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Existence and Multiplicity Results for a Class of Kirchhoff Type

Problems Involving the p(x)-Biharmonic Operator
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abstract: The aim of this paper is to establish the existence and multiplicity of
solutions for a class of nonlocal problem involving the p(x)-biharmonic operator of
the form







M

(

∫

Ω
|∆u|p(x)

p(x)
dx

)

∆(|∆u|p(x)−2∆u) = f(x, u) in Ω,

u = ∆u = 0 on ∂Ω.

Our technical approach is based on direct variational method and the theory of
variable exponent Sobolev spaces.
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1. Introduction

In this paper we are concerned with the following problem

{
M

(∫
Ω

|∆u|p(x)

p(x) dx
)
∆(|∆u|p(x)−2∆u) = f(x, u) in Ω,

u = ∆u = 0 on ∂Ω,
(1.1)

where Ω ∈ R
N (N ≥ 2) is a bounded domain with a smooth boundary ∂Ω, p is a

continuous function on Ω such that 1 < p− := infx∈Ω p(x) ≤ p+ := supx∈Ω p(x) <

+∞, ∆(|∆u|p(x)−2∆u) is the p(x)-Biharmonic operator, M : R+ → R
+ is a con-

tinuous function and f : Ω× R → R is a Carathédory function.
Many authors consider the existence of solutions for some fourth order problems
with variable exponent and Navier boundary condition, see for instance [13,14,22].
This is a generalization of the p-biharmonic operator ∆(|∆u|p−2∆u) obtained when
p is a constant.
Problem (1.1) is called a nonlocal one because of the presence of the term M , which
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implies that the equation in (1.1) is no longer pointwise identities. This make the
study of such problem particularly interesting. Nonlocal differential equations are
also called Kirchhoff type equations, introduced by Kirchhoff [20]. More precisely,
Kirchhoff introduced a model given by the equation

ρ
∂2u

∂t2
−
(ρ0
h

+
E

2L

∫ L

0

|
∂u

∂x
|2dx

)∂2u

∂x2
= 0, (1.2)

where E is the Young modulus of the material, ρ is the mass density, L is the
length of the string, h is the area of the cross-section, and ρ0 is the initial tension.
Equation (1.2) extends the classical D’Alembert’s wave equation by considering
the effects of the changes in the length of the strings during the vibrations. Lions
[21] has proposed an abstract framework for the Kirchhoff type equations. After
the work of Lions [21], various equations of Kirchhoff type equations have been
studied extensively, see [2,5,6,7]. The study of Kirchhoff type equations has already
been extended to the case involving the p-Laplacian (for details, see [6,7,8,9]) and
p(x)-Laplacian (see [10,11,18]). The generalization of Kirchhoff equations to the
case involving the p(x)-Biharmonic operator is a quite new topic, so there exists
only a few papers (see [3,4]). In [3] the authors study the problem (1.1) when
the Carathéodory function is of the particular form f(x, u) = λ(x)|u|p(x)−2u in
which the weight function λ(x) ∈ L∞(Ω) does not change sign and when f(x, u) =
λ|u|p(x)−2u where λ is a positive parameter. Moreover the Kirchhoff function M is
non-degenerate, i.e.,

M(t) ≥ m0 > 0 for all t ≥ 0.

Motivated by the above references and some ideas in [10], we establish the existence
and multiplicity of solutions for problem (1.1) using variational method and the
theory of the variable exponent Sobolev spaces. Here the Kirchhoff function M

may be degenerate at zero. More precisely, we assume that
(M1) There exist m2 ≥ m1 > 0 and α > 1 such that for all t ∈ R

+,

m1t
α−1 ≤ M(t) ≤ m2t

α−1.

Throughout this paper, the nonlinear term f satisfy the following conditions:
(H0) f : Ω×R → R satisfies the Carathédory condition and there exist a constant
C1 ≥ 0 such that

|f(x, t)| ≤ C1(1 + |t|γ(x)−1)

for all (x, t) ∈ Ω × R with γ(x) ∈ C+(Ω) and γ(x) < p∗2(x) for all x ∈ Ω where

p∗2(x) :=
Np(x)

N−2p(x) if p(x) < N
2 , p

∗
2(x) = ∞ if p(x) ≥ N

2 .

(H1) There exist K > 0, θ >
m2α(p

+)α

m1(p−)α−1 such that for all x ∈ Ω and all t ∈ R with

|t| ≥ K,

0 < θF (x, t) ≤ tf(x, t),

where F (x, t) =
∫ t

0
f(x, s)ds and m1,m2, α come from (M1).

(H2) f(x, t) = o(|t|αp+−1) as t → 0 uniformly with respect to x ∈ Ω, with γ− >



Existence and Multiplicity Results 25

α(p+)α, where α comes from (M1).
(H3) f(x,−t) = −f(x, t) for all x ∈ Ω and t ∈ R.
This article is organized as follows. In section 2, we recall some basic results on the
theory of Lebesgue-Sobolev spaces with variable exponent. In section 3, we state
and prove our main results.

2. Preliminaries

In this section we recall some definitions and basic properties of the variable
exponent Lebesgue and Sobolev spaces Lp(x)(Ω) and W 1,p(x)(Ω), where Ω is a
bounded domain in R

N . For more details, see [12,15,16,17,19].
Denote

C+(Ω) =

{
h ∈ C(Ω) and inf

x∈Ω
h(x) > 1

}
.

For any h ∈ C+(Ω), we define

h+ := max{h(x), x ∈ Ω}, h− := min{h(x), x ∈ Ω}.

For any p ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω)=

{
u : Ω → R is a measurable real-valued function :

∫

Ω

|u|p(x)dx < +∞

}
,

endowed with the Luxemburg norm

|u|p(x) = ‖u‖Lp(x)(Ω) = inf

{
τ > 0;

∫

Ω

∣∣∣u
τ

∣∣∣
p(x)

dx ≤ 1

}
.

Then (Lp(x)(Ω), | · |p(x)) is a Banach space.
Denote by p− := infx∈Ω p(x) and p+ := supx∈Ω p(x).

Proposition 2.1. (i) The space (Lp(x)(Ω), | · |p(x)) is a separable, reflexive, uni-

formly convex Banach space and its conjugate space is Lq(x) where q(x) is the
conjugate function of p(x), that is

1

p(x)
+

1

q(x)
= 1 for all x ∈ Ω.

(ii) If p1(x), p2(x) ∈ C+(Ω), p1(x) ≤ p2(x) for all x ∈ Ω, then Lp2(x)(Ω) →֒
Lp1(x)(Ω) and the embedding is continuous.

For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have
∣∣∣∣
∫

Ω

uvdx

∣∣∣∣ ≤
(

1

p−
+

1

q−

)
|u|p(x)|v|q(x) ≤ 2|u|p(x)|v|q(x).

The Sobolev space with variable exponent W k,p(x)(Ω) is defined by

W k,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k

}
,
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where

Dαu =
∂|α|

∂xα1
1 ∂xα2

2 ...∂xαN

N

u, with α = (α1, α2, ..., αN )

is a multi-index and |α| =
N∑
i=1

αi. The space W k,p(x)(Ω) equipped with the norm

‖u‖k,p(x) =
∑

|α|≤k

|Dαu|p(x),

becomes a separable and reflexive Banach space.
Denote for x ∈ Ω and k ≥ 1

p∗k(x) =

{
Np(x)

N−kp(x) , if kp(x) < N,

∞, if kp(x) ≥ N.

Proposition 2.2. Let p, r ∈ C+(Ω) such that r(x) ≤ p∗k(x) for all x ∈ Ω. Then
there is a continuous embedding W k,p(x)(Ω) →֒ Lr(x)(Ω). If we replace ≤ with <,
the embedding is compact.

We denote by W
k,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W k,p(x)(Ω). Note that the
weak solutions of problem (1.1) are considered in the generalized Sobolev space

W 2,p(x)(Ω) ∩W
1,p(x)
0 (Ω) endowed with the norm

‖u‖ = inf

{
τ > 0;

∫

Ω

∣∣∣∣
∆u(x)

τ

∣∣∣∣
p(x)

dx ≤ 1

}
.

Moreover, according to [24] , the norm ‖u‖2,p(x) is equivalent to the norm |∆u|p(x)

in the space W 2,p(x)(Ω) ∩W
1,p(x)
0 (Ω). Consequently, the norms ‖u‖2,p(x), |∆u|p(x)

and ‖u‖ are equivalent.
Consider the functional I(u) =

∫
Ω |∆u|p(x)dx. Then we have the following

Proposition 2.3. (See [14]) If u ∈ W 2,p(x)(Ω) ∩W
1,p(x)
0 (Ω), then

• (i) ‖u‖ < 1(= 1, > 1) ⇔ I(u) < 1(= 1, > 1);

• (ii) ‖u‖ > 1 ⇒ ‖u‖p
−

≤ I(u) ≤ ‖u‖p
+

;

• (iii) ‖u‖ < 1 ⇒ ‖u‖p
+

≤ I(u) ≤ ‖u‖p
−

;

• (iv) ‖u‖ → 0(→ ∞) ⇔ I(u) → 0(→ ∞).

Let for any u ∈ X = W 2,p(x)(Ω) ∩W
1,p(x)
0 (Ω), G(u) =

∫
Ω

1
p(x) |∆u|p(x)dx, and

L := G′ : X → X∗, then

< L(u), v >=

∫

Ω

|∆u|p(x)−2∆u∆vdx, for all u, v ∈ X.



Existence and Multiplicity Results 27

Lemma 2.4. (See [14])

1. (i) L : X → X∗ is a continuous, bounded homeomorphism and strictly mono-
tone operator.

2. (ii) L is a mapping of type (S+), i.e.
if un ⇀ u in X and lim supn→∞ < L(un)−L(u), un − u >≤ 0, then un → u

in X.

In this paper, we denote by X = W 2,p(x)(Ω) ∩ W
1,p(x)
0 (Ω), X∗ its dual space

and < ., . > denote the duality product. For simplicity, we use C to denote the
general positive constants whose exact values may change from line to line.

3. Proof of the main result

Definition 3.1. We say that u ∈ X is a weak solution of problem (1.1) if

M

(∫

Ω

|∆u|p(x)

p(x)
dx

)∫

Ω

|∆u|p(x)−2∆u∆vdx =

∫

Ω

f(x, u)vdx, ∀v ∈ X.

The Euler-Lagrange functional associated to problem (1.1) is given by

J(u) = M̂

(∫

Ω

|∆u|p(x)

p(x)
dx

)
−

∫

Ω

F (x, u)dx, (3.1)

where M̂(t) =
∫ t

0
M(s)ds. Then it is easy to verify that J ∈ C1(X,R) and weakly

lower semi-continuous with the derivative given by

< J ′(u), v >= M

(∫

Ω

|∆u|p(x)

p(x)
dx

)∫

Ω

|∆u|p(x)−2∆u∆vdx−

∫

Ω

f(x, u)vdx

for all u, v ∈ X . Thus, we can infer that critical points of functional J are exactly
the weak solutions of problem (1.1).

Theorem 3.2. If (M1) holds and f satisfies

|f(x, t)| ≤ C(1 + |t|η−1), (3.2)

where 1 ≤ η < αp−, then problem (1.1) has a weak solution.

Proof: From (3.2) we have |F (x, t)| ≤ C(|t|+ |t|η). Then

J(u) = M̂

(∫

Ω

|∆u|p(x)

p(x)
dx

)
−

∫

Ω

F (x, u)dx

≥
m1

α

(∫

Ω

|∆u|p(x)

p(x)
dx

)α

− C

∫

Ω

|u|dx− C

∫

Ω

|u|ηdx

≥
m1

α(p+)α
‖u‖αp

−

− C‖u‖ − C‖u‖η → +∞ as ‖u‖ → +∞.

By the condition (M1) and Proposition 2.2 , it is easy to verify that J is weakly
lower semi continuous. So J has a minimum point u ∈ X and then u is a weak
solution of problem (1.1). ✷
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Definition 3.3. We say that J satisfies the Palais-Smale condition (PS) in X if
any sequence (un) ⊂ X such that J(un) is bounded and J ′(un) → 0 as n → +∞,
has a convergent subsequence.

Lemma 3.4. Assume that (M1), (H0) and (H1) hold. Then J satisfies the (PS)
condition.

Proof: Suppose that (un) ⊂ X such that |J(un)| ≤ C and J ′(un) → 0. Arguing
by contradiction. We assume that, passing eventually to a subsequence, still denote
by (un), ‖un‖ → ∞ and ‖un‖ > 1 for all n. Then for n large enough, we have

C + ‖un‖ ≥ J(un)−
1

θ
< J ′(un), un >

= M̂

(∫

Ω

|∆un|
p(x)

p(x)
dx

)
−

∫

Ω

F (x, un)dx

−
1

θ

[
M

(∫

Ω

|∆un|
p(x)

p(x)
dx

)∫

Ω

|∆un|
p(x)dx−

∫

Ω

f(x, un)undx

]

≥
m1

α

(∫

Ω

|∆un|
p(x)

p(x)
dx

)α

−
m2

θ

(∫

Ω

|∆un|
p(x)

p(x)
dx

)α−1 ∫

Ω

|∆un|
p(x)dx

+

∫

Ω

(
1

θ
f(x, un)un − F (x, un)

)
dx

≥

(
m1

α(p+)α
−

m2

θ(p−)α−1

)(∫

Ω

|∆un|
p(x)dx

)α

+

∫

Ω

(
1

θ
f(x, un)un − F (x, un)

)
dx

≥

(
m1

α(p+)α
−

m2

θ(p−)α−1

)
‖un‖

αp−

− C,

From (H1), we know that θ >
m2α(p

+)α

m1(p−)α−1 , that is

m1

α(p+)α
−

m2

θ(p−)α−1
> 0.

Dividing the above inequality by ‖un‖
αp−

, and passing to the limit as n → ∞, we
obtain a contradiction. Therefore (un) is bounded in X . Without loss of generality,
we assume that un ⇀ u, then J ′(un)(un − u) → 0 as n → ∞. Thus we obtain

< J ′(un), un − u > = M

(∫

Ω

|∆un|
p(x)

p(x)
dx

)∫

Ω

|∆un|
p(x)−2∆un(∆un −∆u)dx

−

∫

Ω

f(x, un)(un − u)dx → 0.
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From (H0), Proposition 2.1 and Proposition 2.2, we deduce easily that

∫

Ω

f(x, un)(un − u)dx → 0 as n → ∞.

Hence, we have as n → ∞,

M

(∫

Ω

|∆un|
p(x)

p(x)
dx

)∫

Ω

|∆un|
p(x)−2∆un(∆un −∆u)dx → 0 (3.3)

Since (un) is bounded in X , passing to a subsequence, if necessary, we can assume
that ∫

Ω

|∆un|
p(x)

p(x)
dx → t0 ≥ 0 as n → ∞.

If t0 = 0 then (un) converge strongly to u = 0 in X and the proof is finished.
Otherwise, since the function M is continuous, we have

M

(∫

Ω

|∆un|
p(x)

p(x)
dx

)
→ M(t0) ≥ 0 as n → ∞.

Therefore, in view of (M1), for n sufficiently large, we get

0 < C1 ≤ M

(∫

Ω

|∆un|
p(x)

p(x)
dx

)
≤ C2, (3.4)

where C1, C2 are positive constants. In view of (3.3) and (3.4), we conclude that

lim
n→∞

∫

Ω

|∆un|
p(x)−2∆un(∆un −∆u)dx = 0. (3.5)

Thus, from Lemma 2.4 (ii), it follows that un → u strongly in X as n → ∞ and
then functional J satisfies the (PS) condition. ✷

Theorem 3.5. If (M1), (H0), (H1) and (H2) hold, then problem (1.1) has non-
trivial weak solution.

Proof: Let us show that J satisfies the conditions of mountain pass theorem (see
[1]). From Lemma 3.4, we know that J satisfies the (PS) condition in X . Since

αp+ < α(p+)α < γ− ≤ γ(x) < p∗2, X →֒ Lαp+

(Ω) and then there exists C > 0 such
that

|u|αp+ ≤ C‖u‖, for all u ∈ X.

Let ε > 0 be small enough such that εCαp+

< m1

2α(p+)α . By the assumptions (H0)

and (H2), we have

F (x, t) ≤ ε|t|αp
+

+ C(ε)|t|γ(x) for all (x, t) ∈ Ω× R. (3.6)
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In view of (M1) and (3.6), we have

J(u) ≥
m1

α

(∫

Ω

|∆u|p(x)

p(x)
dx

)α

− ε

∫

Ω

|u|αp
+

dx− C(ε)

∫

Ω

|u|γ(x)dx

≥
m1

α(p+)α
‖u‖αp

+

− εCαp+

‖u‖αp
+

− C‖u‖γ
−

≥
m1

2α(p+)α
‖u‖αp

+

− C‖u‖γ
−

when ‖u‖ ≤ 1.

Therefore, there exist r > 0 and δ > 0 such that J(u) ≥ δ > 0 for every ‖u‖ = r.
From (H1) it follows that

F (x, t) ≥ C|t|θ − C, for all x ∈ Ω and |t| ≥ K. (3.7)

For w ∈ X\{0} and t > 1, in view of (M1) and (3.7), we have

J(tw) = M̂

(∫

Ω

|∆tw|p(x)

p(x)
dx

)
−

∫

Ω

F (x, tw)dx

≤
m2

α(p−)α
tαp

+

(∫

Ω

|∆w|p(x)dx

)α

− Ctθ
∫

Ω

|w|θdx− C|Ω|.

In view of (H1), we have θ >
m2α(p

+)α

m1(p−)α−1 , which imply that θ > αp+. Therefore

J(tw) → −∞ as t → +∞. J satisfies the conditions of the mountain pass theorem,
since J(0) = 0. So J admits at least one nontrivial critical point. ✷

Theorem 3.6. If (M1), (H0), (H1), (H3) hold and γ− > α(p+)α > αp+, then
problem (1.1) has a sequence of weak solutions (±uk) such that J(±uk) → +∞ as
k → ∞.

To prove Theorem 3.6, we will use the following ”Fountain theorem”.
Since X is a separable and reflexive Banach space (see [15]), there exist {ej}

∞
j=1 ⊂

X and {e∗j}
∞
j=1 ⊂ X∗ such that

< ei, e
∗
j >=

{
1, if i = j;

0, if i 6= j.

X = span{ej : j = 1, 2, . . .}, X∗ = span{e∗j : j = 1, 2, . . . }.

For k = 1, 2, . . . . Put

Xj = span{ej}, Yk = ⊕k
j=1Xj, Zk = ⊕∞

j=kXj .

Lemma 3.7. (see [14]) If γ(x) ∈ C+(Ω) and γ(x) < p∗2(x) for all x ∈ Ω, denote

γk = sup{|u|γ(x) : ‖u‖ = 1, u ∈ Zk},

then limk→+∞ γk = 0.
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Lemma 3.8. (Fountain Theorem, See [23]) Assume

(A1) X is a Banach space, J ∈ C1(X,R) is an even functional.
If for each k = 1, 2, ... there exist ρk > rk > 0 such that

(A2) inf{J(u) : u ∈ Zk, ‖u‖ = rk} → +∞ as k → +∞.

(A3) max{J(u) : u ∈ Yk, ‖u‖ = ρk} ≤ 0.

(A4) J satisfies the (PS) condition for every c > 0.

Then J has an unbounded sequence of critical points.

Definition 3.9. We say that J satisfies the (PS)∗c condition (with respect to (Yn)),
if any sequence (unj

) ⊂ X such that nj → +∞, unj
∈ Ynj

, J(unj
) → c and

(J |Ynj
)′(unj

) → 0 contain a subsequence converging to a critical point of J .

Proof of Theorem 3.6. According to (H3) and Lemma 3.4, J is an even
functional and satisfies the (PS) condition. We will prove that if k is large enough,
then there exist ρk > rk > 0 such that (A2) and (A3) hold. Thus, the conclusion
of Theorem 3.6 can be reached by the Fountain theorem.
(A2) For any u ∈ Zk, ‖u‖ = rk > 1, (rk will be specified later), we have

J(u) = M̂

(∫

Ω

|∆u|p(x)

p(x)
dx

)
−

∫

Ω

F (x, u)dx

≥
m1

α

(∫

Ω

|∆u|p(x)

p(x)
dx

)α

− C1

∫

Ω

|u|γ(x)dx− C

∫

Ω

|u|dx

≥
m1

α(p+)α
‖u‖αp

−

− C1

∫

Ω

|u|γ(x)dx− C

∫

Ω

|u|dx

≥

{
m1

α(p+)α ‖u‖
αp−

− C1 − C‖u‖ if |u|α(x) ≤ 1
m1

α(p+)α ‖u‖
αp−

− C1γ
γ+

k ‖u‖γ
+

− C‖u‖ if |u|α(x) > 1

≥
m1

α(p+)α
‖u‖αp

−

− C1γ
γ+

k ‖u‖γ
+

− C‖u‖ − C

= m1r
αp−

k

(
1

α(p+)α
− C1γ

γ+

k m−1
1 r

γ+−αp−

k

)
− Crk − C.

Now we choose rk as follows

rk = (C1γ
+γ

γ+

k m−1
1 )

1

αp−−γ+ .

Then

J(u) ≥ m1r
αp−

k

(
1

α(p+)α
−

1

γ+

)
− Crk − C → +∞ as k → +∞.

because of α(p+)α < γ+, αp− > 1 and γk → 0.
(A3) From (H1), we know that F (x, t) ≥ C|t|θ−C. Therefore, for any w ∈ Yk with
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‖w‖ = 1 and 1 < t = ρk, we have

J(tw) = M̂

(∫

Ω

|∆tw|p(x)

p(x)
dx

)
−

∫

Ω

F (x, tw)dx

≤
m2

α

(∫

Ω

|∆tw|p(x)

p(x)
dx

)α

− C

∫

Ω

|tw|θdx− C

≤
m2

β(p−)α
tαp+

(∫

Ω

|∆w|p(x)dx

)α

− Ctθ
∫

Ω

|w|θdx− C.

By θ > αp+ and dimYk < ∞, it is easy to see that J(u) → −∞ as ‖u‖ → +∞ for
u ∈ Yk. So the assertion (A3) holds and the Conclusion of Theorem is reached by
using the Fountain theorem.
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