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New Forms of µ-Compactness With Respect to Hereditary Classes
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abstract: A hereditary class on a set X is a nonempty collection of subsets
closed under heredity. The aim of this paper is to introduce and study strong forms
of µ-compactness in generalized topological spaces with respect to a hereditary class,
called SµH-compactness and S− SµH-compactness. Also several of their properties
are presented. Finally some effects of various kinds of functions on them are studied.
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1. Introduction

This work is developed around the concept of µ-compactness with respect a
hereditary class which was introduced by Carpintero, Rosas, Salas-Brown and
Sanabria in [4]. In this research, we use the notions of generalized topology and
hereditary class introduced by Császár in [1] and [2], respectively, in order to de-
fine and characterize the SµH-compactness and S−SµH-compactness spaces. Also
some properties of these spaces are obtained and the behavior of these spaces under
certain kinds of functions also is investigated. The strategy of using generalized
topologies and hereditary classes to extend classical topological concepts have been
used by many authors such as [2], [6], [9], [14], among others..

2. Preliminaries

Let X be a non-empty set and 2X denote the power set of X . We call a class
µ ⊆ 2X a generalized topology [1] (briefly, GT) if ∅ ∈ µ and arbitrary union of
elements of µ belongs to µ. A set X with a GT is called a generalized topological
space (briefly, GTS) and is denoted by (X,µ). For a GTS (X,µ), the elements of µ
are called µ-open sets and the complement of µ-open sets are called µ-closed sets.
For A ⊆ X , we denote by cµ(A) the intersection of all µ-closed sets containing A,
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i.e., the smallest µ-closed set containing A and by iµ(A) the union of all µ-open
sets contained in A, i.e., the largest µ-open set contained in A (see [1], [3]). Let
A ⊂ X . A family C of subsets of X is called a µ-covering of A if C is a covering of A
by µ-open sets [5]. A subset A of X is said to be µ-compact if for every µ-covering
{Vα : α ∈ Λ} of A there exists a finite subfamily {Vα : α ∈ Λ0} that also covers A.
X is said to be µ-compact if X is µ-compact as a subset [5].

A nonempty family H of subsets of X is called a hereditary class [2] if A ∈ H

and B ⊂ A imply that B ∈ H. Given a generalized topological space (X,µ)
with a hereditary class H, for a subset A of X , the generalized local function of
A with respect to H and µ [2] is defined as follows: A∗ = {x ∈ X : U ∩ A /∈
H for all U ∈ µx}, where µx = {U : x ∈ U and U ∈ µ}. And for A a subset
of X , is defined: c∗µ(A) = A ∪ A∗. The family µ∗ = {A ⊂ X : X \A = c⋆µ(X \A)}
is a GT on X . The elements of µ∗ are called µ∗-open and the complement of a
µ∗-open set is called µ∗-closed set. It is clear that a subset A is µ∗-closed if and
only if A∗ ⊂ A. If the hereditary class H satisfies the additional condition: if
A,B ∈ H implies A∪B ∈ H, then H is called an ideal on X [7]. We call (X,µ,H)
a hereditary generalized topological space and briefly we denote it by HGTS. If
(X,µ,H) is a HGTS, the set B = {V \ H : V ∈ µ and H ∈ H} is a base for
a GT µ∗, finer than µ [2]. If there is no confusion, we simply write A∗ instead of
A∗(H, µ).

Definition 2.1. [1] Let (X,µ) and (Y, ν) be two GTS’s, then a function f :
(X,µ) → (Y, ν) is said to be (µ, ν)-continuous if U ∈ ν implies f−1(U) ∈ µ.

Definition 2.2. [13] A function f : (X,µ) → (Y, ν) is (µ, ν)-open (or µ-open) if
U ∈ µ implies f(U) ∈ ν.

Definition 2.3. Let (X,µ) be a GTS. Then a subset A of X is called a µ-
generalized closed set (in short, µg-closed set) [10] if cµ(A) ⊆ U whenever A ⊆ U
where U is µ-open in X. The complement of a µg-closed set is called a µg-open
set.

Theorem 2.4. [2] Let (X,µ) be a GTS and H be a hereditary class on X and A
a subset of X, then A∗ ⊂ cµ(A).

Theorem 2.5. [2] Let (X,µ) be a GTS, H a hereditary class on X and A be a
subset of X. If A is µ∗-open, then for each x ∈ A there exist U ∈ µx and H ∈ H

such that x ∈ U \H ⊂ A.

3. SµH-Compact Spaces

We recall that a subset A of a HGTS (X,µ,H) is said to be µH-compact [4],
if for every µ-open cover {Vα : α ∈ Λ} of A by elements of µ, there exists a finite
subset Λ0 of Λ such that A\

⋃

α∈Λ0

Vα ∈ H. The HGTS (X,µ,H) is said to be

µH-compact if X is µH- compact as a subset.

Definition 3.1. Let (X,µ) be a GTS and H be a hereditary class on X. A subset
A of X is said to be strong µH-compact (briefly SµH-compact) if for every family
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{Vα : α ∈ Λ} of µ-open subsets of X with A \
⋃

α∈Λ

Vα ∈ H then there exists a finite

subset Λ0 of Λ such that A\
⋃

α∈Λ0

Vα ∈ H. The HGTS (X,µ,H) is said to be strong

µH-compact (briefly SµH-compact) if X is SµH-compact as a subset.

Remark 3.1.

1. It is clear that (X,µ) is µ-compact if and only if (X,µ, {φ}) is Sµ{φ}-
compact.

2. If (X,µ,H) is SµH-compact then (X,µ,H) is µH-compact. The converse
is not true as shown by the following example.

Example 3.2. Let X = [1, 2], µ = {X ∩ (a, b) : a < b, a, b ∈ R}, and H =
{φ, {1}, {2}}. Observe that (X,µ) is µ-compact(resp. µH-compact) but (X,µ,H)
is not SµH-compact. In fact, if Vn =

(

1 + 1
n
, 2

]

, for all integer number n ≥ 1, then
X \

⋃

n≥1

Vn = {1} ∈ H. If we take N = max{n1, ..., nk}, k ∈ Z+ and n1, n2, ..., nk

are integer numbers then X \
k
⋃

i=1

Vni
= X \

(

1 + 1
N
, 2

]

=
[

1, 1 + 1
N

]

/∈ H.

Definition 3.3. A subset A of a HGTS (X,µ,H) is said to be µHg-closed if for
every U ∈ µ with A \ U ∈ H then cµ(A) ⊆ U .

Remark 3.2. It is clear that A is µ{φ}g-closed if and only if A is µg-closed.
We note that if A is µHg-closed then A is µg-closed. The converse is not true
as shown by the following examples.

Example 3.4. Let X = R and µ = {φ,R} ∪ {(r,+∞) : r ∈ R}. The hereditary
class on R,

H = {B : B ⊆ Q ∩ (0,+∞) or B ⊆ Q ∩ (−∞, 0]}.

If A = Q, then:

1. A is µg-closed because if U ∈ µ and A ⊆ U , then U = R and so cµ(A) = R ⊆
U ;

2. A is not µHg-closed since A \ (0,+∞) ∈ H, but cµ(A) = R 6⊆ (0,+∞).

Example 3.5. If X = {a, b, c, d}, µ = {φ, {a}, {b}, {a, b}, X}, H = {φ, {a}, {b},
{a, b}} and A = {c}, then A is µHg-closed because if U ∈ µ and A \ U ∈ H, we
have that A ⊆ U , and so U = X and cµ(A) ⊆ U .

Proposition 3.6. Let (X,µ,H) be a HGTS and B be a base for µ. Then the
following are equivalent:

1. (X,µ,H) is SµH-compact;

2. for any family {Vα : α ∈ Λ} of µ-open sets in B, if X \
⋃

α∈Λ

Vα ∈ H then

there exists Λ0 ⊆ Λ, finite, with X \
⋃

α∈Λ0

Vα ∈ H.
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Proof: (1) ⇒ (2): It is obvious.
(2) ⇒ (1): Let {Vα : α ∈ Λ} be a family of non-empty µ-open subsets of X such
that X \

⋃

α∈Λ

Vα ∈ H. For each α ∈ Λ there exists a family {Bαβ : β ∈ Λα} ⊆ B

such that Vα =
⋃

β∈Λα

Bαβ . Given that X \
⋃

α∈Λ

Vα = X \
⋃

α∈Λ

(
⋃

β∈Λα

Bαβ) ∈ H

and by (2) there exist Bα1β1
, Bα2β2

, ..., Bαkβk
such that X \

k
⋃

i=1

Bαiβi
∈ H. But

X \
k
⋃

i=1

Vαi
⊆ X \

k
⋃

i=1

Bαiβi
and so X \

k
⋃

i=1

Vαi
∈ H which implies that (X,µ,H) is

SµH-compact. ✷

Theorem 3.7. If (X,µ,H) is a HGTS then the following are equivalent:

1. (X,µ,H) is SµH-compact;

2. For any family {Fα : α ∈ Λ} of µ-closed subsets of X such that
∩{Fα : α ∈ Λ} ∈ H, there exists a finite subset Λ0 of Λ such that ∩{Fα : α ∈
Λ0} ∈ H.

Proof: (1) ⇒ (2): Let {Fα : α ∈ Λ} be a family of µ-closed subsets of X such that
∩{Fα : α ∈ Λ} ∈ H. Then {X \Fα : α ∈ Λ} is a family of µ-open subsets of X . Let
∩{Fα : α ∈ Λ} = H ∈ H. Then X \ ∩{Fα : α ∈ Λ} = ∪{X \ Fα : α ∈ Λ} = X \H .
By (1) since (X,µ,H) is SµH-compact, X \ ∪{X \ Fα : α ∈ Λ} ∈ H and there
exists a finite subset Λ0 of Λ, such that X \ ∪{X \ Fα : α ∈ Λ0} ∈ H. This implies
that ∩{Fα : α ∈ Λ0} ∈ H.
(2) ⇒ (1): Let {Vα : α ∈ Λ} be any family of µ-open subsets of X such that
X \

⋃

α∈Λ

Vα ∈ H. Then {X \ Vα : α ∈ Λ} is a family of µ-closed subsets of X and

∩{X \Vα : α ∈ Λ} ∈ H. Thus by (2) there exists a finite subset Λ0 of Λ such that,
∩{X \ Vα : α ∈ Λ0} ∈ H, which implies X \ ∪{Vα : α ∈ Λ0} ∈ H. This shows that
(X,µ,H) is SµH-compact. ✷

Proposition 3.8. If (X,µ,H) is a HGTS and H is an ideal, then the following
are equivalent:

1. (X,µ,H) is SµH-compact;

2. (X,µ∗,H) is SµH-compact.

Proof: (1) ⇒ (2): The setB = {U\H : U ∈ µ and H ∈ H} is a base for µ∗. Let
{Vα : α ∈ Λ} be a family of µ∗-open subsets of X subsets of X and X \

⋃

α∈Λ

Vα ∈ H.

For some x ∈ X , there exists αx ∈ Λ such that x ∈ Vαx
. Then there exist Uαx

∈ µx

and Hαx
∈ H such that x ∈ Uαx

\Hαx
⊂ Vαx

. Now {Uαx
: αx ∈ Λ} is a family of

µ-open subsets of X . Since X \
⋃

αx∈Λ

Uαx
∈ H then there exists a finite subset Λ0

of Λ such that X \
⋃

αx∈Λ0

Uαx
= H and H ∈ H. Hence, H ∪

⋃

αx∈Λ0

Hαx
∈ H.
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Observe that X \
⋃

αx∈Λ0

Vαx
⊆ H ∪

⋃

αx∈Λ0

Hαx
∈ H. By the heredity property of

the class H we have X \
⋃

αx∈Λ0

Vαx
∈ H and therefore (X,µ∗,H) is SµH-compact.

(2) ⇒ (1): It is obvious. ✷

Next we study the behavior of some types of subsets of a SµH-compact set of
X .

Theorem 3.9. If (X,µ,H) is SµH-compact and A ⊆ X is µHg-closed, then A is
SµH-compact.

Proof: Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that A \
⋃

α∈Λ

Vα ∈ H. Since A is is µHg-closed, cµ(A) ⊆
⋃

α∈Λ

Vα. Then (X \ cµ(A)) ∪
⋃

α∈Λ

Vα is a µ-covering of X and so X \ [(X \ cµ(A)) ∪ (
⋃

α∈Λ

Vα)] = ∅ ∈ H. Given

that X is SµH-compact, there exists a finite subset Λ0 of Λ, such that X \
[(X \ cµ(A)) ∪ (

⋃

α∈Λ0

Vα)] ∈ H. Since

X \ [X \ cµ(A) ∪ (
⋃

α∈Λ0

Vα)] = cµ(A) ∩ (X \
⋃

α∈Λ0

Vα)]

⊃ A ∩ (X \
⋃

α∈Λ0

Vα) = A \
⋃

α∈Λ0

Vα,

which implies that A \
⋃

α∈Λ0

Vα ∈ H. Thus A is SµH-compact. ✷

Theorem 3.10. If A and B are SµH-compact subsets of a HGTS (X,µ,H), and
H is an ideal then A ∪B is SµH-compact.

Proof: Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that A ∪ B \
⋃

α∈Λ

Vα ∈ H. Since, A\
⋃

α∈Λ

Vα ⊆ A∪B\
⋃

α∈Λ

Vα and B\
⋃

α∈Λ

Vα ⊆ A∪B\
⋃

α∈Λ

Vα then

A \
⋃

α∈Λ

Vα ∈ H and B \
⋃

α∈Λ

Vα ∈ H. Since A and B are SµH-compact, then there

exist finite subsets Λ0 and Λ1 of Λ with A\
⋃

α∈Λ0

Vα ∈ H and B \
⋃

α∈Λ1

Vα ∈ H. This

implies that A\
⋃

α∈Λ0∪Λ1

Vα ∈ H and B \
⋃

α∈Λ0∪Λ1

Vα ∈ H and since H is an ideal we

have that (A \
⋃

α∈Λ0∪Λ1

Vα)∪ (B \
⋃

α∈Λ0∪Λ1

Vα) ∈ H. Thus A∪B \
⋃

α∈Λ0∪Λ1

Vα ∈ H.

So A ∪B is SµH-compact. ✷

The following example shows that the previous theorem does not hold when H

is just a hereditary class, not an ideal.

Example 3.11. Let R be the set of real numbers, µ the usual topology, H = {A ⊂
R : A ⊂ (1, 2) or A ⊂ (2, 3)} and if A = (1, 2) and B = (2, 3), then:
(1) It is clear that A = (1, 2) and B = (2, 3) are SµH-compact subsets.
(2) A ∪ B is not SµH-compact if {(1 + 1

n
, 3 − 1

n
) : n ∈ Z+} is a family of µ-open
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subsets of X, A ∪ B \
∞
⋃

n=1

(

1 + 1
n
, 3− 1

n

)

= A ∪ B \ (1, 3) = ∅ ∈ H, but if we

choose a finite set n1, ..., nk and take N = max{n1, ..., nk}, follows that A ∪ B \
k
⋃

i=1

(

1 + 1
ni
, 3− 1

ni

)

= A∪B\
(

1 + 1
N
, 3− 1

N

)

=
(

1, 1 + 1
N

]

∪
[

3− 1
N
, 3

)

/∈ H.

Theorem 3.12. Let (X,µ,H) be a HGTS and A ⊆ X. If A \ U ∈ H for every
U ∈ µ then there exists B ⊆ X such that B is SµH-compact, A ⊆ B and B\U ∈ H.
Then A is SµH-compact.

Proof: Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that A\
⋃

α∈Λ

Vα ∈

H. There exists B ⊆ X such that B is SµH-compact, A ⊆ B and B \
⋃

α∈Λ

Vα ∈ H.

There exists a finite subset Λ0 of Λ with B \
⋃

α∈Λ0

Vα ∈ H. Since, A \
⋃

α∈Λ0

Vα ⊆

B \
⋃

α∈Λ0

Vα we have that A \
⋃

α∈Λ0

Vα ∈ H. ✷

Theorem 3.13. If (X,µ,H) is a HGTS, A ⊆ B ⊆ X, B ⊆ cµ(A) and A is
µHg-closed then the following statements equivalent:

1. A is SµH-compact;

2. B is SµH-compact.

Proof: (1) ⇒ (2): Suppose that A is SµH-compact and {Vα : α ∈ Λ} be a family
of µ-open subsets of X such that B \

⋃

α∈Λ

Vα ∈ H. By the heredity property,

A \
⋃

α∈Λ

Vα ∈ H and given that A is SµH-compact there exists Λ0 ⊆ Λ, finite,

such that A \
⋃

α∈Λ0

Vα ∈ H. Since A is µHg-closed, cµ(A) ⊆
⋃

α∈Λ0

Vα and so

cµ(A) \
⋃

α∈Λ0

Vα ∈ H. This implies that B \
⋃

α∈Λ0

Vα ∈ H.

(2) ⇒ (1): Suppose that B is SµH-compact and {Vα : α ∈ Λ} be a family of µ-open
subsets of X such A \

⋃

α∈Λ

Vα ∈ H. Given that A is µHg-closed, cµ(A) \
⋃

α∈Λ

Vα =

∅ ∈ H and this implies B \
⋃

α∈Λ

Vα ∈ H. Since B is SµH-compact, there exits a

finite subset Λ0 of Λ such that B \
⋃

α∈Λ0

Vα ∈ H. Hence A \
⋃

α∈Λ0

Vα ∈ H. ✷

A GTS (X,µ) is said to be µ-Hausdroff [11] for each pair of distinct points x
and y in X , there exist µ-open sets Ux and Vy containing x and y, respectively,
such that Ux ∩ Vy = ∅.

Theorem 3.14. [8] Every µH-compact subset of a µ-Hausdroff HGTS (X,µ,H)
is µ∗-closed.

The following theorem is consequence of the above theorem
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Theorem 3.15. Let (X,µ,H) be a HGTS such that (X,µ) is µ-Hausdroff. If A
is a SµH-compact subset of X, then A is closed in (X,µ∗).

Now we study the behavior of SµH-compactness under certain types of func-
tions.

Theorem 3.16. If (X,µ,H) is SµH-compact, f : (X,µ) → (Y, ν) is a (µ, ν)-
continuous function and if G = {B ⊆ Y : f−1(B) ∈ H} then:

1. G is a hereditary class on Y .

2. (Y, ν,G) is SνG-compact.

Proof: (1) Suppose that A ⊆ B ⊆ Y and B ∈ G . Since f−1(A) ⊆ f−1(B) ∈ H,
then f−1(A) ∈ H, and so A ∈ G.
(2) Let {Vα : α ∈ Λ} be a family of ν-open subsets of Y such that Y \

⋃

α∈Λ

Vα ∈ G.

Since X \
⋃

α∈Λ

f−1 (Vα) = f−1(Y \
⋃

α∈Λ

Vα) ∈ H and (X,µ,H) is SµH-compact,

there exists a finite subset Λ0 of Λ with f−1(Y \
⋃

α∈Λ0

Vα) = X \
⋃

α∈Λ0

f−1 (Vα) ∈ H.

Thus Y \
⋃

α∈Λ0

Vα ∈ G. ✷

The following lemma is very useful in studying the preservation of SµH-compact
by certain classes of functions.

Lemma 3.17. [4] Let f : (X,µ) → (Y, ν) be a function. If H is a hereditary class
on X, then f(H) = {f(H) : H ∈ H} is a hereditary class on Y .

Theorem 3.18. If (X,µ,H) is SµH-compact and f : (X,µ) → (Y, ν) is a bijective
(µ, ν)-continuous function, then (Y, ν, f(H)) is Sνf(H)-compact.

Proof: Let {Vα : α ∈ Λ} be a family of ν-open subsets of Y such that Y \
⋃

α∈Λ

Vα ∈

f(H). There exists H ∈ H with Y \
⋃

α∈Λ

Vα = f(H). Then H = f−1(f(H)) =

X \
⋃

α∈Λ

f−1 (Vα) ∈ H. Given that (X,µ,H) is SµH-compact, there exists a finite

subset Λ0 of Λ, with f−1(Y \
⋃

α∈Λ0

Vα) = X\
⋃

α∈Λ0

f−1(Vα) ∈ H. Thus Y \
⋃

α∈Λ0

Vα =

f(f−1(Y \
⋃

α∈Λ0

Vα)) ∈ f(H). ✷

Corollary 3.19. If f : (X,µ) → (Y, ν) is a bijective µ-open function and (Y, ν,G)
is SνG- compact, then (X,µ, f−1(G)) is Sµf−1(G)-compact.

Proof: Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that X \
⋃

α∈Λ

Vα ∈

f−1(G). There exists G ∈ G with X \
⋃

α∈Λ

Vα = f−1 (G). Then Y \
⋃

α∈Λ

f (Vα) =
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f(f−1(G)) = G ∈ G, and given that (Y, ν,G) is SνG-compact then there exists a
finite subset Λ0 of Λ with f(X \

⋃

α∈Λ0

Vα) = Y \
⋃

α∈Λ0

f (Vα) ∈ G. This implies that

X \
⋃

α∈Λ0

Vα ∈ f−1 (G). ✷

4. S− SµH-Compact Spaces

In this section we present a strong form of SµH-compact. Next, we study some
properties of these spaces.

Definition 4.1. If (X,µ,H) is a HGTS and A ⊆ X, A is said to be strong SµH-
compact (briefly S − SµH-compact) if for every family {Vα : α ∈ Λ} of µ-open
subsets of X with A \

⋃

α∈Λ

Vα ∈ H then there exists a finite subset Λ0 of Λ, such

that A ⊆
⋃

α∈Λ0

Vα. The HGTS (X,µ,H) is said to be S − SµH-compact if X is

S− SµH-compact.

Clearly, the following diagram follows immediately from the definitions and
facts.

ր SµH − compact ց
S− SµH − compact µH − compact

ց µ− compact ր

Remark 4.1. We note that if (X,µ,H) is a HGTS and (X,µ∗,H) is S− SµH-
compact, then (X,µ,H) is S−SµH-compact, and that (X,µ,H) is S−SµH-
compact if and only if for any family {Fα : α ∈ Λ} of µ-closed subsets of X ,
if

⋂

α∈Λ

Fα ∈ H then there exists a finite subset Λ0 ⊂ Λ such that
⋂

α∈Λ0

Fα = ∅.

Remark 4.2.

1. It is clear that the GT (X,µ) is µ-compact if and only if (X,µ, {φ}) is
S− Sµ{φ}-compact.

2. If (X,µ,H) is S − SµH-compact then (X,µ,H) is SµH-compact, and
(X,µ) is µ-compact. The converse is not true as shown by the following
example.

Example 4.2. Consider X = (0, 1), µ is the usual topology, and
H = {A : A ⊆ (0, 1)} then (X,µ) is not µ-compact (resp. S − SµH-compact),
but (X,µ,H) is, evidently, SµH-compact.

Remark 4.3. SµH-compactness and µ-compactness are independent of each
other as examples 3.1 and 4.1 show.

Proposition 4.3. Let (X,µ,H) be a HGTS and B is a base for
µ.
Then the following are equivalent:
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1. (X,µ,H) is S− SµH-compact;

2. for any family {Vα : α ∈ Λ} of µ-open sets in B, if X \
⋃

α∈Λ

Vα ∈ H then

there exists a finite subset Λ0 ⊆ Λ such that X =
⋃

α∈Λ0

Vα.

Proof: (1) ⇒ (2): It is obvious.
(2) ⇒ (1): Let {Vα : α ∈ Λ} be a family of non-empty µ-open subsets of X such
that X \

⋃

α∈Λ

Vα ∈ H. For all α ∈ Λ there exists a family {Bαβ : β ∈ Λα} ⊆ B such

that Vα =
⋃

β∈Λα

Bαβ . Given that X \
⋃

α∈Λ

Vα = X \
⋃

α∈Λ

(
⋃

β∈Λα

Bαβ) ∈ H and by (2)

there exist Bα1β1
, Bα2β2

, ..., Bαkβk
such that X =

k
⋃

i=1

Bαiβi
. But X =

k
⋃

i=1

Bαiβi
⊆

k
⋃

i=1

Vαi
and so X =

k
⋃

i=1

Vαi
which implies that (X,µ,H) is S− SµH-compact.

✷

Next we study the behavior of some types of subsets of a S−SµH-compact set
of X .

Theorem 4.4. Every µHg-closed subset of a S− SµH-compact space (X,µ,H) is
S− SµH-compact.

Proof: Let A be any µHg-closed subset of (X,µ,H) and {Vα : α ∈ Λ} be a
family of µ-open subsets of X such that A \

⋃

α∈Λ

Vα ∈ H. Since A is µHg-closed,

cµ(A) ⊆
⋃

α∈Λ

Vα. Then (X \ cµ(A)) ∪ (
⋃

α∈Λ

Vα) is a µ-covering of X and so X \

[X \ cµ(A) ∪ (
⋃

α∈Λ

Vα)] = ∅ ∈ H. Given that X is S− SµH-compact there exists s

finite subset Λ0 of Λ such that X = (X \ cµ(A) ∪
⋃

α∈Λ0

Vα ). Then A = A ∩ [(X \

cµ(A)) ∪
⋃

α∈Λ0

Vα] = A ∩
⋃

α∈Λ0

Vα ⊆
⋃

α∈Λ0

Vα. ✷

Theorem 4.5. If A and B are S − SµH-compact subsets of a HGTS (X,µ,H),
then A ∪B is S− SµH-compact.

Proof: Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that A ∪ B \
⋃

α∈Λ

Vα ∈ H. Since, A \
⋃

α∈Λ

Vα ⊆ A ∪B \
⋃

α∈Λ

Vα and B \
⋃

α∈Λ

Vα ⊆ A ∪B \
⋃

α∈Λ

Vα

then A\
⋃

α∈Λ

Vα ∈ H and B\
⋃

α∈Λ

Vα ∈ H and so there exist finite subsets Λ0 and Λ1

of Λ such that A ⊆
⋃

α∈Λ0

Vα and B ⊆
⋃

α∈Λ1

Vα. This implies that A ⊆
⋃

α∈Λ0∪Λ1

Vα

and B ⊆
⋃

α∈Λ0∪Λ1

Vα and so A∪B ⊆
⋃

α∈Λ0∪Λ1

Vα. Hence A∪B is S−SµH-compact.

✷
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Theorem 4.6. If (X,µ,H) is a HGTS, A ⊆ B ⊆ X and B ⊆ cµ(A) then the
following statements hold.

1. If A is µg-closed and S− SµH-compact, then B is S− SµH-compact;

2. If A is µHg-closed and B is S− SµH-compact, then A is S− SµH-compact.

Proof: (1) Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that B \
⋃

α∈Λ

Vα ∈ H. Since, A\
⋃

α∈Λ

Vα ∈ H and A is S−SµH-compact, there exists a finite

subset Λ0 of Λ such that A ⊆
⋃

α∈Λ0

Vα. Since A is µg-closed, cµ(A) ⊆
⋃

α∈Λ0

Vα and

this implies B ⊆
⋃

α∈Λ0

Vα.

(2) Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that A \
⋃

α∈Λ

Vα ∈ H.

Given that A is µHg-closed, cµ(A) \
⋃

α∈Λ

Vα = ∅ ∈ H and this implies B \
⋃

α∈Λ

Vα ∈

H. Since B is S − SµH-compact, there exists a finite subset Λ0 ⊆ Λ such that
B ⊆

⋃

α∈Λ0

Vα. Hence A ⊆
⋃

α∈Λ0

Vα. ✷

Now we study the behavior of S − SµH-compactness under certain types of
functions.

Theorem 4.7. If (X,µ,H) is S − SµH-compact, f : (X,µ) → (Y, ν) is a (µ, ν)-
continuous surjective function and if G = {B ⊆ Y : f−1(B) ∈ H} then (Y, ν,G) is
S− SνG-compact.

Proof: Let {Vα : α ∈ Λ} be a family of ν-open subsets of Y such that Y \
⋃

α∈Λ

Vα ∈

G. Since X \
⋃

α∈Λ

f−1 (Vα) = f−1(Y \
⋃

α∈Λ

Vα) ∈ H and (X,µ,H) is S − SµH-

compact, there exists a finite subset Λ0 of Λ, such that X =
⋃

α∈Λ0

f−1(Vα). Given

that f is surjective we have Y =
⋃

α∈Λ0

Vα. ✷

Theorem 4.8. If (X,µ,H) is S − SµH-compact and f : (X,µ) → (Y, ν) is a
bijective (µ, ν)-continuous function, then (Y, ν, f(H)) is S− Sνf(H)-compact.

Proof: Let {Vα : α ∈ Λ} be a family of ν-open subsets of Y such that Y \
⋃

α∈Λ

Vα ∈

f(H). There exists H ∈ H with Y \
⋃

α∈Λ

Vα = f(H). Then H = f−1(f(H)) =

X\
⋃

α∈Λ

f−1 (Vα) ∈ H. Given that (X,µ,H) is S−SµH-compact, there exists a finite

subset Λ0 of Λ such that X =
⋃

α∈Λ0

f−1(Vα). Since f is surjective, Y =
⋃

α∈Λ0

Vα. ✷

Corollary 4.9. If f : (X,µ) → (Y, ν) is a bijective and µ-open function and
(Y, ν,G) is S− SνG-compact, then (X,µ, f−1(G)) is S− Sµf−1(G)-compact.
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Proof: Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that X \
⋃

α∈Λ

Vα ∈

f−1(G). There exists G ∈ G with X \
⋃

α∈Λ

Vα = f−1 (G). Then Y \
⋃

α∈Λ

f (Vα) =

f(f−1(G)), and given that (Y, ν,G) is S− SνG- compact then there exists a finite
subset Λ0 of Λ with Y =

⋃

α∈Λ0

f (Vα). This implies that X =
⋃

α∈Λ0

Vα. ✷
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2. Császár Á. , Modification of generalized topologies via hereditary classes, Acta Math. Hungar.,
115(1-2) (2007), 29 - 36.
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