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On a Generalization of Prime Submodules of a Module over a
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abstract: Let R be a commutative ring with identity, and n ≥ 1 an integer. A
proper submodule N of an R-module M is called an n-prime submodule if whenever
a1 · · · an+1m ∈ N for some non-units a1, . . . , an+1 ∈ R and m ∈ M , then m ∈ N

or there are n of the ai’s whose product is in (N : M). In this paper, we study
n-prime submodules as a generalization of prime submodules. Among other results,
it is shown that if M is a finitely generated faithful multiplication module over a
Dedekind domain R, then every n-prime submodule of M has the form m1 · · ·mtM

for some maximal ideals m1, . . . , mt of R with 1 ≤ t ≤ n.
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1. Introduction

Throughout this paper all rings are commutative with identity and all modules
are unitary. Also we take R as a commutative ring with identity, U(R) as the set of
unit elements of R, M as an R-module, and n ≥ 1 is a positive integer. A proper
ideal I of a ring R is an n-absorbing ideal of R if whenever a1 · · · an+1 ∈ I for
a1, . . . , an+1 ∈ R, then there are n of the ai’s whose product is in I. It is evident
that a 1-absobing ideal is just a prime ideal. This concept was firstly introduced for
n = 2 by A. Badawi [3], and then it has been studied for any positive integer n by
D. F. Anderson and A. Badawi [1]. The authors generalized this notion to (m,n)-
absorbing ideals with m > n [11]. In fact, these ideals absorb an n-subproduct
of every m-product of elements which lies in I. In this case, (n + 1, n)-absorbing
ideals are just n-absorbing ideals. Moreover, there are several generalizations of
n-absorbing ideals of a ring to submodules of a module (see, for example, [8,10]).
In this paper, we study the notion of an n-prime submodule of a module as a gen-
eralization of a prime submodule.
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Let M be an R-module. A proper submodule N of M is called a prime sub-
module if for r ∈ R, m ∈ M , rm ∈ N implies that r ∈ (N : M) or m ∈ N .
Prime submodules have been introduced by J. Dauns in [4], and then this class
of submodules has been extensively studied by several authors (see, for example,
[5,7]).

Definition 1.1. Let R be a ring, U(R) the set of units of R, M an R-module and
n a positive integer. A proper submodule N of M is called an n-prime submodule
of M if whenever a1 · · ·an+1m ∈ N for a1, . . . , an+1 ∈ R \U(R) and m ∈ M , then
m ∈ N or there are n of the ai’s whose product is in (N : M), where (N : M) =
{r ∈ R | rM ⊆ N}. An ideal I of R is called an n-prime ideal of R if it is an
n-prime submodule of the R-module R.

By this definition, a 1-prime submodule is just a prime submodule. Moreover,
every n-prime ideal is an n-absorbing ideal, but the converse is not true in general
(Example 2.6). It is shown that if R is a non-local PID or a polynomial ring S[X ]
over a domain S, then every n-prime ideal of R is just a prime ideal of R (Theorems
2.8 and 2.12). However, an example of an n-prime ideal of a ring is given which is
not a prime ideal (Example 2.6).
It is shown that every n-prime submodule is primary. Also, if R is a Bézout ring and
M is a faithful multiplication R-module, then every n-prime submodule contains
the nth power of its radical (Theorem 2.4). Moreover it is proved that if M is
a multiplication R-module, then N is an n-prime submodule of M if and only if
(N : M) is an n-prime ideal of R (Corollary 4.6).
It is shown that if N × N ′ is an n-prime submodule of M × M ′, then N and
N ′ are respectively an n-prime submodule of M and M ′. The converse is true if
(N : M) = (N ′ : M ′) (Theorem 3.10). Using this fact, an example of an n-prime
submodule of a module is given which is not prime submodule (Example 3.11).

Finally, we introduce and study AP n-modules. Indeed, an AP n-moduleM has
the property that for each n-absorbing ideal I of R, IM is an n-prime submodule
of M . If R is an AP n-module over itself, then we call it AP n-ring. For example,
every Artin local ring is an AP n-ring for some positive integer n (Theorem 4.8).
Moreover, Noetherian valuation domains are AP n-rings for all positive integer n
(Theorem 4.9). It is shown that every finitely generated faithful multiplication
module over an AP n-ring is an AP n-module (Corollary 4.7).

2. On n-prime submodules

We start with several elementary results.

Theorem 2.1. Let R be a ring, M a non-zero R-module and n be a positive integer.

(1) A proper submodule N of M is an n-prime submodule of M if and only if
whenever a1 · · · atm ∈ N for a1, . . . , at ∈ R \ U(R) and m ∈ M with t > n,
then m ∈ N or there are n of the ai’s whose product is in (N : M).

(2) If N is an n-prime submodule of M , then N is a t-prime submodule of M
for all t ≥ n.
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Proof: The proof is routine, and thus it is omitted. ✷

LetN be a proper submodule of an R-moduleM . If N is an n-prime submodule
of M for some positive integer n, then define ν(N) = min{n | N is an n-prime
submodule of M}; otherwise, set ν(N) = ∞. It is convenient to define ν(M) = 0.
Thus for any submodule N of M , we have ν(N) ∈ N ∪ {0,∞} with ν(N) = 1 if
and only if N is a prime submodule of M and ν(N) = 0 if and only if N = M . So
ν(N) measures, in some sense, how far N is from being a prime submodule of M .
Clearly ω(I) ≤ ν(I), where ω(I) = min{n | I is an n-absorbing ideal of R}.
Lemma 2.2. Let R be a ring, M a non-zero R-module and n a positive integer.
Then the following hold:

(1) A proper submodule N of M is an n-prime submodule if and only if whenever
a1 · · ·an+1K ⊆ N for a1, . . . , an+1 ∈ R \ U(R) and submodule K of M , then
K ⊆ N or there are n of the ai’s whose product is in (N : M).

(2) If a proper submodule N of M is an n-prime submodule of M , then (N : M)
is an n-prime ideal of R and so it is an n-absorbing ideal of R. Moreover
ω(N : M) ≤ ν(N).

Proof: (1) Let N be an n-prime submodule of M and a1 · · · an+1K ⊆ N for
a1, . . . , an+1 ∈ R\U(R) and for a submodule K of M . Let K * N and m ∈ K \N .
Since a1 · · · an+1m ∈ N and N is an n-prime submodule of M , there are n of the
ai’s whose product is in (N : M). Conversely, if the given condition is true for a
submodule N of M , and a1 · · ·an+1m ∈ N for a1, . . . , an+1 ∈ R\U(R) and m ∈ M ,
then it suffices to take K = Rm.
(2) Let a1 · · ·an+1r ∈ (N : M) for a1, . . . , an+1 ∈ R \ U(R), r ∈ R and no proper
subproduct of the ai’s is in (N : M). Then a1 · · · an+1rM ⊆ N . Thus, by (1),
rM ⊆ N . The “In particular” statement is clear. ✷

The converse of the Lemma 2.2(2) is not necessarily true, as the following
example shows.

Example 2.3. (1) Let R = Z, M = Z ⊕ Z and N = 4Z ⊕ 4Z. Then, by [1,
Theorem 2.1(d)], (N : M) = 4Z is a 2-absorbing ideal of R, but N is not
an n-prime submodule of M for any positive integer n. In fact, if a1 = 2
and a2, . . . , an+1 are odd prime numbers, then a1 · · · an+1(2, 0) ∈ N , but no
proper subproduct of the ai’s is in (N : M) and (2, 0) /∈ N .

(2) Let R = Z, M = Z(p∞) ⊕ Zp and N = 0 ⊕ Zp for some prime integer p.
Then (N : M) = 0 is 1-prime, but by [7, Example 3.7] N is not a 1-prime
submodule of M .

Let N be a submodule of an R-module M . By radical of N , denoted radN , we
mean that the intersection of all prime submodules of M containing N . If there
is no such prime exists, we define radN = M . For an ideal I of R, we denote the
radical of I by

√
I.
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An R-module M is called a multiplication module, if for each submodule N
of M there exists an ideal I of R such that N = IM . In this case, we can take
I = (N : M). If N1 = I1M and N2 = I2M are two submodules of an R-module M
for some ideals I1 and I2 of R, then N1N2 is used to denote I1I2M .

Theorem 2.4. Let R be a ring, M an R-module and N a submodule of M . If N
is an n-prime submodule of M for some positive integer n, then:

(1) N is a primary submodule of M , and so (N : M) is a primary ideal of R and√
N : M is a prime ideal of R.

(2) If (N : M) is a prime ideal of R, then N is a prime submodule of M .

(3) If M is finitely generated faithful multiplication, then radN is a prime sub-
module of M .

(4) If R is a Bézout ring and M is multiplication, then (radN)n ⊆ N . In
particular, this holds if R is a valuation domain.

Proof: (1) Let am ∈ N for a ∈ R and m ∈ M \N . Clearly a ∈ R \ U(R). Then
an+1m ∈ N implies that a ∈

√
N : M .

(2) Since (N : M) is a prime ideal of R,
√
N : M = (N : M). Let am ∈ N for

a ∈ R and m ∈ M \ N . By (1) N is primary and then a ∈
√
N : M = (N : M).

Thus N is a prime submodule of M .
(3) Since N is proper and M is multiplication, by [5, Theorem 2.12], radN =√
N : MM . By (1),

√
N : M is prime. Now since M is finitely generated faithful,

by [5, Theorem 3.1 and Lemma 2.10], radN 6= M is a prime submodule of M .
(4) By (1) and Lemma 2.2(2),

√
N : M is a prime ideal of R and (N : M) is an n-

absorbing ideal of R. Since R is Bézout, by [1, Lemma 5.4], (
√
N : M)n ⊆ (N : M).

Thus by using [5, Theorem 2.12], (radN)n = (
√
N : M)nM ⊆ (N : M)M = N . ✷

Theorem 2.5. Let (R,m) be a local ring, M an R-module and N a submodule of
M such that mn ⊆ (N : M) for some positive integer n. Then N is an n-prime
submoule of M .

Proof: Let a1 · · · an+1m ∈ N for a1, . . . , an+1 ∈ R \ U(R) and m ∈ M \N . Since
R \U(R) = m and m

n ⊆ (N : M), every n-subproduct of the ai’s is in (N : M). ✷

Example 2.6. Let R = Zpt and m = p̄R, where p ∈ Z is a positive integer. Then
(R,m) is local. Every proper ideal of R has the form In = p̄nR for n < t. Thus by
Theorem 2.5, In is an n-prime ideal of R.

Corollary 2.7. Let R be a Noetherian ring, M an R-module and N a p-primary
submodule of M for some prime ideal p of R. Then Np is an n-prime submodule
of Mp for some positive integer n.



On a Generalization of Prime Submodules 157

Proof: Let N be a p-primary submodule of M . Then (N : M) is a p-primary
ideal of R. Thus by [9, Theorem 5.37], (N : M)p is a pRp-primary ideal of Rp.
Since (Rp, pRp) is Noetherian local ring, pnRp ⊆ (N : M)p ⊆ (Np : Mp) for some
positive integer n. Now by Theorem 2.5, Np is an n-prime submodule of Mp. ✷

Theorem 2.8. Let R be a PID and n > 1 an integer.

(1) If (R,m) is local, then every ideal of R is n-prime for some positive integer
n.

(2) If R is not local, then every n-prime ideal of R is prime.

Proof: (1) Let I be an ideal of R. Since every non-zero prime ideal of R is maximal
and (R,m) is local, I is m-primary. Now since R is Noetherian, mn ⊆ I for some
positive integer n. Then by Theorem 2.5, I is an n-prime ideal of R.
(2) Let R be a non-local PID. Then R has at least two distinct prime elements.
Now if I is an n-prime ideal of R, then I is primary by Theorem 2.4(1). Thus
I = ptR for some prime element p of R and positive integer t ≤ n. Let t 6= 1 and
a1 = · · · = at−1 = r = p and at = · · · = an+1 = q which q 6= p is a prime element
of R. Then a1 · · · an+1r ∈ I. However, r /∈ I and no proper n-subproduct is in I,
a contradiction. Therefore t = 1 and hence I is prime. ✷

Remark 2.9. It is clear that every n-prime ideal of R is an n-absorbing ideal of
R. However, the converse need not be true in general. For example, if R = Z and
I = 4Z, then I is a 2-absorbing ideal of R which is not a 2-prime ideal of R by
Theorem 2.8.

Theorem 2.10. Let R be a ring such that every proper ideal of R is an n-prime
ideal for some positive integer n. Then R is a local ring.

Proof: Let m1 and m2 be two maximal ideals of R. Then I = m1 ∩ m2 is an
n-prime ideal for some positive integer n. By Theorem 2.4(1), I is a primary ideal
of R. Then m1 = m2. ✷

Corollary 2.11. Let R be a ring and n a positive integer such that every proper
ideal of R is an n-prime ideal of R. Then R is local and dimR = 0.

Proof: By Theorem 2.10, R is local. Since every n-prime ideal is an n-absorbing
ideal, by [1, Theorem 5.9], dimR = 0. ✷

Theorem 2.12. Let R = S[X ] be a polynomial ring with coefficients in a domain
S. Then every n-prime ideal of R is prime.

Proof: Let I be a non-prime ideal of R = S[X ]. Then there are f, g ∈ R \ I such
that fg ∈ I. Since S is domain, S has not non-zero nilpotent element. Then by [9,
Exercise 1.36], fg+1 is non-unit. On the other hand, f(fg+1)ng = fg(fg+1)n ∈ I.
However, g /∈ I and (fg+1)n /∈ I and f(fg+1)n−1 /∈ I. Then I is not an n-prime
ideal of R. ✷
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Theorem 2.13. Let R be a Dedekind domain and M be a finitely generatsd faithful
multiplication R-module. If N is an n-prime submodule of M , then N = N1 · · ·Nt

for some maximal submodules N1, . . . , Nt of M with 1 ≤ t ≤ n.

Proof: Suppose that N is an n-prime submodule of M . Then by Lemma 2.2(2),
(N : M) is an n-absorbing ideal of R. Now by [1, Theorem 5.1], (N : M) =
m1 · · ·mt for some maximal ideals m1, . . . ,mt of R with 1 ≤ t ≤ n. Thus N =
(N : M)M = m1 · · ·mtM = m1M · · ·mtM and m1M, . . . ,mtM are maximal
submodules of M by [5, Theorem 2.5 and Theorem 3.1]. ✷

3. Extensions of n-prime submodules

In this section, we investigate the stability of n-prime submodules in various
module-theoretic constructions.
Let N be a proper submodule of an R-module M . For x ∈ M , Nx = (N : x) =
{r ∈ R | rx ∈ N} is an ideal of R and clearly (N : M) ⊆ (N : x).

Proposition 3.1. Let R be a ring and M an R-module. If N is an n-prime
submodule of M , then Nx is an n-prime ideal of R and so is an n-absorbing ideal
of R for all x ∈ M \N . Moreover ω(Nx) ≤ ν(N) for all x ∈ M .

Proof: LetN be an n-prime submodule ofM and a1 · · ·an+1r ∈ Nx for a1,. . . ,an+1

∈ R \ U(R) and r ∈ R \ Nx. Then a1 · · ·an+1rx ∈ N and rx /∈ N . Since
N is an n-prime submodule of M , there are n of the ai’s whose product is in
(N : M) ⊆ (N : x) = Nx. This implies that Nx is an n-prime ideal and so is an
n-absorbing ideal of R.
The “moreover” statement is clear if x ∈ M \ N by above argument. If x ∈ N ,
then Nx = R and hence ω(Nx) = 0 ≤ ν(N). ✷

For each r ∈ R and every submodule N of M , we consider Nr = (N :M r) =
{x ∈ M | rx ∈ N}.

Proposition 3.2. Let R be a ring. If N is an n-prime submodule of an R-module
M , then Nr is an n-prime submodule of M for any r ∈

√
N : M \ (N : M).

Proof: Let a1 · · ·an+1m ∈ Nr for a1, . . . , an+1 ∈ R \ U(R), m ∈ M . Then
a1 · · · an+1rm ∈ N . Since N is an n-prime submodule of M , rm ∈ N or there
are n of the ai’s whose product is in (N : M). Thus m ∈ Nr or there are n of the
ai’s whose product is in (Nr : M), since (N : M) ⊆ (Nr : M). ✷

Proposition 3.3. Let R be a ring and M an R-module. If Ni is an ni-prime
submodule of M such that (Ni : M) = (Nj : M) for all 1 ≤ i, j ≤ t, then ∩t

i=1Ni is
an n-prime submodule of M for n = max{ni | 1 ≤ i ≤ t}.

Proof: Let t = 2 and n = max{n1, n2}. Suppose that a1 · · ·an+1m ∈ N1 ∩N2 for
a1, . . . , an+1 ∈ R \U(R), m ∈ M . Then a1 · · · an+1m ∈ N1 and a1 · · · an+1m ∈ N2.
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Since N1 and N2 are respectively n1-prime and n2-prime, either m ∈ N1 ∩ N2 or
there are n1 of the ai’s whose product is in (N1 : M) or there are n2 of the ai’s
whose product is in (N2 : M). If m ∈ N1 ∩ N2, then we are done. In otherwise,
there are n of the ai’s whose product is in (N1 ∩N2 : M) = (N1 : M) = (N2 : M)
for n = max{n1, n2}. This implies that N1 ∩N2 is an n-prime submodule of M .
The proof for t > 2 is follows similarly by induction on t. ✷

The following example shows that Proposition 3.3 is not true in general.

Example 3.4. Let R = Z, M = Z ⊕ Z, N1 = 2Z ⊕ Z and N2 = 3Z ⊕ Z. Then
N1 and N2 are 1-prime submodules, but N = N1 ∩ N2 = 6Z ⊕ Z is not an n-
prime submodule for all positive integer n. Since (N : M) = 6Z is not n-prime, by
Theorem 2.8 and then by Lemma 2.2(2), N is not an n-prime submodule of M .

Theorem 3.5. Let R be a ring, M an R-module and N an n-prime submodule
of M . Then for any submodule K of M either K ⊆ N or N ∩ K is an n-prime
submodule of K.

Proof: Let K be a submodule of M such that K * N . Then N ∩K ⊂ K. Now if
a1 · · · an+1k ∈ N∩K for a1, . . . , an+1 ∈ R\U(R) and k ∈ K, then a1 · · · an+1k ∈ N .
Since N is an n-prime submodule of M , k ∈ N or there are n of the ai’s whose
product is in (N : M). Thus k ∈ N ∩K or there are n of the ai’s whose product
is in (N ∩K : K), since (N : M) ⊆ (N ∩K : K). ✷

Theorem 3.6. Let R be a ring and f : M → M ′ be a homomorphism of R-modules.
Then the following hold:

(1) If N ′ is an n-prime submodule of M ′ such that f(M) * N ′, then f−1(N ′) is
an n-prime submodule of M .

(2) If f is surjective and N is an n-prime submodule of M such that ker f ⊆ N ,
then f(N) is an n-prime submodule of M ′.

Proof: (1) Let N ′ be an n-prime submodule of M ′ and a1 · · · an+1m ∈ f−1(N ′)
for non-unit elements a1, . . . , an+1 ∈ R and m ∈ M . Then a1 · · · an+1f(m) =
f(a1 · · · an+1m) ∈ N ′. Since N ′ is an n-prime submodule of M , f(m) ∈ N ′ or there
are n of the ai’s whose product is in (N ′ : M ′). Hence m ∈ f−1(N ′) or there are
n of the ai’s whose product is in (f−1(N ′) : M), since (N ′ : M ′) ⊆ (f−1(N ′) : M).
(2) LetN be an n-prime submodule ofM and a1 · · ·an+1m

′ ∈ f(N) for a1, . . . , an+1

∈ R \U(R) and m′ ∈ M ′. Since f is surjective, m′ = f(m) for some m ∈ M . Then

a1 · · · an+1m
′ = a1 · · ·an+1f(m) = f(a1 · · · an+1m) = f(n)

for some n ∈ N . Thus a1 · · ·an+1m− n ∈ ker f ⊆ N . Therefore a1 · · · an+1m ∈ N .
Since N is an n-prime submodule of M , either m ∈ N or there are n of the ai’s
whose product is in (N : M). Hence m′ ∈ f(N) or there are n of the ai’s whose
product is in (f(N) : M ′) ( Note that, (N : M) ⊆ (f(N) : M ′), since f is surjective).

✷
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Corollary 3.7. Let R be a ring, M an R-module and N , K proper submodules of
M such that N ⊆ K. Then K is an n-prime submodule of M if and only if K/N
is an n-prime submodule of M/N .

Proof: Consider the natural projection π : M → M/N defined by π(m) = m+N
and use Theorem 3.6. ✷

LetR be a ring andM an R-module. LetN be a submodule ofM . A submodule
K ofM maximal with respect to the property thatK∩N = 0 is called a complement
of N in M . A submodule K of M will be called complement in M if there exists a
submodule N of M such that K is a complement of N in M . A submodule N of M
will be called essential if N ∩K 6= 0 for every non-zero submodule K of M . Also
a submodule N of M will be called essential in a submodule L of M containing
N , if N is essential as a submodule of L. It is not difficult to prove that if K is a
complement in M , then K is not essential in any submodule L of M containing K.

Theorem 3.8. Let R be a ring, M an R-module and N an n-prime submodule of
M . If K is a submodule of M containing N such that K/N is a complement in
M/N , then K is an n-prime submodule of M .

Proof: Let a1 · · · an+1m ∈ K for a1, . . . , an+1 ∈ R \ U(R) and m /∈ K. Then L =
K +Rm is a submodule of M which contains K properly and a1a2 · · · an+1L ⊆ K.
K/N is not essential in L/N , since K/N is a complement in M/N . Thus there
exists a submodule L′ of L such that N ⊂ L′ and K ∩ L′ = N . Let m′ ∈ L′ \ N .
Then a1a2 · · ·an+1m

′ ∈ a1a2 · · ·an+1L
′ ⊆ (a1a2 · · ·an+1L) ∩ L′ ⊆ K ∩ L′ = N .

Since N is an n-prime submodule of M , there are n of the ai’s whose product is in
(N : M) ⊆ (K : M). Hence K is an n-prime submodule of M . ✷

Let M be an R-module. By zero divisors of M , denoted ZR(M), we mean that
the set of elements r ∈ R such that rm = 0 for some non-zero element m ∈ M .

Theorem 3.9. Let R be a ring, M an R-module and N a submodule of M . Let
S be a multiplicatively closed subset of R such that S ∩ ZR(M/N) = ∅. If N is an
n-prime submodule of M , then S−1N is an n-prime submodule of S−1M .

Proof: Let N be an n-prime submoule of M . Since S ∩ZR(M/N) = ∅, it is easily
seen that S−1N 6= S−1M . Suppose that a1

s1
· · · an+1

sn+1

m
s
∈ S−1N for a1

s1
, . . . , an+1

sn+1
∈

S−1R \ U(S−1R) and m
s

∈ S−1M . Then a1

s1
· · · an+1

sn+1

m
s

= n
t
for some n ∈ N and

t ∈ S. Thus a1 · · ·an+1tum = s1 · · · sn+1sun ∈ N for some u ∈ S. Clearly ai’s
are non-unit in R. Thus, since N is an n-prime submodule of M , there are n of
the ai’s whose product is in (N : M) or there are n− 1 of the ai’s whose product
with tu is in (N : M) or m ∈ N . If m ∈ N , then m

s
∈ S−1N . If there are

n of the ai’s whose product is in (N : M), then there are n of the ai

si
’s whose

product is in S−1(N : M) ⊆ (S−1N : S−1M). If there are n − 1 of the ai’s
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whose product with tu is in (N : M), for example a1 · · ·an−1(tu) ∈ (N : M), then
a1 · · · an(tu) ∈ (N : M).Thus

a1
s1

· · · an−1

sn−1

an
sn

=
a1
s1

· · · an−1

sn−1

an(tu)

sn(tu)

=
a1 · · · an(tu)
s1 · · · sn(tu)

∈ S−1(N : M) ⊆ (S−1N : S−1M).

This implies that S−1N is an n-prime submodule of S−1M . ✷

Theorem 3.10. Let R be a ring, M , M ′ R-modules, N a submodule of M , N ′ a
submodule of M ′ and I, I ′ two ideals of R. Then the following hold:

(1) If N×N ′ is an n-prime submodule of M×M ′, then N and N ′ are respectively
an n-prime submodule of M and M ′. The converse is true if (N : M) = (N ′ :
M ′).

(2) N (resp. N ′) is an n-prime submodule of M (resp. M ′) if and only if N×M ′

(resp. M ×N ′) is an n-prime submodule of M ×M ′.

(3) If I × I ′ is an n-prime submodule of the R-module R×R, then I and I ′ are
n-prime ideals of R. The converse is true if I = I ′.

(4) If I × I ′ is an n-prime ideal of R×R, then I and I ′ are n-prime ideals of R.
The converse is true if I = I ′.

(5) I (resp. I ′) is an n-prime ideal of R (resp. R′) if and only if I × R′ (resp.
R× I ′) is an n-prime submodule of the R-module R×R′.

(6) I (resp. I ′) is an n-prime ideal of R (resp. R′) if and only if I × R′ (resp.
R× I ′) is an n-prime ideal of R×R′.

Proof: (1) Let N×N ′ be an n-prime submodule of M×M ′ and let a1 · · · an+1m ∈
N for a1, . . . , an+1 ∈ R\U(R) and m ∈ M . Then a1 · · · an+1(m, 0) ∈ N×N ′. Thus
(m, 0) ∈ N×N ′ or there are n of the ai’s whose product is in (N×N ′ : M×M ′) =
(N : M) ∩ (N ′ : M ′). Hence N is an n-prime submodule of M . By a similar
argument, N ′ is an n-prime submodule of M ′. Convesely let a1 · · · an+1(m,m′) ∈
N ×N ′ for a1, . . . , an+1 ∈ R \U(R) and (m,m′) ∈ M ×M ′ \N ×N ′. Then m /∈ N
or m′ /∈ N ′. Let m /∈ N . Then a1 · · · an+1m ∈ N , implies that there are n of the
ai’s whose product is in (N : M) = (N ×N ′ : M ×M ′).
(2) Let N be an n-prime submodule of M and a1 · · · an+1(m,m′) ∈ N × M ′ for
a1, . . . , an+1 ∈ R \ U(R) and (m,m′) ∈ M × M ′. Then a1 · · · an+1m ∈ N . Since
N is an n-prime submodule of M , either m ∈ N or there are n of the ai’s whose
product is in (N : M) = (N × M ′ : M × M ′). This implies that N × M ′ is
an n-prime submodule of M × M ′. The converse is similar to (1). By a similar
argument, N ′ is an n-prime submodule of M ′ if and only if M ×N ′ is an n-prime
submodule of M ×M ′.
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(3) By (1).
(4) The proof is similar to the proof of (1).
(5) By (2).
(6) The proof is similar to the proof of (2). ✷

Example 3.11. Let R = ZP t , M = R ⊕ R, Nn = In ⊕ In, Ln = R ⊕ In and
Kn = In ⊕R(n < t). Then by Example 2.6 and Theorem 3.10(3), Nn, Ln and Kn

are n-prime submodules of M .

Let R be a ring and M an R-module. Then R(+)M = R × M is a ring
with identity (1, 0) under addition defined by (r,m) + (s, n) = (r + s,m+ n) and
multiplication defined by (r,m)(s, n) = (rs, rn + sm). We view R as a subring of
R(+)M via r 7→ (r, 0).

Theorem 3.12. Let R be a ring, M an R-module, I an n1-absorbing ideal of R
and N an n2-prime submodule of M with IM ⊆ N . Then I(+)N is an n-absorbing
ideal of R(+)M for n = n1 + n2. Conversly if I(+)N is an n-absorbing ideal of
R(+)M , then I is an n-absorbing ideal of R.

Proof: Let n = n1 + n2. Assume that (a1,m1) · · · (an+1,mn+1) ∈ I(+)N for
(a1,m1), . . . , (an+1,mn+1) ∈ R(+)M . Without loss of generality suppose that
these elements are not in U(R(+)M). Then a1 · · ·an+1 ∈ I and

n+1∑

i=1

a1 · · · ai−1ai+1 · · ·an+1mi ∈ N (3.1)

Since I is an n1-absorbing ideal of R, there are n1 of the ai’s whose product is in
I. For example, let a1 · · ·an1

∈ I. The terms of (3.1) that contain a1 · · · an1
, are

in IM ⊆ N . Thus
∑n1

i=1 a1 · · · ai−1ai+1 · · ·an+1mi ∈ N , where a0 is assumed that
to be 1. But

n1∑

i=1

a1 · · ·ai−1ai+1 · · · an+1mi = an1+1 · · ·an+1

n1∑

i=1

a1 · · · ai−1ai+1mi ∈ N

Since U(R(+)M) = U(R)(+)M by [2, Theorem 3.7], ai’s (1 ≤ i ≤ n+ 1) are non-
unit. Now, since N is an n2-prime submodule of M ,

∑n1

i=1 a1 · · ·ai−1ai+1mi ∈ N
or there are n2 of the ai’s (n1 + 1 ≤ i ≤ n+ 1) whose product is in (N : M).
If

∑n1

i=1 a1 · · ·ai−1ai+1mi ∈ N , then (a1,m1) · · · (an1
,mn1

) ∈ I(+)N , and if there
are n2 of the ai’s (n1 + 1 ≤ i ≤ n+ 1) whose product is in (N : M), for example
an1+1 · · · an ∈ (N : M), then

(a1,m1) · · · (an1
,mn1

)(an1+1,mn1+1) · · · (an,mn) ∈ I(+)N.

Hence I(+)N is an n = n1 + n2-absorbing ideal of R(+)M .
Now let I(+)N be an n-absorbing ideal of R(+)M , and let a1 · · ·an+1 ∈ I for
a1, . . . , an+1 ∈ R. Then (a1, 0) · · · (an+1, 0) ∈ I(+)N . Thus there are n of (ai, 0)’s
whose product is in I(+)N . Hence there are n of the ai’s whose product is in I
and so I is an n-absorbing ideal of R. ✷
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4. AP n-modules

Let R be a ring, M an R-module and I a proper ideal of R. Let Mn(I) denote
a submodule of M generated by the following set:
{m | a1 · · · an+1m ∈ IM for some a1, . . . , an+1 ∈ R \ U(R) such that a1 · · ·an+1 /∈
I}.
Lemma 4.1. Let R be a ring, M an R-module and I an n-absorbing ideal of R.
If Mn(I) ⊆ IM 6= M , then IM is an n-prime submodule of M .

Proof: Let a1 · · · an+1m ∈ IM for a1, . . . , an+1 ∈ R \ U(R) such that no proper
subproduct of the ai’s is in (IM : M). Since I ⊆ (IM : M) and I is an n-absorbing
ideal of R, a1 · · · an+1 /∈ I. Thus m ∈ Mn(I) ⊆ IM 6= M , and hence IM is an
n-prime submodule of M . ✷

The following example shows that Lemma 4.1 fails if the condition thatMn(I) ⊆
IM is removed.

Example 4.2. Let R = Z and M = Z ⊕ Z. Then I = 4Z is a 2-absorbing ideal
of R, but IM = 4Z ⊕ 4Z is not a 2-prime submodule of M . It is easily seen that
2Z⊕ 2Z ⊆ M2(I), and thus M2(I) * IM .

Definition 4.3. Let R be a ring, M an R-module and n a positive integer. We
say that M is an AP n-module if Mn(I) ⊆ IM 6= M for any n-absorbing ideal I
of R. Also, R is called an AP n-ring if R is an AP n-module as R-module.

Remark 4.4. We say that M is an AP n-module because for any n-Absorbing
ideal I of R, IM is an n-Prime submodule of M by Lemma 4.1.

Lemma 4.5. Let R be a ring and n a positive integer. Then R is an AP n-ring if
and only if every n-absorbing ideal of R is an n-prime ideal of R.

Proof: Let R be an AP n-ring, I an n-absorbing ideal of R and let a1 · · · an+1r ∈ I
for a1, . . . , an+1 ∈ R \ U(R) and r ∈ R such that no proper subproduct of the ai’s
is in I. Since I is n-absorbing, a1 · · · an+1 /∈ I. Thus r ∈ Mn(I) ⊆ I. Hence I is
n-prime. Conversely suppose that every n-absorbing ideal of R is an n-prime ideal
of R. Let I be an n-absorbing ideal of R and r ∈ R be a generator of Mn(I). Then
a1 · · · an+1r ∈ IR = I for some a1, . . . , an+1 ∈ R \ U(R) such that a1 · · ·an+1 /∈ I.
Thus no proper subproduct of the ai’s is in I and hence r ∈ I, since I is an n-prime
ideal of R. Therefore R is an AP n-ring. ✷

Corollary 4.6. Let M be a multiplication R-module, N a proper submodule of M
and n a positive integer. Consider the following statements:

(1) N is an n-prime submodule of M .

(2) (N : M) is an n-prime ideal of R.

(3) N = IM for some n-prime ideal I of R.
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Then (1) ⇔ (2) ⇒ (3). Moreover, if M is a finitely generated faithful module, then
(3) ⇒ (2).

Proof: (1) ⇒ (2) By Lemma 2.2(2).
(2) ⇒ (1) Let I = (N : M). We show that (Mn(I) : M) ⊆ I and use Lemma
4.1. Let r ∈ (Mn(I) : M) and m ∈ M \ Mn(I). Then rm ∈ Mn(I). Thus
rm = s1m1 + · · · + stmt for some si ∈ R and mi ∈ Mn(I) (1 ≤ i ≤ t) by
definition of Mn(I). Since mi ∈ Mn(I), there are ai1 , . . . , ain+1

∈ R \ U(R) such

that ai1 · · · ain+1
mi ∈ IM and ai1 · · ·ain+1

/∈ I. Then
∏t

i=1

∏n+1
j=1 aijrm ∈ IM .

Since m /∈ Mn(I),

a11 · · · a1n+1
(

t∏

i=2

n+1∏

j=1

aijr) ∈ I.

Thus we have
∏t

i=2

∏n+1
j=1 aij r ∈ I, since I is an n-prime and no proper subproduct

of a1j ’s (1 ≤ j ≤ n + 1) is in I. Repeating this process follows that r ∈ I. Hence
(Mn(I) : M) ⊆ I. Since M is multiplication, Mn(I) ⊆ IM = N .
(2) ⇒ (3) Clear.
(3) ⇒ (2) By [5, Theorem 3.1], (N : M) = I. ✷

Corollary 4.7. Let R be a ring and M a finitely generated faithful multiplication
R-module. Then R is an AP n-ring if and only if M is an AP n-module.

Proof: Let R be an AP n-ring and I an n-absorbing ideal of R. Then I is an n-
prime ideal of R, by Lemma 4.5. Since M is a multiplication module, by the proof
of Corollary 4.6((2) ⇒ (1)), Mn(I) ⊆ IM . Now since M is a finitely generated
faithful multiplication module, by [5, Theorem 3.1], IM 6= M . Hence M is an AP
n-module. Conversely suppose that M is an AP n-module and I is an n-absorbing
ideal of R. Then by Lemma 4.1, IM is an n-prime submodule of M . Since M
is a finitely generated faithful multiplication module, by Lemma 2.2(2) and [5,
Theorem 3.1], (IM : M) = I is an n-prime ideal of R. Hence by Lemma 4.5, R is
an AP n-ring. ✷

Theorem 4.8. Let (R,m) be an Artinian local ring and n a positive integer such
that mn = m

n+1 = · · · . Then every ideal of R is an n-prime ideal. In particular,
R is an AP n-ring.

Proof: Note that R is Noetherian and dimR = 0, by [9, Corollary 8.45]. Let I be
an ideal of R. Then I is an m-primary. Thus mn ⊆ m

t ⊆ I for some positive integer
t ≤ n. Hence by Theorem 2.5, I is an n-prime ideal of R. The “in particular”
statement is clear. ✷

Theorem 4.9. Let R be a Noetherian valuation domain and n a positive integer.
Then R is an AP n-ring.
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Proof: Note that (R,m) is a local PID and then dimR = 1. Let I be an n-
absorbing ideal of R. By [9, Theorem 15.42], I = m

t for some positive integer t.
Let m = Rp for some prime element p ∈ R and t > n. Then pn = rpt for some
r ∈ R, since I is an n-absorbing ideal of R. Thus rpt−n = 1 and hence p is unit,
which is a contradiction. Therefore t ≤ n. Then by Theorem 2.5, I is a t-prime
ideal and so it is an n-prime ideal of R. Hence by Lemma 4.5, R is an AP n-ring.

✷

Corollary 4.10. Let R be a DVR and n a positive integer. Then R is an AP
n-ring.

Example 4.11. Let R = Z[
√
−5], M = 2R+(

√
−5−1)R and n a positive integer.

Since R is a Dedekind domain, M is a finitely generated faithful multiplication
R-module. Then by Corollary 4.10, RP is an AP n-ring for all non-zero prime
ideal P of R. Since MP is a finitely generated faithful multiplication RP -module,
by Corollary 4.7, MP is an AP n-module.

Theorem 4.12. Let R be a zero-dimensional Bézout ring and n a positive integer.
Then for each prime ideal p of R, Rp is an AP n-ring.

Proof: Without loss of generality, we may assume that R is a local ring. Let I be
an n-absorbing ideal of R. Since (R,m) is local and dimR = 0,

√
I = m. By [1,

Lemma 5.4], mn ⊆ I. Thus by Theorem 2.5, I is an n-prime ideal of R. ✷

Proposition 4.13. Let R be a ring, M an R-module and Ni an ni-prime submod-
ule of M for all 1 ≤ i ≤ t. Then (∩t

i=1Ni : M) is an n-absorbing ideal of R for
n = n1 + · · ·+nt. Moreover if M is a multiplication AP n-module, then ∩t

i=1Ni is
an n-prime submodule of M .

Proof: By Theorem 4.6, (Ni : M) is an ni-absorbing ideal of R. Hence by [1,
Theorem 2.1(c)], (∩t

i=1Ni : M) = ∩t
i=1(Ni : M) is an n-absorbing ideal of R for

n = n1 + · · ·+ nt.

For “moreover” part, since M is multiplication, ∩t
i=1Ni = (∩t

i=1Ni : M)M .
Therefore ∩t

i=1Ni is an n-prime submodule of M , by Lemma 4.1. ✷

Let R be a ring and M an R-module. If I is an n1-absorbing ideal of a ring R
and N is an n2-prime submodule of an R-module M , then IN is not necessarily
an n-prime submodule of M for some positive integer n, as the following example
shows.

Example 4.14. Let R = Z and M = Z ⊕ Z. Then I = 4Z is a 2-absorbing ideal
of R and N = 3Z⊕Z is a 1-prime (prime) submodule of M but IN = 12Z⊕ 4Z is
not an n-prime submodule of M for any positive integer n. Since (IN : M) = 12Z
is not an n-prime ideal of R, by Theorem 2.8.
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Theorem 4.15. Let R be a ring, M a finitely generated faithful multiplication
R-module, I an n1-absorbing ideal of R and N an n2-prime submodule of M . If
R is an AP n-ring for n = n1 + n2 and two ideals I and (N : M) are comaximal,
then IN is an n-prime submodule of M .

Proof: Since M is a multiplication R-module, (IN : M)M = IN = I(N : M)M .
By [5, Theorem 3.1], hypoteses and [1, Theorem 2.1(c)], (IN : M) = I(N : M) =
I ∩ (N : M) is an n-absorbing ideal of R for n = n1 +n2. Hence, IN is an n-prime
submodule of M , by Corollary 4.7 and Lemma 4.1. ✷

Lemma 4.16. Let M be a finitely generated faithful multiplication R-module.
Then the ideals I1, . . . , It are pairwise comaximal ideals of R if and only if N1 =
I1M, . . . , Nt = ItM are pairwise comaximal submodules of M . In this case,
N1 · · ·Nt = N1 ∩ · · · ∩Nt.

Proof: The necessity is clear. To prove the sufficiency, we observe that (I1 +
I2)M = I1M + I2M = N1 + N2 = M . Since M is finitely generated faithful
multiplication, by [5, Theorem 3.1], I1+I2 = R. In this case, by [5, Corollary 1.7],
N1N2 = I1I2M = (I1 ∩ I2)M = I1M ∩ I2M = N1 ∩N2. Now the assertion follows
by induction on t. ✷

Theorem 4.17. Let R be a ring and M a finitely generated faithful multiplication
R-module. If R is an AP n-ring and P1, . . . , Pn are prime submodules of M that
are pairwise comaximal, then N = P1 · · ·Pn is an n-prime submodule of M .

Proof: By [5, Corollary 2.11], Pi = piM for some prime ideal pi of R and by
Lemma 4.16, pi’s are pairwise comaximal . Then N = P1 · · ·Pn = p1 · · · pnM . By
[1, Theorem 2.6], p1 · · · pn is an n-absorbing ideal of R. Therefore N is an n-prime
submodule of M , by Corollary 4.7 and Lemma 4.1.

✷

Lemma 4.18. Let R be a ring, M a multiplication R-module and N a maximal
submodule of M . If M is an AP n-module, then Nn is an n-prime submodule of
M . Moreover, ν(Nn) ≤ n, and ν(Nn) = n if Nn+1 ⊂ Nn.

Proof: By [5, Theorem 2.5], N = mM for some maximal ideal m of R. Then mn

is an n-absorbing ideal of R, by [1, Lemma 2.8]. Hence, Nn = mnM is an n-prime
submodule of M , by Lemma 4.1.
The first part of the “moreover” statement is clear. Now if Nn+1 ⊂ Nn, then
mn+1 ⊂ mn. Thus by [1, Lemma 2.8], ω(mn) = n. On the other hand, (Nn :
M) = mn and by Lemma 2.2(2), ω(Nn : M) ≤ ν(Nn). Hence ν(Nn) = n. ✷

Theorem 4.19. Let R be a ring, M a multiplication R-module and N1, . . . , Nn

are maximal submodules of M . If M is an AP n-module, then N = N1 · · ·Nn is
an n-prime submodule of M . Moreover, ν(N) ≤ n.
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Proof: By [5, Theorem 2.5], Ni = miM for some maximal ideal mi of R. Then
N = m1M · · ·mnM = m1 · · ·mnM and m1 · · ·mn is an n-absorbing ideal of R by
[1, Theorem 2.9]. Since M is an AP n-module, N is an n-prime submodule of M ,
by Lemma 4.1. The “moreover” statement is clear. ✷

We call a submodule N is a minimal n-prime submodule of M if N is minimal
among all n-prime submodules of M with respect to inclusion.

Proposition 4.20. Let R be a ring, M a finitely generated faithful multiplication
R-module and n a positive integer. If M is an AP n-module, then the set of minimal
n-prime submodules of M is equal to

{IM | I is a minimal n-absorbing ideal of R}.

Proof: Let I be a minimal n-absorbing ideal of R. Since M is an AP n-module,
IM is an n-prime submodule of M . Assume that N is an n-prime submodule of
M such that N ⊆ IM . Then by [5, Theorem 3.1],

(N : M) ⊆ (IM : M) = I.

Since I is a minimal n-absorbing ideal of R and (N : M) is an n-absorbing ideal
of R by Lemma 2.2(2), (N : M) = I. Hence N = (N : M)M = IM and thus IM
is a minimal n-prime submodule of M . Now, assume that N is a minimal n-prime
submodule of M . Then (N : M) is an n-absorbing ideal of R and N = (N : M)M .
Assume that I is an n-absorbing ideal of R such that I ⊆ (N : M). Then IM ⊆ N
and IM is an n-prime submodule of M . Thus minimality of N implies that IM =
N . Therefore I = (IM : M) = (N : M). Hence (N : M) is a minimal n-absorbing
ideal of R. ✷

At the end of this paper should be noted that every n-absorbing ideal of a ring
R contains a minimal n-absorbing ideal [6, Corollary 2.2]. Now if M is a finitely
generated faithful multiplication AP n-module, then by Proposition 4.20 every n-
prime submodule N of M contains a minimal n-prime submodule of M .
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