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Numerical Computations of the PCD Method

Ahmed Tahiri

abstract: The PCD (piecewise constant distributions) method is a discretization
technique of the boundary value problems in which the unknown distribution and
its derivatives are represented by piecewise constant distributions but on distinct
meshes. It has the advantage of producing the most sparse stiffness matrix resulting
from the approximate problem. In this contribution, we propose a general trian-
gulation with the PCD method by combining rectangular elements and triangular
elements. We also apply this discretization technique for the 2D elasticity problem.
We conclude by presenting the numerical results of the proposed method for the 2D
diffusion equation.
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1. Introduction

We present a discretization technique of boundary value problems (BVP) in
which the unknown distribution as well as its derivatives are all represented by
piecewise constant distributions, each one on a specific mesh. The interest for piece-
wise constant approximations has been highlighted since the early days of partial
differential equations as a discretization techniques, being more or less explicitly
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at the root of the control volume method widely used in engineering applications,
particularly in computational fluid dynamics. This motivated the early analysis by
[1], [2], [5] and [14] which raises its persistent interest as it is illustrated in many
more recent works [4], [6] , [7] and [8]. Our approach cannot however rely on the
results obtained so far because we use piecewise constant approximations not only
for the unknown distribution itself but also for its derivatives.
This feature requires the introduction of distinct meshes to represent each distri-
bution and new mathematical tools for the convergence analysis of the resulting
discrete schemes.

2. PCD discretization

2.1. Formulation of the problem

To keep the presentation of this discretization as simple as possible, we restrict
the present contribution to the analysis of the 2D diffusion equation on a nonuni-
form rectangular mesh. The convergence analysis and the technical results of the
PCD method can be found in [9] and [12]. The extension of the presented method
on polygonal or L-shaped domain does not raise any difficulties.

We consider solving the following BVP on a rectangular domain Ω :

− div( p(x)∇u(x)) + q(x)u(x) = s(x) x ∈ Ω (2.1)

u(x) = 0 x ∈ Γ0 (2.2)

n · ∇u(x) = 0 x ∈ Γ1 (2.3)

where n denotes the unit normal to Γ = ∂Ω and Γ = Γ0 ∪ Γ1. We assume that p
and q are in L∞(Ω), that p(x) is strictly positive on Ω, that q(x) is nonnegative on
Ω and that we have a well posed problem.

The discrete version of this problem will be based on its variational formulation:

find u ∈ H such that ∀ v ∈ H a(u, v ) = (s, v)Ω (2.4)

where H = H1
Γ0
(Ω) = {v ∈ H1(Ω), v = 0 on Γ0},

a(u, v) =

∫

Ω

p(x)∇u(x) · ∇v(x) dx +

∫

Ω

q(x)u(x) v(x) dx , (2.5)

and (s, v)Ω denotes the L2(Ω) scalar product.

2.2. PCD spaces

The PCD discretization splits the open domain Ω under investigation into ele-
ments Ωℓ , ℓ ∈ J , open subsets of Ω, such that

Ω =
⋃

ℓ∈J

Ωℓ Ωk ∩Ωℓ = ∅ if k 6= ℓ ∀ k, ℓ ∈ J
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and defines several sub-meshes on each element Ωℓ for the representation of v ∈
H1(Ω) and of its derivatives ∂iv (i = 1, 2). These representations, denoted vh and
∂hi vh (i = 1, 2) respectively, are piecewise constant on each of these sub-meshes
(a specific one for each) with the additional requirement for vh that it must be
continuous across the element boundaries (i.e. along the normal to the element
boundary).
Here, we consider rectangular meshes and the operators ∂hi (i = 1, 2) are finite
difference quotients taken along the element edges.

( c )( b )( a )

21

2

1

3 4

21

h2

h1

Figure 1: Sub-meshes used to represent vh (a), ∂h1 vh (b) and ∂h2 vh (c) on Ωℓ

The sub-meshes used to define vh|Ωℓ
, ∂h1 vh|Ωℓ

and ∂h2 vh|Ωℓ
on a rectangular

element Ωℓ are represented on Fig. 1.
vh|Ωℓ

is the piecewise constant distribution with 4 values vhi on the regions denoted
i with i = 1, ..., 4 on Fig. 1 (a).
∂h1 vh|Ωℓ

is the piecewise constant distribution with constant values:

( ∂h1 vh )1 =
vh2 − vh1

h1
, ( ∂h1 vh )2 =

vh4 − vh3
h1

on the regions denoted 1, 2 on Fig. 1 (b).

Similarly, ∂h2 vh|Ωℓ
is the piecewise constant distribution with constant values:

( ∂h2 vh )1 =
vh3 − vh1

h2
, ( ∂h2 vh )2 =

vh4 − vh2
h2

on the regions denoted 1, 2 on Fig. 1 (c).

In addition, vh must be continuous across element boundaries. Thus for exam-
ple if the bottom boundary of Ωℓ is common with the top boundary of Ωk, one
must have that vh1(Ωℓ) = vh3(Ωk) and vh2(Ωℓ) = vh4(Ωk).
It is of interest to note that ∂hi vh has the following property:

∫ Q

P

∂hi vh dxi = vh(Q) − vh(P ) (2.6)
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for any pair of nodes {P, Q} of the mesh.

Element mesh Hh0 mesh

Hh1 mesh Hh2 mesh

Figure 2: Discrete meshes

The spaces associated with this discretization are defined as follows. E denotes
(L2(Ω))3 with norm ‖ (u, v, w ) ‖2E = ‖ u ‖2+‖ v ‖2+‖w ‖2. F denotes the subspace
of E of the elements of the form ( v, ∂1v, ∂2v ).
Hh0 and Hhi (i = 1, 2) denote the spaces of piecewise constant distributions used
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to define vh and ∂hi vh (i = 1, 2), equipped with the L2(Ω) scalar product. Eh =
Hh0 ×Hh1×Hh2 with norm ‖ (uh, vh, wh ) ‖

2
E = ‖ uh ‖

2 + ‖ vh ‖
2+ ‖wh ‖

2 and Fh

is the subspace of Eh of the elements of the form ( vh, ∂h1 vh, ∂h2 vh ).
We further denote by Hh the space Hh0 equipped with the inner product:

( vh , wh )h = ( vh , wh )Ω +

2
∑

i=1

( ∂hi vh , ∂hi wh )Ω , (2.7)

and its associate norm is denoted ‖ . ‖h .

H E

Hh Eh

✲

✲

✻ph

f

fh

Figure 3: Structure of the discretization analysis

Clearly H and Hh are isomorphic to F and Fh respectively and we let f and fh
denote the bijections of H and Hh into E and Eh ( F = f(H) and Fh = fh(Hh) ).
We further denote by ph the canonical injection of Eh into E. These operators are
represented on Fig. 3.
The motivation for using this space structure is that, while we cannot directly com-
pare the elements of H and Hh, we can use the norm of E to measure the distance
between elements f(v) = ( v, ∂1 v, ∂2 v ) of F and fh(vh) = ( vh, ∂h1 vh, ∂h2 vh ) of
Fh.

Figure 2 (top–left) provides an example of a rectangular element mesh. On the
same figure we also represent the meshes Hh0 and Hhi (i = 1, 2) used to define
the piecewise constant distributions vh and ∂hi vh , i = 1, 2. Each of these meshes
defines cells which are useful for distinct purposes. The elements are denoted by
Ωℓ , ℓ ∈ J ; we similarly denote the cells of the other meshes by Ωℓi , ℓ ∈ Ji , i =
0, 1, 2 respectively. It is of interest to note that each node of the element mesh may
be uniquely associated with a cell of Hh0; we therefore denote them by Nℓ , ℓ ∈ J0.
The mesh size, denoted h, is defined as: h = max(hℓ) , ℓ ∈ J with hℓ = diam(Ωℓ)
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( c )( b )( a )
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Figure 4: Triangular element Ωℓ

2.3. General triangulation

We note that triangular elements may also be used in the PCD discretization. For
this purpose we consider a rectangular triangular element Ωℓ and we define the
sub-meshes, on such element, used to define the representations vh , ∂h1 vh , and
∂h2 .
In this case vh|Ωℓ

assumes 3 values (Fig. 4 (a)) , the representation ∂h1 vh assumes
1 value (Fig. 4 (b))

( ∂h1 vh )Ωℓ
=

vh2 − vh1
h12

and the representation ∂h2 vh assumes 1 value (Fig. 4 (c))

( ∂h2 vh )Ωℓ
=

vh3 − vh1
h13

where hij is the distance between the nodes Ni and Nj ( 1 ≤ i , j ≤ 3 ). Also here
we require the continuity of vh across the element boundaries.

In this way, the method can accommodate any shape of polygonal domains through
the combined use of rectangular elements and triangular elements.

We note that the use of rectangular and triangular elements is not a restriction
of the PCD discretization. Other elements and other forms of sub-meshes on such
elements can be used, see [3]. We note that the property (2.6) is still valid even if
we have combine the rectangular elements and the rectangular triangular elements.
Also this property is still valid even if we introduce a local mesh refinement, see
[9], [10] and [12].

2.4. PCD equations

We now define the discrete problem to be solved in Hh by

find uh ∈ Hh such that ∀ vh ∈ Hh ah(uh, vh ) = (s, vh)Ω (2.8)

where ah(uh , vh ) =
2
∑

i=1

( p(x) ∂hi uh , ∂hi vh )Ω + ( q(x)uh , vh )Ω (2.9)
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The discrete matrix is obtained as usual by introducing a basis (φi) i∈J0
of the space

Hh, expanding the unknown uh in this basis uh =
∑

i∈J0
ξi φi and expressing the

variational condition (2.8) by

ah(uh , φj ) =
∑

i∈J0

ah(φj , φi ) ξi = ( s , φj )Ω for all j ∈ J0

Whence, the linear systemA ξ = b with stiffness matrixA = ( ai j ) = ( ah(φi , φj ) ) ,
right hand side b with components bj = ( s , φj )Ω , j ∈ J0 and unknown vector ξ
with components ξi , i ∈ J0.

It should be stated that the presented method has the advantage of producing the
most compact schemes. Also, it leads to the most sparse stiffness matrix resulting
from the approximate problem.

2.5. Discrete Friedrichs inequalities

Here we present the following lemmas that represent a discrete version of first and
second Friedrichs inequalities and trace inequality for the proposed discretization.

Lemma 2.1. Let Ω be a connected bounded polygonal domain. We assume that
Γ0 = ∂Ω . Then, there exists a constant C > 0, independent of h such that:

‖ vh ‖
2 ≤ C

(

‖ ∂h1 vh ‖
2 + ‖ ∂h2 vh ‖

2
)

∀ vh ∈ Hh (2.10)

Proof: This lemma is a discrete version of the first Friedrichs inequality. We give
its proof on a square (0, a) × (0, a) since we can include all connected bounded
polygonal domain in a square.

l

a

a

0

0

2

0

1

P = P

P P

Q = P

Ω

Figure 5: Example of path

Let the bounded open square (0, a)× (0, a) with sides parallel to the axes x1 and
x2.
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Letting P and Q be two nodes such that P ∈ ∂Ω and Q ∈ Ω ⊂ (0, a)× (0, a) , there
is a path of the form S = {P0, P1, P2, ..., Pl } connecting P0 = P and Pl = Q
(made up of a succession of mesh grid segments, see Fig. 5) such that

vh(Q) =

∫

S

∂hi vh dxi

where i = 1 on horizontal segments and i = 2 on vertical segments.
Subdividing S into S = S1 ∪ S2 where S1 is the union of horizontal segments and
S2 the union of vertical segments, one may write

vh(Q) =

∫

S1

∂h1 vh dx1 +

∫

S2

∂h2 vh dx2

whence,

|vh(Q)| ≤

(∫

S1

dx1

)
1

2

(∫

S1

|∂h1vh|
2dx1

)
1

2

+

(∫

S2

dx2

)
1

2

(∫

S2

|∂h2vh|
2 dx2

)
1

2

Then,

| vh(Q) | ≤ a1/2
(∫

S1

| ∂h1 vh |
2 dx1

)1/2

+ a1/2
(∫

S2

| ∂h2 vh |
2 dx2

)1/2

Therefore ( by (α + β )2 ≤ 2α2 + 2 β2 )

| vh(Q) |2 ≤ 2 a

(∫

S1

| ∂h1 vh |
2 dx1

)

+ 2 a

(∫

S2

| ∂h2 vh |
2 dx2

)

Integrating this inequality on the domain Ω

‖ vh ‖
2 ≤ 2 a2

(

‖ ∂h1 vh ‖
2 + ‖ ∂h2 vh ‖

2
)

which is the inequality (2.10) with C = 2 a2. ✷

This Lemma and this proof are still valid if Γ0 has a positive measure and Γ0 6= ∂Ω.
In such case, we can choose the node P such that P ∈ Γ0 and we prove (2.10) by
the same argument.
In similar way, we can prove the following lemmas which give a discrete Friedrichs
second inequality and a discrete trace inequality for the proposed discretization in
the case where Γ0 has a positive measure, see [9].

Lemma 2.2. Let Ω be a connected bounded polygonal domain. Then, there exists
a constant C > 0, independent of h such that:

‖ vh ‖h ≤ C
(

‖ ∂h1 vh ‖
2 + ‖ ∂h2 vh ‖

2 + ‖ vh ‖
2
Γ

)1/2
∀ vh ∈ Hh (2.11)
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Lemma 2.3. Let Ω be a connected bounded polygonal domain. Then, there exists
a constant C > 0, independent of h such that:

∫

Γ

vh(x)
2 ds = ‖ vh ‖

2
Γ ≤ C ‖ vh ‖

2
h ∀ vh ∈ Hh (2.12)

Using these lemmas we can prove that ah(uh , vh ) is uniformly coercive on Hh.
Therefore, the associated norm

‖ vh ‖ ah
= ( ah( vh , vh ) )

1/2

is uniformly equivalent to the norm of Hh, i.e. there exists positive constants α , β
independent of the mesh size h such that:

∀ vh ∈ Hh α ‖ vh ‖h ≤ ‖ vh ‖ ah
≤ β ‖ vh ‖h .

On the other hand, since p(x) and q(x) are in L∞(Ω), it is clear that ah(uh , vh ) is
uniformly continuous on Hh. Therefore, the problem (2.8) has a unique solution.

3. Convergence analysis

As mentioned in Sect. 2, the error between the solution u ∈ H of (2.1) and the
discrete solution uh ∈ Hh of (2.8) will be measured by the distance between their
representations in E, namely

‖ f(u) − fh(uh) ‖E (3.1)

As usual, the bounds that can be obtained depend on the regularity of u. Here,
we assume that u ∈ H2(Ω). In that case, u is continuous on Ω and we can then
define its interpolant uI in Hh through

uI(Nℓ ) = u(Nℓ) for all nodes Nℓ , ℓ ∈ J0 (3.2)

and rely on interpolation theory in Hh.
More specifically, we can then use the following result proved in [9], [10] and [12].

Lemma 3.1. Under the general assumptions and notation defined above, there
exists a positive constant C independent of the mesh size h such that

∀v ∈ H2(Ω) ‖ f(v) − fh(vI) ‖E ≤ C h ‖ v ‖2,Ω (3.3)

where vI denotes the interpolant of v in Hh.

By this result, it remains to bound the error between uI and the approximate so-
lution uh: ‖ fh(uI) − fh(uh) ‖E = ‖ uI − uh ‖h .
Since the ah-norm is uniformly equivalent to the Hh-norm, we may equivalently
try to bound ‖ uI − uh ‖ah

defined by

‖ uI − uh ‖ah
: = sup

vh ∈ Hh

vh 6= 0

| ah (uI , vh ) − ah (uh , vh ) |

‖ vh ‖h
(3.4)
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= sup
vh ∈ Hh

vh 6= 0

| ah (uI , vh ) − a (u , vh ) |

‖ vh ‖h

because, ∀ vh ∈ Hh ah(uh, vh ) = (s, vh)Ω = a (u , vh )

Since s(x) is still defined on Hh and s(x) is replaced by its value in (2.1). In the
term a (u , vh ), the derivatives of vh are understood in distributions sense. By
introducing some restrictions the expression a (u , vh ) can be defined.
More explicitly:

ah (uI , vh ) − a (u , vh ) = ( p(x) ∂h1 uI , ∂h1 vh )Ω + ( p(x) ∂h2 uI , ∂h2 vh )Ω

− ( p(x) ∂1 u , ∂1 vh )Ω − ( p(x) ∂2 u , ∂2 vh )Ω + ( q(x) (uI − u ), vh )Ω (3.5)

To bound (3.5), we may try to bound separately the terms:
(q(x)(uI − u), vh)Ω and (p(x) ∂hi uI , ∂hi vh)Ω − (p(x) ∂i u , ∂i vh)Ω , (i = 1, 2).

The first term is bounded by using Lemma (3.1). The last terms are most eas-
ily analyzed and bounded on the cells Ωℓi of the Hhi meshes (i = 1, 2). Being
similar in both cases, we consider i = 1, the contribution of an arbitrary cell Ωℓ1

is:

Aℓ
1 = ( p(x) ∂h1 uI , ∂h1 vh )Ωℓ1

− ( p(x) ∂1 u , ∂1 vh )Ωℓ1

= ( p(x) ∂h1 uI , ∂h1 vh )Ωℓ1
−

∫

Eℓ

p(x) ∂1 u ( v2 − v1)ds

where (v2 − v1) is the jump of vh through the vertical median line Eℓ of the cell
Ωℓ1.
It should be noticed that ∂1 vh (respectively ∂2 vh) is reduced to Dirac distribu-
tions taken along the edges of the regions where vh is constant weighted by the
corresponding discontinuity of vh, the vertical median line of the cell Ωℓ1 of the
Hh1 meshes in this case (respectively the horizontal median line of the cell Ωℓ2 of
the Hh2 meshes).
However, in the expression of the error, we now see that ∂1 vh and ∂2 vh appear
with Dirac behaviors across these lines. This is clearly incompatible with the coef-
ficient p(x) that would be discontinuous across the same lines.
To avoid such situations, we must introduce restrictions on the choice of the mesh,
namely that material discontinuities (i. e. discontinuities of p(x)) should never
match grid lines of the Hh0 mesh. The best practical way to ensure this restriction
is to require that material discontinuities be always grid lines of the element mesh.
By introducing this restriction the expression a (u , vh ) is well defined.
Under the mentioned restrictions and the regularity of u the exact solution of (2.1),
we can give the following Theorem, for the proof see [9] and [12].
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Theorem 3.2. Assume that the solution u of (2.1) belongs to H2(Ω). Then, there
exists a constant C > 0 (independent of h), such that:

‖ uI − uh ‖h = ‖ fh(uI) − fh(uh) ‖E ≤ C h ‖ u ‖2,Ω

and
‖ f(u) − fh(uh) ‖E ≤ C h ‖ u ‖2,Ω

where uh is the solution of the problem (2.8).

The result of the previous theorem is still valid if the solution of the problem (2.8)
is only locally H2-regular. Under higher regularity assumptions an error bound of
order O(h2) can be obtained. If the solution u is only in H1(Ω), we can still prove
the convergence of uh to u, see [9] and [12].

4. Application: Elasticity problem

We consider the boundary value problem: find u = (u1, u2 ) in (H1(Ω))2 which
satisfies the following equation in the domain Ω.

− µ ∆u(x) − (λ + µ ) grad ( div u(x) ) = s(x) in Ω (4.1)

u(x) = 0 on Γ0 (4.2)

n · ∇u(x) = 0 on Γ1 (4.3)

where n denotes the unit normal to Γ = ∂Ω and Γ = Γ0 ∪ Γ1. We assume that
µ and λ are two constants such that µ ≥ µ0 > 0 , λ > 0 , s = ( s1, s2 ) in
(L2(Ω))2.
We assume that this problem is well posed and has a unique solution in H =
(H1

Γ0
(Ω))2 equipped with the product norm:

∀ v = ( v1, v2 ) ∈ H , ‖v ‖21 = ‖ v1 ‖
2
1 + ‖ v2 ‖

2
1

The variational formulation of this problem can be written:

find u ∈ H such that ∀ v ∈ H : a(u, v ) = s(v) (4.4)

where

a(u, v ) =

∫

Ω

[λdiv u(x) div v(x) + 2µ

2
∑

i,j=1

ǫi,j(u)(x) ǫi,j(v)(x) ] dx (4.5)

s(v) =

∫

Ω

s(x)v(x) dx =
2
∑

i=1

∫

Ω

si(x) vi(x) dx (4.6)

ǫi,j(u) =
1

2

(

∂ ui

∂ xj
+

∂ uj

∂ xi

)

, 1 ≤ i , j ≤ 2
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Also here we use the same discretization technique to define an approximate prob-
lem of (4.4). The space Hh0 is used to define the representation for each compo-
nent vi (i = 1, 2) of v. The space Hh1 (respectively Hh2) is used to define the
representation for the partial derivatives components ∂1vi (i = 1, 2) (respectively
∂2vi (i = 1, 2)).
For this application (elasticity problem), the discrete space Hh is the space Hh0 ×
Hh0 equipped with the norm:

∀ vh = ( v1h, v
2
h ) ∈ Hh , ‖vh ‖

2
h = ‖ v1h ‖

2
h + ‖ v2h ‖

2
h

We now define the approximate problem to be solved in Hh by:

find uh ∈ Hh such that ∀ vh ∈ Hh : ah(uh, vh ) = s(vh) (4.7)

where

ah(uh,vh) =

∫

Ω

λ

(

2
∑

i=1

∂hiu
i
h

)(

2
∑

i=1

∂hiv
i
h

)

dx

+ 2µ

∫

Ω





2
∑

i,j=1

ǫhi,j(uh)(x)ǫ
h
i,j(vh)(x)



 dx (4.8)

ǫhi,j (uh) =
1

2

(

∂hj u
i
h + ∂hi u

j
h

)

, 1 ≤ i , j ≤ 2 ,

and s(vh) is still defined by (4.6).

Also here this discretization technique leads to the most sparse stiffness matrix
from the approximate problem (4.7).
By the same analysis as in the previous section, we can bound the error between
u = (u1, u2 ) the exact solution of (4.4) and uh = (u1

h , u
2
h ) the exact solution of

(4.7). Then, we can write the following error estimate:

‖ f(u1) − fh(u
1
h) ‖E ≤ C h ‖ u1 ‖2 and ‖ f(u2) − fh(u

2
h) ‖E ≤ C h ‖ u2 ‖2

5. Numerical experiments

In this section we present experimental results concerning the PCD discretiza-
tion. We consider the domain Ω as the unit square ]0, 1[×]0, 1[. We denote by
A the stiffness matrix arising from the approximate problem (2.8), uh denotes its
solution and N denotes the number of unknowns. u is the exact solution of (2.1)
and uI its interpolant in Hh . We consider the following error estimators: the
relative L2–error εr0 and the relative H1–error εr1 , defined by:

εr0 =
‖ u − uh ‖0

‖ u ‖0
; εr1 =

| (uI − uh )
t
A (uI − uh )|

1/2

‖ uI ‖h
=

‖ uI − uh ‖h
‖ uI ‖h
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We consider the problem:

−div(∇u(x, y)) = s(x, y) in Ω and u(x, y) = 0 on ∂ Ω .

We consider 3 examples, in the first one (respectively the second) we choose the
source term s(x, y) such that the exact solution is u1(x, y) = x(x − 1)y(y − 1)
(respectively u2(x, y)), the results of this example are presented in Table 1 (re-
spectively Table 2), where

u2(x, y) =

(

1

1 + (2 x− 1 )2
−

1

2

)(

1

1 + (2 y − 1 )2
−

1

2

)

In Table 3 we present the results of the third example where the exact solution is:
u3(x, y) = x(1 − x)y(1 − y)β(x, y) ,
where β(x, y) = exp(−100 { (x− 0.5)2 + (y − 0.5)2 } ) .
This solution has a sharp peak in the point (0.5, 0.5) and varies much more rapidly
in Ω1 = [ 1/4 , 3/4 ]× [ 1/4 , 3/4 ] than the remaining part of Ω.

h−1 N εr0 εr1
8 49 1.908 ×10−2 1.931 ×10−2

16 225 4.819 ×10−3 4.891 ×10−3

32 961 1.207 ×10−3 1.226 ×10−3

64 3969 3.021 ×10−4 3.069 ×10−4

128 16129 7.554 ×10−5 7.674 ×10−5

256 65025 1.888 ×10−5 1.918 ×10−5

Table 1: Results of the first example

h−1 N εr0 εr1
8 49 3.066 ×10−2 3.471 ×10−2

16 225 7.624 ×10−3 8.646 ×10−3

32 961 1.903 ×10−3 2.159 ×10−3

64 3969 4.756 ×10−4 5.397 ×10−4

128 16129 1.197 ×10−4 1.249 ×10−4

256 65025 2.972 ×10−5 3.143 ×10−5

Table 2: Results of the second example
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h−1 N εr0 εr1
8 49 1.005 0.9599
16 225 0.4231 0.5668
32 961 0.2219 0.3094
64 3969 0.1122 0.1582
128 16129 5.631 ×10−2 7.954 ×10−2

256 65025 2.817 ×10−2 3.982 ×10−2

Table 3: Results of the third example

From Tables 1–3 we observe a monotonic improvement of the accuracy in both
error estimators εr0 and εr1, they decrease when N increases.

From Table 1–2, we observe that εr0 and εr1 are reduced by a factor of 4 when
the mesh size is reduced by a factor of 2. Then, we have an O(h2) convergence
rate, for the both norms, since we have a very smooth solutions. That proves,
under higher regularity assumption, the presented method has the standard O(h2)
convergence rate.
In the third example (Table 3), We observe that εr0 and εr1 are reduced by a factor
of 2 when the mesh size is reduced by a factor of 2. Since the solution u3(x, y) has
a sharp peak and an important variation in Ω1 than the remaining part of Ω, the
presented method has only an O(h) convergence rate.
For the three examples, our numerical results are in agreement with the theoretical
results given in Sect. 3.

We can improve the numerical results for the example 3 by introducing a local
mesh refinement without slave nodes which does not raise new complexity, see [9],
[11] and [12]. Furthermore, the PCD method can accommodate any shape of the
domain by using triangular elements and still produces a reduced size of the ap-
proximate problem.
More explicitly, in Table 3 we must have an uniform mesh with 65025 nodes to get
εr0 = 2.817×10−2 and the local L2-error around the point (0.5, 0.5) is 3.092×10−2.
With a local mesh refinement we get for εr0 = 2.434 × 10−2 only with the use of
28545 nodes and the local L2-error around the point (0.5, 0.5) is 7.547× 10−4. For
more numerical tests and for the best local refinement strategy, we refer to [9], [11]
and [13].

We illustrate on Fig. 6 an example of general triangulation of a polygonal do-
main Ω by combining rectangular elements, triangular elements and local mesh
refinement.
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Figure 6: General triangulation of the domain Ω

6. Concluding remarks

The main issue of the present work is the presentation of a BVP discretization
method on polygonal domain. It is based on the use of piecewise constant distri-
butions to represent the unknown distribution as well as its derivatives on distinct
meshes. The PCD method has the advantage of producing the most sparse stiffness
matrix resulting from the approximate problem, and has the standard first order
estimate under the H2–regularity of the exact solution. The method is presented in
the case of the diffusion equation but it can be applied in the other cases (elasticity
problem for example), see [9] and [10]. We note that, with the PCD method we
can introduce a local mesh refinement without slave nodes and it is still producing
the most sparse stiffness matrix, see [9], [11], [12] and [13]. This local refinement
improves the accuracy of the approximate solution without additional difficulties.
Also, we note that we can combine the use of local mesh refinement and triangular
elements in order to be able to follow any shape on the domain Ω and to reduce
the size of the approximate problem.
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