

(3s.) **v. 37** 2 (2019): 157–166. ISSN-00378712 in press doi:10.5269/bspm.v37i2.31658

On Derivations of Prime and Semi-prime Gamma Rings

L. Kamali Ardakani, B. Davvaz and Shuliang Huang

ABSTRACT: The concept of Γ -ring is a generalization of ring. Two important classes of Γ -rings are prime and semi-prime Γ -rings. In this paper, we consider the concept of derivations on prime and semi-prime Γ -rings and we study some of their properties.

Key Words: Γ -ring, derivation, bi- (σ, τ) derivation, trace.

Contents

1 Introduction

2 Main results

1. Introduction

In [11], Nobusawa introduced Γ -rings as a generalization of ternary rings. Barnes [2] weakened slightly the conditions in the definition of Γ -ring in the sense of Nobusawa. Barnes [2], Luh [9] and Kyuno [8] studied the structure of Γ -rings and obtained various generalizations analogous to corresponding parts in ring theory. Since then, some papers have been published on the topic of Γ -rings [1,5,7,10,12]. In [6], Chakraborty and Pau defined an isomorphism, an anti-isomorphism and a Jordan isomorphism in a Γ -ring and developed some important results relating to these concepts, also see [13,14].

The Γ -rings are defined in [11] as follows. Let M and Γ be additive abelian groups. If for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$, the following conditions are satisfied: (i) $a\alpha b \in M$; (ii) $(a + b)\alpha c = a\alpha c + b\alpha c$; (iii) $a(\alpha + \beta)b = a\alpha b + a\beta b$, $a\alpha(b + c) = a\alpha b + a\alpha c$; (iv) $(a\alpha b)\beta c = a\alpha(b\beta c)$; then M is called a Γ -ring, (in the sense of [2]). Every ring is a Γ -ring. A right (left, respectively) ideal of a Γ -ring M is an additive subgroup U of M such that $U\Gamma M \subseteq U$ ($M\Gamma U \subseteq U$, respectively). If U is both right and left ideal, then we say U is an ideal of M. If the following condition holds for a Γ -ring M, then M is called a prime Γ -ring; $a\Gamma M\Gamma b = 0 \Rightarrow a = 0$ or b = 0, where $a, b \in M$. Also, M is called a semi prime Γ -ring, if $a\Gamma M\Gamma a = 0$ implies that a = 0, where $a \in M$. We refer to [1,3,6,7,15,16] to see more results about prime and semiprime rings. Throughout this paper all Γ -rings will be associative. An additive mapping $D: M \longrightarrow M$ is called a derivation if $D(x\gamma y) = D(x)\gamma y + x\gamma D(y)$ holds for all $x, y \in M$ and $\gamma \in \Gamma$. A mapping $B(.,.): M \times M \longrightarrow M$ is said to be symmetric if B(x, y) = B(y, x) holds for all pairs $x, y \in M$. A mapping $f: M \longrightarrow M$ defined by f(x) = B(x, x), where $B(.,.): M \times M \longrightarrow$

Typeset by ℬ^Sℋstyle. ⓒ Soc. Paran. de Mat.

157

²⁰¹⁰ Mathematics Subject Classification: 16Y99, 16N60.

Submitted April 15, 2016. Published March 29, 2017

M is a symmetric mapping, is called the *trace* of B. It is obvious that, in case $B(.,.): M \times M \longrightarrow M$ is a symmetric mapping which is also bi-additive, then trace of B satisfies the relation f(x + y) = f(x) + f(y) + 2B(x, y), for all $x, y \in M$. We shall use also the fact that trace of symmetric bi-additive mapping is an even function. Let σ, τ be endomorphisms of Γ -ring M. A symmetric bi-additive mapping $D(.,.): M \times M \longrightarrow M$ is called a *symmetric bi-* (σ, τ) *derivation*, if $D(x\gamma y, z) = D(x, z)\gamma\sigma(y) + \tau(x)\gamma D(y, z)$ is fulfilled for all $x, y, z \in M$ and $\gamma \in \Gamma$. Obviously, in this case also the relation $D(x, y\gamma z) = D(x, y)\gamma\sigma(z) + \tau(y)\gamma D(x, z)$ holds for all $x, y, z \in M$ and $\gamma \in \Gamma$.

2. Main results

In the proofs of several theorems in [4], the authors used the following lemma:

(Lemma 1, [4]). Let $D: M \to M$ be a derivation, where M is a prime Γ -ring. Let U be a nonzero right ideal of M. Suppose either

- (i) $a\gamma D(x) = 0, x \in U$ and $\gamma \in \Gamma$,
- (ii) $D(x)\gamma a = 0, x \in U$ and $\gamma \in \Gamma$,

holds. In both cases, we have a = 0 or D = 0.

Unfortunately, the proofs of some theorems are not correct. In order to correct them, we use the following lemmas instead of Lemma 1 in [4].

Lemma 2.1. Let M be a prime Γ -ring, U be a nonzero ideal on M and σ , τ be automorphisms of M. Also, let $D : M \times M \longrightarrow M$ be a symmetric $bi(\sigma, \tau)$ -derivation and d denotes the trace of D. Then, for all $x, y \in M$,

- (i) If $U\Gamma x = 0$ or $x\Gamma U = 0$, then x = 0;
- (ii) If $x\Gamma U\Gamma y = 0$, then x = 0 or y = 0;
- (iii) If D(u, v) = 0, for all $u, v \in U$, then D = 0;
- (iv) If M is 2-torsion free and d(U) = 0, then D = 0.

Proof: (i) Suppose that $U\Gamma x = 0$, then $u\gamma M\Gamma x \subseteq U\Gamma x = \{0\}$, for all $u \in U$ and $\gamma \in \Gamma$. So x = 0, since M is prime and $U \neq 0$. In the case $x\Gamma U = 0$, the proof is similar.

(ii) Suppose that $x\Gamma U\Gamma y = 0$, then $x\Gamma U\Gamma M\Gamma y \subseteq x\Gamma U\Gamma y = \{0\}$. Hence $x\Gamma U = 0$ or y = 0, since M is prime. So by (i), x = 0 or y = 0.

(iii) Suppose that D(u, v) = 0, for all $u, v \in U$. Replace u by $r\gamma u$, where $r \in M$ and $\gamma \in \Gamma$, we get $0 = D(r\gamma u, v) = D(r, v)\gamma\sigma(u) + \tau(r)\gamma D(u, v) = D(r, v)\gamma\sigma(u)$. So, D(r, v) = 0, by (i). Replace v by $s\beta v$, where $s \in M$ and $\beta \in \Gamma$, we get $0 = D(r, s\beta v) = D(r, s)\beta\sigma(v) + \tau(s)\beta D(r, v) = D(r, s)\beta\sigma(v)$. So, D(r, s) = 0, by (i). This means that D = 0.

(iv) Suppose that d(U) = 0, then 2D(u, v) = d(u+v) - d(u) - d(v) = 0, for all

 $u, v \in U$. Thus, D(u, v) = 0, for all $u, v \in U$, since M is 2-torsion free. Now, (iii) completes the proof.

Lemma 2.2. Let M be a prime Γ -ring and $D: M \times M \longrightarrow M$ be a symmetric $bi-(\sigma, \tau)$ derivation, where σ, τ are automorphisms of M. Also, let U be a nonzero ideal of M and $a \in M$. Suppose either

- (i) $a\gamma D(u, v) = 0, u, v \in U \text{ and } \gamma \in \Gamma$,
- (ii) $D(u, v)\gamma a = 0, u, v \in U$ and $\gamma \in \Gamma$,

holds. In both cases, we have a = 0 or D = 0.

Proof: (i) Writing $u\gamma r$ instead of u in $a\gamma D(u, v) = 0$, where $u, v \in U$ and $r \in M$. We get

$$0 = a\gamma D(u\gamma r, v) = a\gamma (D(u, v)\gamma\sigma(r) + \tau(u)\gamma D(r, v))$$

= $a\gamma D(u, v)\gamma\sigma(r) + a\gamma\tau(u)\gamma D(r, v) = a\gamma\tau(u)\gamma D(r, v),$

for all $u, v \in U$, $r \in M$. So, $a\Gamma\tau(U)\Gamma D(r, v) = 0$. This implies that a = 0 or D = 0, by Lemma 2.1.

(ii) Writing $r\gamma u$ instead of u in $D(u, v)\gamma a = 0$, where $u, v \in U$ and $r \in M$. We get

$$0 = D(r\gamma u, v)\gamma a = (D(r, v)\gamma\sigma(u) + \tau(r)\gamma D(u, v))\gamma a$$

= $D(r, v)\gamma\sigma(u)\gamma a + \tau(r)\gamma D(u, v)\gamma a = D(r, v)\gamma\sigma(u)\gamma a$.

for all $u, v \in U$, $r \in M$. So, $D(r, v)\Gamma\sigma(U)\Gamma a = 0$. This implies that a = 0 or D = 0, by Lemma 2.1.

Lemma 2.3. Let M be a 2-torsion free prime Γ -ring and U be a nonzero ideal of M. Also, let $a, b \in M$ be fixed elements. If $a\gamma u\beta b + b\gamma u\beta a = 0$ is fulfilled for all $u \in U$ and $\alpha, \beta \in \Gamma$, then either a = 0 or b = 0.

(Theorem 1, [4]). Let M be a prime Γ -ring of characteristic not two and U be nonzero ideal of M. Suppose there exist symmetric bi- (σ, τ) derivations $D_1(.,.)$: $M \times M \longrightarrow M$ and $D_2(.,.) : M \times M \longrightarrow M$ such that $D_1(d_2(u), u) = 0$ holds for all $u \in U$, where d_2 denotes the trace of D_2 . In this case $D_1 = 0$ or $D_2 = 0$.

Now, we give a corrected version of the above theorem as follows:

Theorem 2.4. Let M be a 2-torsion free prime Γ -ring, U be a nonzero ideal of M and σ , τ be automorphisms of M such that $\sigma(U) \subseteq U$ and $\sigma = \tau$. Also, let there exist symmetric bi- (σ, τ) derivations $D_1(.,.), D_2(.,.) : M \times M \longrightarrow M$ such that $D_1(d_2(u), \sigma(u)) = 0$ holds for all $u \in U$, where d_2 denotes the trace of D_2 . In this case $D_1 = 0$ or $D_2 = 0$.

Proof: By linearity of the relation

$$D_1(d_2(u), \sigma(u)) = 0, \tag{2.1}$$

one obtains

$$D_1(d_2(u) + d_2(v) + 2D_2(u, v), \sigma(u) + \sigma(v)) = 0$$
, for all $u, v \in U$,

whence

$$D_1(d_2(u), \sigma(v)) + D_1(d_2(v), \sigma(u)) + 2D_1(D_2(u, v), \sigma(u)) + 2D_1(D_2(u, v), \sigma(v)) = 0$$

according to (2.1). Substituting in the equation above u by -u, we obtain by comparing this new equation with the equation above that

$$D_1(d_2(u), \sigma(v)) + 2D_1(D_2(u, v), \sigma(u)) = 0$$
(2.2)

is fulfilled for all pairs $u, v \in U$. Let us replace in (2.2) v by $u\alpha v$, where $\alpha \in \Gamma$. Then,

$$\begin{aligned} 0 &= D_1(d_2(u), \sigma(u\alpha v)) + 2D_1(D_2(u, u\alpha v), \sigma(u)) \\ &= D_1(d_2(u), \sigma(u)\alpha\sigma(v)) + 2D_1(d_2(u)\alpha\sigma(v) + \sigma(u)\alpha D_2(u, v), \sigma(u)) \\ &= D_1(d_2(u), \sigma(u))\alpha\sigma^2(v) + \sigma^2(u)\alpha D_1(d_2(u), \sigma(v)) \\ &+ 2D_1(d_2(u), \sigma(u))\alpha\sigma^2(v) + 2\sigma(d_2(u))\alpha D_1(\sigma(v), \sigma(u)) \\ &+ 2d_1(\sigma(u))\alpha\sigma(D_2(u, v)) + 2\sigma^2(u)\alpha D_1(D_2(u, v), \sigma(u)) \\ &= 2\sigma(d_2(u))\alpha D_1(\sigma(v), \sigma(u)) + 2d_1(\sigma(u))\alpha\sigma(D_2(u, v)), \end{aligned}$$

where d_1 denotes the trace of D_1 . In the above calculation, we used (2.1) and (2.2). Thus, we have

$$\sigma(d_2(u))\alpha D_1(\sigma(u), \sigma(v)) + d_1(\sigma(u))\alpha \sigma(D_2(u, v)) = 0, \qquad (2.3)$$

for all $u, v \in U$ and $\alpha \in \Gamma$. Let us write in (2.3), $v\beta u$ instead of v, where $\beta \in \Gamma$. We have

$$\begin{aligned} 0 &= \sigma(d_2(u))\alpha D_1(\sigma(u), \sigma(v\beta u)) + d_1(\sigma(u))\alpha \sigma(D_2(u, v\beta u)) \\ &= \sigma(d_2(u))\alpha D_1(\sigma(u), \sigma(v)\beta \sigma(u)) + d_1(\sigma(u))\alpha \sigma(D_2(u, v)\beta \sigma(u) + \sigma(v)\beta d_2(u)) \\ &= \sigma(d_2(u))\alpha D_1(\sigma(u), \sigma(v))\beta \sigma^2(u) + \sigma(d_2(u))\alpha \sigma^2(v)\beta d_1(\sigma(u)) \\ &+ d_1(\sigma(u))\alpha \sigma(D_2(u, v))\beta \sigma^2(u) + d_1(\sigma(u))\alpha \sigma^2(v)\beta \sigma(d_2(u)) \\ &= \sigma(d_2(u))\alpha \sigma^2(v)\beta d_1(\sigma(u)) + d_1(\sigma(u))\alpha \sigma^2(v)\beta \sigma(d_2(u)). \end{aligned}$$

Thus, we have

$$\sigma(d_2(u))\alpha\sigma^2(v)\beta d_1(\sigma(u)) + d_1(\sigma(u))\alpha\sigma^2(v)\beta\sigma(d_2(u)) = 0, \qquad (2.4)$$

for all $u, v \in U$ and $\alpha, \beta \in \Gamma$. So, by Lemma 2.3, we have

$$d_2(u) = 0 \text{ or } d_1(\sigma(u)) = 0, \text{ for all } u \in U,$$
 (2.5)

since σ is an automorphism and $\sigma(U) \subseteq U$. We claim that $d_1(U) = 0$ and $d_2(U) =$ 0. Suppose that $d_1(U) \neq 0$ or $d_2(U) \neq 0$. So, there exist elements $u_2, u_3 \in U$ such that $d_1(u_3) \neq 0$ and $d_2(u_2) \neq 0$. There exists element $u_1 \in U$ such that $\sigma(u_1) = u_3$, since σ is onto. Therefore, we have $d_1\sigma(u_1) \neq 0$ and $d_2(u_2) \neq 0$. So, $d_2(u_1) = 0$ and $d_1\sigma(u_2) = 0$, by (2.5). Let us replace u by u_2 in (2.3), we get $0 = \sigma d_2(u_2) \alpha D_1(\sigma(u_2), \sigma(v)) + d_1 \sigma(u_2) \alpha \sigma D_2(u_2, v) = \sigma d_2(u_2) \alpha D_1(\sigma(u_2), \sigma(v)),$ for all $v \in U$. Using Lemma 2.2, we obtain that $D_1(\sigma(u_2), \sigma(v)) = 0$, for all $v \in U$. In particular, we have $D_1(\sigma(u_1), \sigma(u_2)) = 0$. So, $d_1(\sigma(u_1 + u_2)) = d_1\sigma(u_1) + d_1\sigma(u_2)$ $d_1\sigma(u_2) + 2D_1(\sigma(u_1), \sigma(u_2)) = d_1\sigma(u_1) \neq 0$. Now, replace u by u_1 in (2.3), we get $0 = \sigma d_2(u_1) \alpha D_1(\sigma(u_1), \sigma(v)) + d_1 \sigma(u_1) \alpha \sigma D_2(u_1, v) = d_1 \sigma(u_1) \alpha \sigma D_2(u_1, v), \text{ for all } u_1 \sigma(v_1) \sigma(v_1) = d_1 \sigma(v_1) \sigma($ $v \in U$. Using Lemma 2.2, we obtain that $D_2(u_1, v) = 0$, for all $v \in U$. In particular, we have $D_2(u_1, u_2) = 0$. So, $d_2(u_1+u_2) = d_2(u_1) + d_2(u_2) + 2D_2(u_1, u_2) = d_2(u_2) \neq d_2(u_1, u_2) = d_2(u_2) \neq d_2(u_1, u_2) = d_2(u_1) + d_2(u_2) +$ 0. If we set $v = u_1 + u_2$, then $d_2(v) \neq 0$ and $d_1\sigma(v) \neq 0$ and this is a contradiction with (2.5). So, $d_1(U) = 0$ or $d_2(U) = 0$. This implies that $D_1 = 0$ or $D_2 = 0$, by Lemma 2.1.

(Theorem 2, [4]). Let M be a 2-torsion free semi-prime Γ -ring and U be a nonzero ideal of M. Suppose there exists such a symmetric $\text{bi-}(\sigma, \tau)$ derivation $D(.,.): M \times M \longrightarrow M$ that D(d(u), u) = 0 holds for all $u \in U$, where d denotes the trace of D. In this case we have D = 0.

Now, we give a corrected version of the above theorem as follows:

Theorem 2.5. Let M be a 2-torsion free semi-prime Γ -ring, U be a nonzero ideal of M and σ , τ be automorphisms of M such that $\sigma(U) \subseteq U$ and $\sigma = \tau$. Also, let there exists symmetric bi- (σ, τ) derivation $D(., .) : M \times M \longrightarrow M$ such that $d\sigma = \sigma d$ and $D(d(u), \sigma(u)) = 0$ holds for all $u \in U$, where d denotes the trace of D. In this case we have D = 0.

Proof: In this case (2.4) of Theorem 2.4 reduces to

$$0 = \sigma(d(u))\alpha\sigma^{2}(v)\beta d(\sigma(u)) + d(\sigma(u))\alpha\sigma^{2}(v)\beta\sigma(d(u)) = 2\sigma(d(u))\alpha\sigma^{2}(v)\beta\sigma(d(u)),$$

for all $u, v \in U$ and $\alpha, \beta \in \Gamma$. This implies that d(U) = 0, since M is 2-torsion free and semi-prime. Therefore D = 0, by Lemma 2.1.

(Theorem 3, [4]). Let M be prime Γ -ring of characteristic not two and three. Let $\tau(U) \subset U$, U be nonzero ideal of M and $\sigma\tau = \tau\sigma$ and $\sigma = \tau$. Let $D_1(.,.): M \times M \longrightarrow M$ and $D_2(.,.): M \times M \longrightarrow M$ be symmetric bi- (σ, τ) derivations. Suppose further that there exists a symmetric bi-additive mapping $B(.,.): M \times M \longrightarrow M$ such that $d_1(d_2(u)) = f(u)$ holds for all $u \in U$, where d_1 and d_2 are the traces of D_1 and D_2 respectively, and f is the trace of B. Then either $D_1 = 0$ or $D_2 = 0$.

Now, we give a corrected version of the above theorem as follows:

Theorem 2.6. Let M be a 6-torsion free prime Γ -ring, U be a nonzero ideal of M and σ , τ be automorphisms of M such that $\sigma(U) \subseteq U$ and $\sigma = \tau$. Also, let

 $D_1(.,.), D_2(.,.): M \times M \longrightarrow M$ be symmetric bi- (σ, τ) derivations and there exists a symmetric bi-additive mapping $B(.,.): M \times M \longrightarrow M$ such that $d_1(d_2(u)) = f(u)$ holds for all $u \in U$, where d_1 and d_2 are the traces of D_1 and D_2 , respectively, and f is the trace of B. Then either $D_1 = 0$ or $D_2 = 0$.

Proof: The linearity of the relation

$$d_1(d_2(u)) = f(u), \text{ for all } u \in U,$$

$$(2.6)$$

gives us

$$d_1(d_2(u) + d_2(v) + 2D_2(u, v)) = f(u) + f(v) + 2B(u, v)$$
, for all $u, v \in U$.

Then, we have

$$\begin{aligned} &d_1(d_2(u) + d_2(v)) + 2d_1(D_2(u,v)) + 4D_1(d_2(u) + d_2(v), D_2(u,v)) \\ &= d_1(d_2(u)) + d_1(d_2(v)) + 2D_1(d_2(u), d_2(v)) + 2d_1(D_2(u,v)) \\ &+ 4D_1(d_2(u), D_2(u,v)) + 4D_1(d_2(v), D_2(u,v)) \\ &= f(u) + f(v) + 2B(u,v). \end{aligned}$$

Using (2.6), we arrive at

$$\begin{split} D_1(d_2(u), d_2(v)) + d_1(D_2(u, v)) + 2D_1(d_2(u), D_2(u, v)) + 2D_1(d_2(v), D_2(u, v)) \\ = B(u, v). \end{split}$$

Substituting in the equation above u by -u, we obtain by comparing this new equation with the equation above that

$$2D_1(d_2(u), D_2(u, v)) + 2D_1(d_2(v), D_2(u, v)) = B(u, v),$$
(2.7)

holds for all $u, v \in U$. Let us replace in (2.7) u by 2u. We have

$$8D_1(d_2(u), D_2(u, v)) + 2D_1(d_2(v), D_2(u, v)) = B(u, v),$$
(2.8)

By comparing (2.7) and (2.8), we obtain $6D_1(d_2(u), D_2(u, v)) = 0$, which leads to

$$D_1(d_2(u), D_2(u, v)) = 0, (2.9)$$

since, we have assumed that M is 6-torsion free. From (2.9) it follows that both terms on the left side of the relation (2.7) are zero, which means that B = 0 on U. Hence (2.6) reduces to

$$d_1(d_2(u)) = 0$$
, for all $u \in U$. (2.10)

Let in (2.9) v be $v\alpha u$, where $\alpha \in \Gamma$. We have

$$0 = D_1(d_2(u), D_2(u, v\alpha u)) = D_1(d_2(u), D_2(u, v)\alpha\sigma(u)) + D_1(d_2(u), \sigma(v)\alpha d_2(u)) = D_1(d_2(u), D_2(u, v))\alpha\sigma^2(u) + \sigma(D_2(u, v))\alpha D_1(d_2(u), \sigma(u)) + D_1(d_2(u), \sigma(v))\alpha\sigma(d_2(u)) + \sigma^2(v)\alpha d_1(d_2(u)).$$

Using (2.9) and (2.10), we arrive at

$$D_1(d_2(u), \sigma(v))\alpha\sigma(d_2(u)) + \sigma(D_2(u, v))\alpha D_1(d_2(u), \sigma(u)) = 0, \text{ for all } u, v \in U(2.11)$$

Let us replace in (2.11), v by $u\beta v$, where $\beta \in \Gamma$. We have

$$\begin{aligned} 0 &= D_1(d_2(u), \sigma(u)\beta\sigma(v))\alpha\sigma(d_2(u)) + \sigma(D_2(u, u\beta v))\alpha D_1(d_2(u), \sigma(u)) \\ &= D_1(d_2(u), \sigma(u))\beta\sigma^2(v)\alpha\sigma(d_2(u)) + \sigma^2(u)\beta D_1(d_2(u), \sigma(v))\alpha\sigma(d_2(u)) \\ &+ \sigma(d_2(u))\beta\sigma^2(v)\alpha D_1(d_2(u), \sigma(u)) + \sigma^2(u)\beta\sigma(D_2(u, v))\alpha D_1(d_2(u), \sigma(u)) \end{aligned}$$

Now, by (2.11) we arrive finally at

$$D_1(d_2(u), \sigma(u))\beta\sigma^2(v)\alpha\sigma(d_2(u)) + \sigma(d_2(u))\beta\sigma^2(v)\alpha D_1(d_2(u), \sigma(u)) = 0, \quad (2.12)$$

for $u, v \in U$ and $\alpha, \beta \in \Gamma$. So, we have $d_2(u) = 0$ or $D_1(d_2(u), \sigma(u)) = 0$, by Lemma 2.3. If $d_2(u) = 0$, then $D_1(d_2(u), \sigma(u)) = D_1(0, \sigma(u)) = 0$. So, in general we have $D_1(d_2(u), \sigma(u)) = 0$, for all $u \in U$. Therefore, $D_1 = 0$ or $D_2 = 0$, by Theorem 2.4.

(Theorem 4, [4]). Let M be a semi-prime Γ -ring which is 2-torsion and 3-torsion free. Let $d(U) \subset U, \tau(U) \subset U, \sigma(U) \subset U, U$ be nonzero ideal of $M, \sigma\tau = \tau\sigma$ and $\sigma = \tau$. Let $D(.,.) : M \times M \longrightarrow M$ and $B(.,.) : M \times M \longrightarrow M$ be a symmetric bi- (σ, τ) derivation and a symmetric bi-additive mapping, respectively. Suppose that d(d(u)) = f(u) holds for all $u \in U$, where d is the trace of D and f is the trace of B. In this case we have D = 0.

Now, we give a corrected version of the above theorem as follows:

Theorem 2.7. Let M be a 6-torsion free semi-prime Γ -ring, U be a nonzero ideal of M and σ , τ be automorphisms of M such that $\sigma(U) \subseteq U$ and $\sigma = \tau$. Also, let $D(.,.) : M \times M \longrightarrow M$ be a symmetric bi- (σ, τ) derivation such that $\sigma D(.,.) = D(\sigma(.), \sigma(.))$ and $B(.,.) : M \times M \longrightarrow M$ be a symmetric bi-additive mapping. Suppose that d(d(u)) = f(u) holds for all $u \in U$, where d and f are the trace of D and B, respectively. In this case, we have D = 0.

Proof: Obviously, we can use the beginning of the proof of Theorem 2.6. In this case, relations (2.9) and (2.10) can be written in the form

$$D(d(u), D(u, v)) = 0$$
, for all $u, v \in U$ (2.13)

and

$$d(d(u)) = 0, \text{ for all } u \in U.$$

$$(2.14)$$

Let us write in (2.13), $v\alpha w$ instead of v, where $w \in M$ and $\alpha \in \Gamma$. We have

 $0 = D(d(u), D(u, v\alpha w)) = D(d(u), D(u, v)\alpha\sigma(w)) + D(d(u), \sigma(v)\alpha D(u, w))$ = $D(d(u), D(u, v))\alpha\sigma^{2}(w) + \sigma(D(u, v))\alpha D(d(u), \sigma(w))$ + $D(d(u), \sigma(v))\alpha\sigma(D(u, w)) + \sigma^{2}(v)\alpha D(d(u), D(u, w)).$ Hence by (2.13), we have

$$\sigma(D(u,v))\alpha D(d(u),\sigma(w)) + D(d(u),\sigma(v))\alpha \sigma(D(u,w)) = 0.$$

In particular, for $w = \sigma^{-1} d(u)$ we obtain

$$\sigma(D(u,v))\alpha D(d(u), \sigma(\sigma^{-1}d(u))) + D(d(u), \sigma(v))\alpha \sigma(D(u, \sigma^{-1}d(u))) = 0.$$

So,

$$D(d(u), \sigma(v))\alpha\sigma(D(u, \sigma^{-1}d(u))) = 0, \text{ for all } u, v \in U.$$
(2.15)

according to (2.14). Replace in (2.15), v by $u\beta v$, where $\beta \in \Gamma$. We have

$$\begin{split} 0 &= D(d(u), \sigma(u\beta v))\alpha\sigma(D(u, \sigma^{-1}d(u))) \\ &= D(d(u), \sigma(u)\beta\sigma(v))\alpha\sigma(D(u, \sigma^{-1}d(u))) \\ &= D(d(u), \sigma(u))\beta\sigma^2(v)\alpha\sigma(D(u, \sigma^{-1}d(u))) \\ &+ \sigma^2(u)\beta D(d(u), \sigma(v))\alpha\sigma(D(u, \sigma^{-1}d(u))) \\ &= D(d(u), \sigma(u))\beta\sigma^2(v)\alpha\sigma(D(u, \sigma^{-1}d(u))) \\ &= D(d(u), \sigma(u))\beta\sigma^2(v)\alpha D(\sigma(u), d(u)) \\ &= D(d(u), \sigma(u))\beta\sigma^2(v)\alpha D(d(u), \sigma(u)), \end{split}$$

according to (2.15) and finally

$$D(d(u), \sigma(u)) = 0$$
, for all $u \in U$,

since we have assumed that M is semi-prime Γ -ring. Now, Theorem 2.5 completes the proof. \Box

Remark 2.8. In Example 1 in [4], d is not a symmetric bi- (σ, τ) derivation.

Let σ , τ be endomorphisms of Γ -ring M. A symmetric bi-additive mapping $D(.,.): M \times M \longrightarrow M$ is called a symmetric bi- (σ, τ) derivation, if

$$D(x\gamma y, z) = D(x, z)\gamma\sigma(y) + \tau(x)\gamma D(y, z)$$

is fulfilled for all $x, y, z \in M$ and $\gamma \in \Gamma$.

Example 2.1. Let $(R, +, \circ)$ be a commutative ring and $\Gamma = \{\circ\}$. Then $M = (R, +, \Gamma)$ is Γ -ring. Also, let the functions $\sigma, \tau : M \longrightarrow M$ and $D(., .) : M \times M \longrightarrow M$ be defined as $\sigma(x) = x, \tau(x) = 0$ and $D(x, y) = x \circ y$, for all $x, y \in M$. Then, σ, τ are endomorphisms and D is symmetric bi- (σ, τ) derivation.

Example 2.2. Let $(R, +, \circ)$ be a ring of characteristic 2 and $\Gamma = \{\circ\}$. Consider Γ -ring $M = (R, +, \Gamma)$. Define the functions $\sigma, \tau : M \longrightarrow M$ and $D(., .) : M \times M \longrightarrow M$ as $\sigma(x) = \tau(x) = x$ and $D(x, y) = x \circ y + y \circ x$, for all $x, y \in M$. Then, σ, τ are endomorphisms and D is symmetric bi- (σ, τ) derivation.

Example 2.3. Let R be a commutative and unitary ring. Put

$$M = \left\{ \begin{pmatrix} x & x \end{pmatrix} \mid x \in R \right\} \subseteq M_{1 \times 2}(R) \text{ and } \Gamma = \left\{ \begin{pmatrix} n.1 \\ 0 \end{pmatrix} \mid n \in \mathbb{Z} \right\}.$$

Then, M is Γ -ring [5]. Define the functions $\sigma, \tau : M \longrightarrow M$ and $D(.,.) : M \times M \longrightarrow M$ as $\sigma(X) = X$, $\tau(X) = \overline{0}$ and $D(X,Y) = X \begin{pmatrix} 1 \\ 0 \end{pmatrix} Y$, for all $X, Y \in M$. It is clear that if $X = \begin{pmatrix} x & x \end{pmatrix}$ and $Y = \begin{pmatrix} y & y \end{pmatrix}$, then

$$D(X,Y) = \begin{pmatrix} xy & xy \end{pmatrix}.$$

It is easily to check that σ, τ are endomorphisms and D is symmetric bi- (σ, τ) derivation.

Example 2.4. Let R be a commutative and unitary ring. Put $M = M_{1\times 2}(R)$ and $\Gamma = \left\{ \begin{pmatrix} n.1 \\ 0 \end{pmatrix} \mid n \in \mathbb{Z} \right\}$. Then, M is Γ -ring [5]. Define the functions $\sigma, \tau : M \longrightarrow M$ and $D(.,.) : M \times M \longrightarrow M$ as $\sigma(X) = \overline{0}, \tau(X) = \tau(\begin{pmatrix} x_1 & x_2 \end{pmatrix}) = \begin{pmatrix} x_1 & 0 \end{pmatrix}$ and $D(X,Y) = X \begin{pmatrix} 1 \\ 0 \end{pmatrix} Y + Y \begin{pmatrix} 1 \\ 0 \end{pmatrix} X$, for all $X, Y \in M$. It is clear that if $X = \begin{pmatrix} x_1 & x_2 \end{pmatrix}$ and $Y = \begin{pmatrix} y_1 & y_2 \end{pmatrix}$, then

$$D(X,Y) = (x_1y_1 + y_1x_1 \quad x_1y_2 + y_1x_2).$$

It is easily to check that σ, τ are endomorphisms and D is symmetric bi- (σ, τ) derivation.

Example 2.5. The Abelian group \mathbb{Z} with usual multiplication of numbers is a commutative \mathbb{Z} -ring. Define the functions $\sigma, \tau : \mathbb{Z} \longrightarrow \mathbb{Z}$ and $D(.,.) : \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$ as $\sigma(x) = x, \tau(x) = 0$ and D(x, y) = xy, for all $x, y \in \mathbb{Z}$. Then, σ, τ are endomorphisms and D is symmetric $bi(\sigma, \tau)$ derivation.

References

- Ashraf, M.J., Malik, R., Some differential identities in prime Γ-rings, Bol. Soc. Parana. Mat. (3), 32, 193-205, (2014).
- 2. Barnes, W.E., On the Γ-rings of Nobusawa, Pacific J. Math. 18, 411-422, (1966).
- Bell, H.E., Martindale, W.S. Centralizing mappings of semiprime rings, Canad. Math. Bull. 30, 92-101, (1987).
- Ceran, S., Asci, M., Symmetric bi-(σ, τ) derivations of prime and semi prime Gamma rings, Bull. Korean Math. Soc. 43, 9-16, (2006).
- Ceven, Y., Ozturk, M.A., On Jordan generalized derivations in Gamma rings, Hacettepe J. Math. Stati. 33, 11-14, (2004).
- Chakraborty, S., Paul, A.C., On Jordan isomorphisms of 2-torsion free prime gamma rings, Novi Sad J. Math. 40, 1-5, (2010).
- Halder, A.K., Paul, A.C., Commutativity of two torsion free σ-prime gamma rings with nonzero derivations, J. Phys. Sci. 15, 27-32, (2011).

- 8. Kyuno, S., On prime Γ-rings, Pacific J. Math.75, 185-190, (1978).
- 9. Luh, J., On the theory of simple Γ -rings, Michigan Math. J. 16, 65-75, (1969).
- Majeed, A.H., Majeed, A.A., Lie and Jordan structure in prime Γ-rings with Γ-centralizing derivations, Iraq Journal of Science, 54, 182-190, (2013).
- 11. Nobusawa, N., On a generalization of the ring theory, Osaka J. Math. 1, 81-89, (1964).
- 12. Öztürk, M.A., Yazarli, H., Some results on symmetric bi- (σ, τ) -derivations in near-rings, Miskolc Math. Notes 11, 169-173, (2010).
- Özden, D., Öztürk, M.A., Jun, Y.B., Permuting tri-derivations in prime and semi-prime gamma rings, Kyungpook Math. J. 46, 153-167, (2006).
- 14. Paul, A.C., Uddin, S., On Artinian gamma rings, Aligarh Bull. Math. 28, 15-19, (2009).
- Rehman, N.U., Al-Omary, R.M., On commutativity of 2-torsion free *-prime rings with generalized derivations, Mathematica 53(76), 171-180, (2011).
- Vukman, J., Symmetric bi-derivations on prime and semi-prime rings, Aequationes Math. 38, 245-254, (1989).

L. Kamali Ardakani, Department of Engineering Sciences, Ardakan University, Ardakan, Iran. E-mail address: 1.kamali@ardakan.ac.ir

and

B. Davvaz, Department of Mathematics, Yazd University, Yazd, Iran. E-mail address: davvaz@yazd.ac.ir

and

Shuliang Huang, Department of Mathematics, Chuzhou University, Chuzhou Anhui, China. E-mail address: shulianghuang@sina.com