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W 1,N Versus C1 Local Minimizer For a Singular Functional with
Neumann Boundary Condition

K.Saoudi

abstract: Let Ω ⊂ R
N , be a bounded domain with smooth boundary. Let

g : R+ → R
+ be a continuous function on (0,+∞) non-increasing and satisfying

c1 = lim inf
t→0+

g(t)tδ ≤ lim sup
t→0+

g(t)tδ = c2,

for some c1, c2 > 0 and 0 < δ < 1. Let f(x, s) = h(x, s)ebs
N

N−1
, b > 0 is a constant.

Consider the singular functional I : W 1,N (Ω) → R defined as

I(u)
def
=

1

N
‖u‖N

W1,N (Ω)
−

∫
Ω
G(u+) dx−

∫
Ω
F (x, u+) dx

−
1

q + 1
||u||q+1

Lq+1(∂Ω)

where F (x, u) =
∫ s

0 f(x, s) ds, G(u) =
∫ s

0 g(s) ds. We show that if u0 ∈ C1(Ω)

satisfying u0 ≥ ηdist(x, ∂Ω), for some 0 < η, is a local minimum of I in the C1(Ω)∩
C0(Ω) topology, then it is also a local minimum in W 1,N (Ω) topology. This result
is useful to prove the multiplicity of positive solutions to critical growth problems
with co-normal boundary conditions.

KeyWords:N -Laplace operator, singular equations, Neumann boundary con-
dition, Variational methods, Local minimizers.
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1. Introduction

Let Ω ⊂ R
N , N ≥ 2 be a bounded smooth domain. Let f(x, s) = h(x, s)ebs

N
N−1

,

b > 0 is a constant. Let h : Ω× R
+ → [0,∞) be a C1 function satisfying:

(h1) Nonnegative with h(x, 0) = 0. Moreover, f(x, t) = h(x, t)ebu
N

N−1
is nonde-

creasing in respect to t for t large.
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(h2) ∀ ǫ > 0, lim inf
t→∞

h(x, t)eǫ|t|
N

N−1
= ∞, lim inf

t→∞
h(x, t)e−ǫ|t|

N
N−1

= 0 uniformly in

x ∈ Ω.

(h3) ∀ ǫ > 0, lim inf
t→∞

h(x, t)teǫt
1

N−1
= ∞,

Let g : R+ → R
+ continuous on (0,+∞) satisfying

(g1) g is nonincreasing on (0,+∞),

(g2) c1 = lim inf t→0+ g(t)tδ ≤ lim supt→0+ g(t)tδ = c2 for some c1, c2 > 0 and
0 < δ < 1.

From (g2), g is singular at the origin and limt→0+ g(t) = +∞. We Consider the
singular functional I : W 1,N (Ω) → R defined as

I(u)
def
=

1

N
‖u‖NW 1,N(Ω) −

∫

Ω

G(u+) dx−

∫

Ω

F (x, u+) dx

−
1

q + 1
||u||q+1

Lq+1(∂Ω) (1.1)

where F (x, u) =
∫ s

0
f(x, s) ds, G(u) =

∫ s

0
g(s) ds. Our aim in this paper is to show

the following

Theorem 1.1. Suppose that the conditions (h1)-(h2) and (g1)-(g2) are satisfied.
Let u0 ∈ C1(Ω) satisfying

u0 ≥ ηd(x, ∂Ω) for some η > 0 (1.2)

be a local minimizer of I in C1(Ω) ∩ C0(Ω) topology; that is,

∃ ǫ > 0 such that u ∈ C1(Ω) ∩C0(Ω) , ‖u− u0‖C1(Ω) < ǫ ⇒ I(u0) ≤ I(u).

Then, u0 is a local minimum of I in W 1,N (Ω) also.

This result is useful to prove multiplicity of positive solutions to critical growth
problems with co-normal boundary conditions. From Lemma A.2 in Appendix A,
we remark that the conditions on u0 in the above theorem implies that u0 satisfies
in the distributions sense the Euler-Lagrange equation associated to I that is

(P)







−∆Nu+ |u|N−2u = g(u) + f(x, u) u > 0 in Ω,

|∇u|N−2 ∂u
∂ν

= |u|q−1u on ∂Ω.

It means that u0 ∈ W 1,N (Ω) is a weak solution to (P), i.e. satisfies ess infKu0 >

0 over every compact set K ⊂ Ω and
∫

Ω

|∇u0|
N−2∇u0 · ∇φdx+

∫

Ω

|u0|
N−2u0φ dx =

∫

Ω

g(u0)φ dx

+

∫

Ω

f(x, u0)φ dx+

∫

∂Ω

|u0|
qφdx (1.3)
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for all φ ∈ C∞
c (Ω). As usual, C∞

c (Ω) denotes the space of all C∞ functions φ : Ω →
R with compact support. We highlight that the condition (1.2) is natural. Indeed
from Lemma A.4 in the Appendix A, any weak solution to (P) satisfies (1.2) for
some η > 0. In particular, u0 ≥ u where u is the unique weak solution to the ”pure
singular” problem (PS):

(PS)







−∆Nu+ |u|N−2u = g(u) u > 0 in Ω,

|∇u|N−2 ∂u
∂ν

= |u|q−1u on ∂Ω.

given by Lemma A.3.
For proving Theorem 1.1, we will need uniform L∞-estimates for a family of

solutions to (Pǫ). More precisely, we have the following result:

Theorem 1.2. Let {uǫ}ǫ∈(0,1) be a family of solutions to (Pǫ), where u0 satisfies
(1.2) and solves (P). Let θ > 1 be such that

sup
ǫ∈(0,1)

(

||f(x, uǫ)||Lθ + ‖uǫ‖W 1,N (Ω)

)

< ∞.

Then,

sup
ǫ∈(0,1)

‖uǫ‖L∞(Ω) < ∞.

An important ingredient in our proof is the following Trudinger-Moser type
inequality (see [5] and [6]):

sup
‖u‖1,N≤1

∫

Ω

expαN |u|
N

N−1
dx < ∞, (1.4)

where αN = Nw
1

n−1

N , wN = volume of SN−1. It follows immediately from

(1.4) that the embedding W 1,N(Ω) ∋ u 7→ exp|u|
β

∈ L1(Ω) is compact for all
β = (0, N

N−1 ) and is continuous for β = N
N−1 . The fact that this imbedding is not

compact for β = N
N−1 can be shown using a sequence of Moser functions that are

suitable truncations and dilations of the fundamental solution of −∆N onW 1,N (Ω).

Thus the growth given by the map t → exp|t|
N

N−1
represents the critical growth for

functions u ∈ W 1,N (Ω).

Theorem 1.1 was proved first in [1] for the case of critical growth functionals
I : H1

0 (Ω) → R, Ω ⊂ R
N , N ≥ 3, and later for critical growth functionals I :

W
1,p
0 (Ω) → R, 1 < p < N , Ω ⊂ R

N , N ≥ 3 in [2] and for critical and singular
functionals in [9]. The sub-critical case of p(x)−Laplacian is studied in [7]. In
contrast, in our approach we use the equations involving only one p-Laplacian.

Using constraints based on Lp- norms rather than Sobolev norms as in [2], the
equations for which uniform estimates are required can be simplified to a standard
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type involving only one p-Laplace operator. This approach was followed in [3]
in the subcitical case, in [4] in the critical case, adopted [8,10,11,12,13,14] and
also adopted in this work to deal with the singular case and co-normal boundary
conditions.

2. Proof of Theorem 1.1

We adapt the arguments in [8]. Assume that the conclusion of Theorem 1.1 is

not true. Let k : R → R be defined as k(s) = sp+1ecs
N

N−1
for p > 1 and for some

constant c > b. We define the following constraint for each ǫ > 0 :

Sǫ
def
= {u ∈ W 1,N (Ω) : ρ(u)

def
= ‖k(u)‖L1(Ω) + ||u||α+1

Lα+1(∂Ω) ≤ ǫ}, α
def
= max{p, q}.

(2.1)
We consider the following constraint minimization problem:

Iǫ = inf
u∈Sǫ

I(u).

Firstly, we have that Iǫ > −∞. Indeed, since F (x, s) = O(s
N

N−1 ) as s −→ 0 (by
(h1)) and from (1.4), we get for some constant C,K

1

N
||u||N −

∫

Ω

F (x, u)dx ≥
1

N
||u||N −K

∫

Ω

u
N

N−1 eb(1+ǫ)u
N

N−1
dx

≥
1

N
||u||N −K

(
∫

Ω

eb(1+ǫ)qu
N

N−1
dx

)
1
q
(
∫

Ω

u
N

N−1 q
′

dx

)
1
q′

≥
1

N
||u||N −KC|u

N
N−1 q

′

|
N

N−1
N

N−1q
′

≥
1

N
||u||N −KC||u||N , (2.2)

where q, q′ are conjugate. Therefore, from (2.2) and since W 1,N (Ω) →֒ L1−δ(Ω),
and the trace imbedding W 1,N (Ω) →֒ LN (∂Ω) we get the result. Moreover, we
note that Sǫ is a convex set. Using Trudinger-Moser and trace embeddings we see
that Sǫ is also a closed set in W 1,N (Ω) which implies that Sǫ is weakly closed in
W 1,N (Ω), the facts that, I is weakly lows semicontinuous in W 1,N (Ω), it follows
that for ǫ ∈ (0, 1) Iǫ is achieved on some uǫ ∈ Sǫ, that is

I(uǫ) = Iǫ, and I(uε) < I(u0) ∀ ε ∈ (0, 1). (2.3)

Moreover, since I(u+
ǫ ) ≤ I(uǫ) and u+

ǫ ∈ Sǫ, we may assume that uǫ ≥ 0.
We now consider the following two cases:

1. Let ρ(uǫ) < ǫ.

Then uǫ is also a local minimizer of I in W 1,N(Ω). We now show that I admits
a Gâteaux-derivatives on uǫ to derive that uǫ satisfies the Euler-Lagrange
equation associated with I. For this, according to Lemma A.2, in Appendix
A, we need to prove that ∃ η̃ > 0 such that uǫ ≥ η̃ dist(x, ∂Ω) or equivalently

∃ η > 0 such that uǫ ≥ ηϕ1; (2.4)
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[ϕ1 is the eigenfunction corresponding to the principal eigenvalue of the
problem







−∆Nu+ uN−1 = 0, u > 0 in Ω,

|∇u|N−2 ∂u
∂ν

= λuN−1 on ∂Ω.]

To prove (2.4), we argue by contradiction: ∀ η > 0 let Ωη = Supp{(ηϕ1 −
uǫ)

+} and suppose that Ωη has a non zero measure.
Let uη = (ηϕ1 − uǫ)

+ and for 0 < t ≤ 1 set ξ(t) = I(uǫ + tuη). Then, there

exists c(t) satisfying c(t) > ηt such that inf
uǫ+tuη

ϕ1
≥ c(t) for t > 0. Then,

from Lemma A.3 ξ is differentiable for 0 < t ≤ 1 and ξ′(t) = 〈I ′(uǫ+tuη), uη〉.
Thus,

ξ′(t) =

∫

Ω

|∇(uǫ + tuη)|
N−2∇(uǫ + tuη)∇uη +

∫

Ω

|uǫ + tuη|
N−2uη

−

∫

Ω

g(uǫ + tuη)uη −

∫

Ω

f(x, uǫ + tuη)uη

−

∫

Ω

|uǫ + tuη|
q−1(uǫ + tuη)uη.

From (h1) and (g2), we see that

ξ′(1) =

∫

Ω

|∇ηϕ1|
N−2∇(ηϕ1)∇uη +

∫

Ω

|ηϕ1|
N−2uη

−

∫

Ω

g(ηϕ1)uη −

∫

Ω

f(x, ηϕ1)uη −

∫

Ω

|ηϕ1|
q−1(ηϕ1)uη < 0.

for η > 0 small enough.
Now, since g(s) + f(x, s) is non increasing for 0 < s small enough uniformly
to x ∈ Ω (by (h1), (g1)-(g2)) and from the monotonicity of the operator
−∆Nu + |u|N−1u, we have that for 0 < η small enough 0 ≤ ξ′(1) − ξ′(t).
Therefore, from Taylor’s expansion and since ρ(uǫ) ≤ ǫ, there exists 0 < θ < 1
such that

0 ≤ I(uǫ + uη)− I(uǫ) = 〈I ′(uǫ + θuη), uη〉 = ξ′(θ). (2.5)

Letting t = θ we have ξ′(θ) ≤ ξ′(1) < 0. We obtain a contradiction with
(2.5) and then uǫ ≥ ηϕ1 for some η > 0 (which depends a priori on ǫ). Since
uǫ is a local minimizer of I, and I is Gâteaux differentiable in uǫ, we get
I ′(uǫ) is defined and I ′(uǫ) = 0. Recalling that u is the solution to (PS)
given by Lemma A.4 and from the weak comparison principle, we have that
ηϕ1 ≤ u ≤ uǫ for some η > 0 (independent of ǫ). Since uǫ ∈ Sǫ and from
the fact that uǫ satisfies (P), we get that {uǫ}ǫ≥0 is uniformly bounded in
W 1,N(Ω). Now, using Theorem 1.2 and Theorem B.1 in [13], we get

|uǫ|C1,α(Ω) ≤ C for some α ∈ (0, 1) (2.6)
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and as ǫ → 0+

uǫ → u0 in C1(Ω)

which contradicts the fact that u0 is a local minimizer in C1(Ω) ∩ C0(Ω).
Now, we deal with the second case:

2. ρ(uǫ) = ǫ :

We again show that uǫ ≥ ηϕ1 in Ω for some η > 0. Taking uη = (ηϕ−uǫ)
+, ξ(t) =

I(uǫ + tuη), we obtain as above that ξ′(t) ≤ ξ′(1) < 0 for 0 < t < 1 and 0 < η

small enough.
Then ξ(t) = I(uǫ + tuη) is decreasing. This implies that I(uǫ) > I(uǫ + tuη) for
t > 0 and using (1.2)

ρ(uǫ + tuη) < ρ(uǫ) = ǫ.

This yields a contradiction with the fact that uǫ is a global minimizer of I on Sǫ.

In this case, using Lemma A.3 and from the Lagrange multiplier rule we have

I ′(uǫ) = µǫρ
′(uǫ), for some µǫ ∈ R. (2.7)

We first show that µǫ ≤ 0. We argue by contradiction. Suppose that µǫ > 0,
then there exists ϕ ∈ W 1,N(Ω) such that

〈I ′(uǫ), ϕ〉 < 0 and 〈ρ′(uǫ), ϕ〉 < 0

and then for t small we have

{

I(uǫ + tϕ) < I(uǫ),

ρ(uǫ + tϕ) < ρ(uǫ) ≤ ǫ.
(2.8)

This contradicts the fact that uǫ is a global minimizer of I in Sǫ.

We deal now with two following cases:

case (i): inf
ǫ∈(0,1)

µǫ
def
= l > −∞. In this case, we write (2.7) in its P.D.E form as

(with K(s) = ρ′(s)).

(Pǫ)







−∆Nuε + uN−1
ε = g(uε) + f(x, uε) + µεK(uε), uε > 0 in Ω,

|∇uε|
N−2 ∂uε

∂ν
= uq−1

ε uε + µε|uε|
α−1uε on ∂Ω.

it is easy from the weak comparison principle to show that ηϕ1 ≤ uǫ with some
η > 0, independent of ǫ > . (Note that for η small enough and for all l ≤ µǫ ≤ 0,
we have that ηϕ1 is a strict subsolution to (Pǫ).)

In this case, we show that (up to a subsequence) uε → u0 in W 1,N (Ω). To see
this, we define a new functional Jε : W

1,N (Ω) → R by

Jε(u)
def
= I(u)− µǫρ(u), u ∈ W 1,N (Ω), ε ∈ (0, 1). (2.9)
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Then, we see that using (2.7), J ′
ε(uε) = 0, ǫ ∈ (0, 1). Since {J(uε)}ε∈(0,1) is a

bounded sequence (thanks to (2.2) and (2.3)) in R, we may choose a subsequence
such that Jε(uε) → τ as ε → 0. Now, using (h2) and Moser-Trudinger embedding,
we get that

∫

Ω

F (x, uǫ) dx →

∫

Ω

F (x, u0) dx. (2.10)

Indeed, for q∗ and q conjugate for some C1, C2 > 0 independent of u ∈ W 1,N (Ω),

∫

Ω

|F (x, uǫ)− F (x, u0)| dx ≤

∫

Ω

ebu
N

N−1
0 |h(x, uǫ)− h(x, u0)|dx

+

∫

Ω

|ebu
N

N−1
ǫ − ebu

N
N−1
0 |h(x, uǫ)dx

≤ o(1) +

(

∫

Ω

∣

∣

∣

∣

ebu
N

N−1
ǫ − ebu

N
N−1
0

∣

∣

∣

∣

q∗
)

1
q∗ (∫

Ω

Cebǫu
N

N−1
q

ǫ dx

)

1
q

. (2.11)

The last quantity in (2.11) is bounded from the Moser-Trudinger inequality (1.4)
and ǫ small enough whereas

∫

Ω

∣

∣

∣

∣

ebu
N

N−1
ǫ − ebu

N
N−1
0

∣

∣

∣

∣

q∗

≤

∫

uǫ≤A

∣

∣

∣

∣

ebu
N

N−1
ǫ − ebu

N
N−1
0

∣

∣

∣

∣

q∗

+K

(
∫

uǫ>A

ebq
∗u

N
N−1
ǫ dx+

∫

uǫ>A

ebq
∗u

N
N−1
0 dx

)

= I + II (2.12)

I in (2.12) goes to 0 when ǫ −→ 0 by dominated convergence. II can be estimated
as

II ≤ Ke−bA
N

N−1

∫

uǫ>A

eb(q
∗+1)u

N
N−1
ε dx+K

∫

uǫ>A

ebq
∗u

N
N−1
0 dx (2.13)

From (2.11), (2.12), (2.13) and taking q∗ such that (q∗ + 1)r
N

N−1

0 ≤ 1 and letting
A −→ ∞, (2.10) follows.

On the other hand, using the uniform estimate ηφ1 ≤ uǫ ≤ kφ1, we have
∫

Ω

g(uε) dx →

∫

Ω

g(u0) dx when ǫ → 0. (2.14)

Then, since uε ⇀ u0 in W 1,N (Ω), by Fatou?s Lemma I(u0) ≤ τ . Since τ =
lim
ǫ→0

Jǫ(uε) ≤ I(u0) (from (2.3)), we obtain that τ = I(u0). From (2.10)-(2.14),

and the fact that
∫

∂Ω |uε|
q+1 →

∫

∂Ω |u0|
q+1 we obtain that ||uε||W 1,N (Ω) → 0 as

claimed before.



78 K.Saoudi

Hence, using the Trudinger-Moser type inequality in (1.4) we can apply Theo-
rem 1.2 to conclude that supǫ∈(0,1) ||vǫ||L∞(Ω) ≤ C. Using Lemma A.6 in [13], we
deduce that vǫ ≤ kφ1 for some k > 0 independent of ǫ. From the uniform estimate
ηφ1 ≤ vǫ ≤ kφ1, we can apply Theorem B.1 in [13] and get |vǫ|C1,α(Ω) ≤ C for
some constant C > 0 independent of ǫ. Then we conclude as above.
Let us consider the case (ii): inf

ǫ∈(0,1)
µǫ = −∞. From above, we can assume that

µǫ ≤ −1 for 0 < ε small enough. As above, we have that vǫ ≥ ηϕ1 for η > 0 small
enough and independent of ǫ. Furthermore, since k is odd, we can find a num-
ber M > 0 independent of ǫ > 0 and x ∈ Ω, such that (g(s) + f(x, s) + µε)s and
(|s|q−1s+µε|s|

α−1s)s are negative for all |s| ≥ M. Then, from the weak comparison
principle we have that vǫ ≤ M for ǫ > 0 small enough. From Lemma A.2, since
u0 ∈ W 1,N (Ω) satisfies (1.2) and is a C1 local minimizer, u0 is a weak solution to
(P ), i.e. satisfies ess infKu0 > 0 over every compact set K ⊂ Ω and
∫

Ω

|∇u0|
N−2∇u0∇φdx +

∫

Ω

|u0|
N−2φdx−

∫

Ω

g(u0)φ dx−

∫

Ω

f(x, u0)φ dx

−

∫

Ω

|u0|
q−1u0φdx.

for all φ ∈ C∞
c (Ω). From Lemma A.3, for every function w ∈ W 1,N (Ω), u0 satisfies

∫

Ω

|∇u0|
N−2∇u0∇w dx +

∫

Ω

|u0|
N−2w dx−

∫

Ω

g(u0)w dx−

∫

Ω

f(x, u0)w dx

−

∫

Ω

|u0|
q−1u0w dx.

Similarly,
∫

Ω

|∇uǫ|
N−2∇uǫ∇w dx +

∫

Ω

|uǫ|
N−2w dx−

∫

Ω

g(uǫ)w dx−

∫

Ω

f(x, uǫ)w dx

−

∫

Ω

|uǫ|
q−1uǫw dx.

Now, substracting the above relations with w = (uǫ − u0)|uǫ − u0|
β−1, with β ≥ 1,

as a test function in (Pε), integrate by parts and use the fact that u 7→ −∆Nu +
|u|N−1u is a monotone operator to obtain,

− µε

[
∫

Ω

k(uε − u0)|uǫ − u0|
β−1(uε − u0) dx+

∫

∂Ω

|uε − u0|
α+β dx

]

≤

∫

Ω

(g(uε)− g(u0))(uǫ − u0)|uǫ − u0|
β−1dx

+

∫

Ω

(f(x, uε)− f(x, u0))(uǫ − u0)|uǫ − u0|
β−1dx

+

∫

∂Ω

(|uε|
q−1uε − |u0|

q−1u0)(uε − u0)|uǫ − u0|
β−1dx.
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Using the bounds of uǫ, u0 we get

−µε

[
∫

Ω

k(uε − u0)|uǫ − u0|
β−1(uε − u0) dx+

∫

∂Ω

|uε − u0|
α+β dx

]

≤ C

[
∫

Ω

|uǫ − u0|
βdx+

∫

∂Ω

|uǫ − u0|
βdx

]

where C does not depend on β and ε.Now, using the inequality k(s)s ≥ c|s|p+1 ∀ s ∈
R, α ≥ p and the Hölder inequality we obtain

−µε

[
∫

Ω

|uǫ − u0|
p+β dx+

∫

∂Ω

|uε − u0|
p+β dx

]

≤ C(|Ω|)

[
∫

Ω

|uǫ − u0|
p+βdx+

∫

∂Ω

|uǫ − u0|
p+βdx

]

β
p+β

.

Therefore, for any β > 1

− µǫ

[

‖uǫ − u0‖
p

Lβ+p(Ω)
+ ‖uǫ − u0‖

p

Lβ+p(∂Ω)

]

≤ C(|Ω|). (2.15)

Passing to the limit in (2.15) β → +∞ we get

µǫ

[

‖vǫ − u0‖
p

L∞(Ω) + ‖vǫ − u0‖
p

L∞(∂Ω)

]

≤ C. (2.16)

Thus, using (2.16), the uniform L∞ bounds for {uε}ε∈(0,1) in Ω as well as ∂Ω and
the fact that k(s)|s|−p is function bounded below in R, we get that the right-hand
side terms in (Pε) are uniformly bounded in L∞(Ω) and in L∞(∂Ω) from which as in
the first case, we obtain that uǫ, (0 < ǫ ≤ 1) is bounded in C1,α(Ω) independently
of ǫ and we conclude as above. ✷

3. Uniform estimates

Consider the problems

(Pǫ)







−∆Nuε + uN−1
ε = g(uε) + f(x, uε) + µεk(uε), uε > 0 in Ω,

|∇uε|
N−2 ∂uε

∂ν
= uq−1

ε uε + µε|uε|
α−1uε on ∂Ω.

where ν is the unit normal on ∂Ω. In this section, we obtain the uniform L∞-
estimates for a family of solutions to (Pǫ). More precisely, we prove Theorem 1.2.

Proof: For k > 0 we consider the test function

Tk(s)
def
= (s+ k)χ(−∞,−k] + (s− k)χ[k,∞) (3.1)

and define the two following set

Ωk = {x ∈ Ωk \ |uǫ| ≥ k}, ∂Ωk = {x ∈ ∂Ωk \ |uǫ| ≥ k}.
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Using Tk(uǫ) as test function in (Pǫ), and the fact that µǫ ≤ 0 we get
∫

Ω

(

|∇uǫ|
N−2∇uǫ

)

∇(Tk(uǫ)) +

∫

Ω

(

|uǫ|
N−2uǫ

)

Tk(uǫ)

≤

∫

Ω

g(uǫ)Tk(uǫ) +

∫

Ω

f(x, uǫ)Tk(uǫ) +

∫

Ω

|uǫ|
q−1uǫTk(uǫ).

(3.2)

The term on the right-hand side of (3.2) may be estimated using the Hölder in-
equality

∫

Ω

g(uǫ)Tk(uǫ) +

∫

Ω

f(x, uǫ)Tk(uǫ) +

∫

Ω

|uǫ|
q−1uǫTk(uǫ).

≤ (

∫

Ω

(g(uǫ))
θ
)

1
θ (

∫

Ω

|Tk(uǫ)|
r)

1
r |Ωk|

1− 1
θ
− 1

r

+(

∫

Ω

(f(uǫ))
θ
)

1
θ (

∫

Ω

|Tk(uǫ)|
r)

1
r |Ωk|

1− 1
θ
− 1

r

+(

∫

∂Ω

(|uǫ|
q)θ)

1
θ (

∫

∂Ω

|Tk(uǫ)|
r)

1
r |∂Ωk|

1− 1
θ
− 1

r .

≤ C(

∫

Ω

|Tk(uǫ)|
r +

∫

∂Ω

|Tk(uǫ)|
r)

1
r (|∂Ωk|+ |∂Ωk|)

r−1−η
r ,

(3.3)

where, η = N+1
θ−1 and r = θη, here, |C| denotes the Lebesgue measure of the

measurable set C. Now, using Sobolev and trace imbeddings we can estimate from
below the term on the left-hand side of (3.2) as follows:

∫

Ω

|∇uǫ|
N−2∇uǫ∇(Tk(uǫ)) +

∫

Ω

|uǫ|
N−2uǫTk(uǫ)

≥ C(

∫

Ω

|∇(Tk(uǫ))|
N +

∫

Ω

|Tk(uǫ)|
N )

≥ C(

∫

Ω

|Tk(uǫ)|
r +

∫

∂Ω

|Tk(uǫ)|
r)

N
r . (3.4)

Substituting (3.3) and (3.4) in (3.2), we get
∫

Ω

|Tk(uǫ)|
r +

∫

∂Ω

|Tk(uǫ)|
r ≤ (|∂Ωk|+ |∂Ωk|)

N
N−1 (3.5)

Notice that for 0 < k < h, Ω(h) ⊂ Ω(k) since Tk(s) = (|s|−k)(1−χ[−k,k](s)) ∀ s ∈ R

and then

|Ωh|(h−k)r =

∫

Ωh

(h−k)r ≤

∫

Ωh

(|uǫ|−k)r ≤

∫

Ωk

(|uǫ|−k)r =

∫

Ω

|Tk(uǫ)|
r. (3.6)

In the same way we have

|∂Ωh|(h− k)r ≤

∫

∂Ω

|Tk(uǫ)|
r . (3.7)
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Substituting (3.6) and (3.7) in (3.5), we obtain

Φ(h) ≤ C(h− k)−r(Φ(k))
N

N−1 0 < k < h (3.8)

where Φ(k)
def
= |Ωk|+ |∂Ω| k > 0.

Now we have the following
Claim: Assume Φ : [0,+∞) −→ [0,+∞) is a non-increasing function such that if
h > k > k0

Φ(h) ≤ C(h− k)−r(Φ(k))
N

N−1 0 < k < h.

Then Φ(d+ k0) = 0 where d
def
= 2NC

1
rΦ(k0)

1
(N−1)r .

By the Claim we get that Φ(d) = |Ωd|+ |∂Ωd| = 0 namely

sup
ǫ∈(0,1)

||uǫ||L∞ ≤ d.

To finish we need to prove the Claim.

Proof of the claim: Given d as above, define the sequence {kn} by k0 = 0 and
kn = kn−1 +

d
2n for n = 1, 2, ..... By recurrence we have that

Φ(kn) ≤
Φ(k0)

2nr(N−1)
−→ 0 as n → ∞.

Then

0 ≤ Φ(d+ k0) ≤ lim
n→∞

Φ(kn) = 0.

This gives the proof of the Claim and the proof of Theorem 1.2. ✷

4. appendix

We start with an important technical tool which enables us to estimate the
singularity in the Gâteaux derivative of the energy functional I : W 1,N (Ω) → R

defined in (1.1).

Lemma 4.1. Let 0 < δ < 1. Then there exists a constant Cδ > 0 such that the
inequality

∫ 1

0

|a+ sb|−δ ds ≤ Cδ

(

max
0≤s≤1

|a+ sb|

)−δ

(4.1)

holds true for all a,b ∈ R
N with |a|+ |b| > 0.

An elementary proof of this lemma can be found in Takáč [15, Lemma A.1,
p. 233].

We continue by showing the Gâteaux-differentiability of the energy functional
I at a point u ∈ W

1,N
0 (Ω) satisfying u ≥ εϕ1 in Ω with a constant ε > 0.
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Lemma 4.2. Let the assumptions (h1)-(h2) and (g1)-(g2) be satisfied. Assume
that u, v ∈ W 1,N(Ω) and u satisfies u ≥ εϕ1 in Ω with a constant ε > 0. Then we
have

lim
t→0

1

t
(I(u + tv)− I(u)) =

∫

Ω

|∇u|N−2∇u∇v dx−

∫

Ω

|u|N−1v dx

−

∫

Ω

g(u)v dx−

∫

Ω

f(x, u)v dx−

∫

∂Ω

|u|q−1uv dx (4.2)

Proof: We show the result only for the singular term
∫

Ω g(u)v dx; the other two
terms are treated in a standard way. So let

H(u) =

∫

Ω

G(u(x)+) dx for u ∈ W 1,N (Ω).

For ξ ∈ R \ {0} we define

z(ξ) =
d

dξ
G(ξ+) =

{

g(ξ) if ξ > 0;
0 if ξ < 0.

Consequently,

1

t
(H(u+ tv)−H(u)) =

∫

Ω

(
∫ 1

0

z(u+ stv) ds

)

v dx . (4.3)

Notice that for almost every x ∈ Ω we have u(x) > 0 and

∫ 1

0

z(u(x) + stv(x)) ds −→ z(u(x)) = g(u(x)) as t → 0 .

Moreover, the integral on the left-hand side (with nonnegative integrand) is domi-
nated by

∫ 1

0

z(u(x) + stv(x)) ds ≤ C

∫ 1

0

|u(x) + stv(x)|−δ ds

≤ Cδ

(

max
0≤s≤1

|u(x) + stv(x)|

)−δ

≤ Cδ u(x)
−δ ≤ Cδ (εϕ1(x))

−δ = Cδ,ε ϕ1(x)
−δ

with constants C,Cδ,ε > 0 independent of x ∈ Ω. Here, we have used the estimate
(4.1) from Lemma 4.1 above. Finally, we have vϕ−δ

1 ∈ L1(Ω), by v ∈ W 1,N (Ω) and
Hardy’s inequality. That’s

(
∫ 1

0

z(u(x) + stv(x)) ds

)

v ≤ Cδ,ε ϕ1(x)
−δv < ∞

Hence, we are allowed to invoke the Lebesgue dominated convergence theorem in
(4.3) from which the lemma follows by letting t → 0. ✷
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Corollary 4.3. Let the assumptions (h1)-(h2) and (g1)-(g2) be satisfied. Then
the energy functional I : W 1,N (Ω) → R is Gâteaux-differentiable at every point
u ∈ W 1,N (Ω) that satisfies u ≥ εϕ1 in Ω with a constant ε > 0. Its Gâteaux
derivative I ′(u) at u is given by

〈I ′(u), v〉 =

∫

Ω

|∇u|N−2∇u∇v dx−

∫

Ω

|u|N−1v dx−

∫

Ω

g(u)v dx

−

∫

Ω

f(x, u)v dx−

∫

∂Ω

|u|q−1uv dx (4.4)

for v ∈ W 1,N (Ω).

We continue by proving the C1-differentiability of the cut off energy functional
I defined below:

Lemma 4.4. Let the assumptions (h1)-(h2) and (g1)-(g2) be satisfied, and w ∈
W 1,N (Ω) such that w ≥ ǫϕ1 with some ǫ > 0.

Define g̃λ : Ω → R by

g̃(s) =

{

g(s) s ≥ w(x),

g(w(x)) s < w(x).

f̃λ : Ω× R → R by

f̃λ(x, s) =

{

f(x, s) s ≥ w(x),

f(x,w(x)) s < w(x),

and h̃λ : ∂Ω× R → R by

h̃λ(x, s) =

{

|s|q s ≥ w(x),

|w(x)|q s < w(x).

Let G̃λ(s) =
∫ s

0 g̃(t)dt, F̃ (x, s) =
∫ s

0 f̃(x, t)dt and H̃(x, s) =
∫ s

0 h̃(x, t)dt. Consider

the functional Ĩ : W 1,N(Ω) → R defined by

Ĩ(u) =
1

N

∫

Ω

(|∇u|N + |u|N )−

∫

Ω

G̃(u)dx−

∫

Ω

F̃ (x, u)dx−

∫

∂Ω

H̃λ(x, u)dx. (4.5)

We have that Ĩ belongs to C1(W 1,N (Ω),R).

Proof:
As in Lemma 4.2, we concentrate on the singular term, the others being stan-

dard. Let

g̃(s) =

{

g(s) if s ≥ w(x),
g(w(x)) if s < w(x),
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G̃(s) =
∫ s

0 g(t) dt, and S(u) =
∫

Ω G(u)dx. Proceeding as in Lemma 4.2, we obtain
that for all u ∈ W 1,N (Ω), S(u) has a Gâteaux derivative S′(u) given by

〈S′(u), v〉 =

∫

Ω

g((max{u(x), w(x)})v(x) dx.

Let uk ∈ W 1,N(Ω), uk → u0. Then

|〈S′(uk)− S′(u0), v〉| =

∣

∣

∣

∣

∫

Ω

(g(max{uk(x), w(x)})v(x)

−g(max{u(x), w(x)})v(x)) dx|

≤ 2C

∫

Ω

w−δ|v| dx

≤ 2Cǫ−δ

∫

Ω

ϕ−δ
1 |v| dx

for all v ∈ W 1,N (Ω). Again, as in Lemma 4.2, we use Hardy’s inequality to deduce
that ϕ−δ

1 v ∈ L1(Ω), so that by Lesbegue’s dominated convergence theorem we
conclude that the Gâteaux derivative of S is continuous which implies that S ∈
C1(W 1,N (Ω),R). ✷

We give now the existence of a subsolution to (P):

Lemma 4.5. Assume assumptions (g1)?(g2). Then problem (PS) possesses a
weak solution in W 1,N (Ω) in the sense of distributions. This solution, denoted by
u, is the unique global minimizer to the energy functional Ẽ given by

Ẽ
def
=

1

N

(
∫

Ω

|∇u|Ndx−

∫

Ω

|u|N dx

)

−

∫

Ω

G(u+)dx −
1

q + 1

∫

∂Ω

|u|q+1 dx

∀u ∈ W 1,N (Ω). In addition, u is the unique solution to (PS) in Ω
def
= {u ∈ W 1,N (Ω)

such that u ≥ ηϕ1 for some η > 0}.

Proof: First, by Hölder’s inequality and Sobolev embedding and trace embedding
W 1,N (Ω) →֒ Lq(∂Ω) we get for some C2 > 0,

∫

∂Ω

|u|q+1 ≤ C2‖u‖
q+1
Lq+1(∂Ω) ≤ C2‖u‖

q+1. (4.6)

Thus, from (4.6) and owing to the Poincaré inequality, assumption (g2) and 0 <

1− δ < 1 < N < ∞, the functional Ẽ is coercive.
Now, we prove that Ẽ is weakly lower semicontinuous. To do this it is sufficient to
show that for uj ⇀ u weakly in W 1,N (Ω) we have

∫

Ω

g(uj) dx →

∫

Ω

g(u) dx when j → +∞. (4.7)
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and
∫

∂Ω

|uj |
q−1uj dx →

∫

∂Ω

|u|q−1u dx when j → +∞. (4.8)

(4.7) follows from the definition of weak convergence and using assumption (g2).
Finally, (4.8) follows from the trace embedding. It follows that Ẽ possesses a global
minimizer ũ ∈ W 1,N (Ω). We have ũ 6= 0 owing to Ẽ(0) = 0 > Ẽ(ǫϕ1) for ǫ > 0
small enough.

Second, the polar decomposition u = u+ − u− of any function u ∈ W 1,N (Ω)
gives ∇u = ∇u+ − ∇u−. Thus, if ũ is a global minimizer for Ẽ, then so is its
absolute value |ũ|, by Ẽ(|ũ|) ≤ Ẽ(ũ) holds if and only if ũ− = 0 a.e. in Ω, that is,
if and only if ũ ≥ 0 a.e. in Ω. Thus, any global minimizer ũ for Ẽ, must satisfy
ũ ≥ 0 a.e. in Ω. Equivalently, ũ ∈ W 1,N (Ω)+ where

W 1,N (Ω)+
def
= {u ∈ W 1,N (Ω) : u ≥ 0 a.e. in Ω}

stands for the positive cone in W 1,N (Ω).

From the fact −∆Nu− |u|N−1u is a monotone operator in the cone Ω
def
= {u ∈

W 1,N (Ω) such that u ≥ ηϕ1 for some η > 0} and the weak comparison principle,
we conclude that Ẽ has a unique global minimizer denoted by u in W 1,N (Ω) with
the property essinfK u > 0 for any compact set K ⊂ Ω. u is then the unique weak
solution to (PS) in Ω and satisfies (1.2). ✷
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