 :
G → C, with f2 = f̌2, g1(e) 6= 0 and g2 = ǧ2, satisfy the inequality (I). Then either
g2 (or g1) is bounded or the pair (g1, g2) satisfies the equation

g1(xy) + g1(xσ(y)) = 2g1(x)g̃2(y) for all x, y ∈ G.

Furthermore in the latter case the function g̃2 = 1
g2(e)

g2 satisfies Eq. (L.A).

Proof: The proof is an immediate consequence of Theorem 2.10. ✷

Corollary 2.12. Let δ > 0 be given. Assume that functions f, g : G → C with
g = ǧ satisfy the inequality

|f(xy) + g(xσ(y))− 2f(x)g(y)| ≤ δ,

for all x, y ∈ G.

1) If f(e) 6= 0, then:
i) Either g (or f) is bounded or g

g(e) satisfies Eq. (L.A).

ii) Either g is bounded or the pair (f, g) satisfies the equation

f(xy) + f(xσ(y)) = 2f(x)
g(y)

g(e)
for all x, y ∈ G.

2) If f(e) = 0, then either g (or f) is bounded or

f(xy)− f(xσ(y)) = 2f(x)g(y) for all x, y ∈ G.

Proof: 1) The assertions (i) and (ii) are immediate consequences from Theorems
2.10 by taking f1 = g1 = f and f2 = g2 = g.

2) If g is an unbounded function such that f(e) = 0 then f is also unbounded.
By virtue of Lemma 2.5, we have

|f(xy)− f(xσ(y))− 2f(x)g(y)| ≤ 2δ ,

for all x, y ∈ G. Applying (iii) of Theorem 1.3 we have

f(xy)− f(xσ(y)) = 2f(x)g(y) for all x, y ∈ G.

✷

As another result of Theorem 2.10 we have the following corollary
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Corollary 2.13. Let δ > 0 be given. Assume that functions f and g : G → C with
g = ǧ satisfy the inequality

|f(xy) + g(xσ(y))− 2g(x)f(y)| ≤ δ for all x, y ∈ G.

1) If g(e) 6= 0, then:

i) Either g (or f) is bounded or f+f̌
2f(e) satisfies Eq. (L.A).

ii) Either f + f̌ is bounded or the pair (f, g) satisfies the equation

g(xy) + g(xσ(y)) = g(x)
f(y) + f̌(y)

f(e)
for all x, y ∈ G.

2) If g(e) = 0, then either f (or g) is bounded or

−g(xy) + g(xσ(y)) = 2g(x)f(y) for all x, y ∈ G.

Proof: 1) The assertions (i) and (ii) are immediate consequences from Theorem
2.10 by taking f1 = g2 = f and f2 = g1 = g.

2) If f is an unbounded function such that g(e) = 0 then g is also unbounded.
By virtue of Lemma 2.5, we have

|g(xy)− g(xσ(y))− 2g(x)(−f(y))| ≤ 2δ,

for all x, y ∈ G. So, by (iii) of Theorem 1.3, we have

g(xy)− g(xσ(y)) = −2g(x)f(y),

for all x, y ∈ G. ✷

Remark 2.14. i) All the results of this paper are also true if we suppose that G is
a semigroup with identity because in demonstrations we never needed the inversion
in G.

ii) The results of this paper can also be extended to the stability of the considered
equations controlled even by variable bounds.
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