

(3s.) **v. 37** 1 (2019): 153–168. ISSN-00378712 IN PRESS doi:10.5269/bspm.v37i1.33962

On a Generalization of Prime Submodules of a Module over a Commutative Ring

Hosein Fazaeli Moghimi and Batool Zarei Jalal Abadi

ABSTRACT: Let R be a commutative ring with identity, and $n \ge 1$ an integer. A proper submodule N of an R-module M is called an n-prime submodule if whenever $a_1 \cdots a_{n+1} m \in N$ for some non-units $a_1, \ldots, a_{n+1} \in R$ and $m \in M$, then $m \in N$ or there are n of the a_i 's whose product is in (N : M). In this paper, we study n-prime submodules as a generalization of prime submodules. Among other results, it is shown that if M is a finitely generated faithful multiplication module over a Dedekind domain R, then every n-prime submodule of M has the form $m_1 \cdots m_t M$ for some maximal ideals m_1, \ldots, m_t of R with $1 \le t \le n$.

Key Words: *n*-prime submodule, *n*-absorbing ideal, AP *n*-module.

Contents

1	Introduction	153
2	On <i>n</i> -prime submodules	154
3	Extensions of <i>n</i> -prime submodules	158
4	AP <i>n</i> -modules	163

1. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. Also we take R as a commutative ring with identity, U(R) as the set of unit elements of R, M as an R-module, and $n \ge 1$ is a positive integer. A proper ideal I of a ring R is an n-absorbing ideal of R if whenever $a_1 \cdots a_{n+1} \in I$ for $a_1, \ldots, a_{n+1} \in R$, then there are n of the a_i 's whose product is in I. It is evident that a 1-absobing ideal is just a prime ideal. This concept was firstly introduced for n = 2 by A. Badawi [3], and then it has been studied for any positive integer n by D. F. Anderson and A. Badawi [1]. The authors generalized this notion to (m, n)absorbing ideals with m > n [11]. In fact, these ideals absorb an n-subproduct of every m-product of elements which lies in I. In this case, (n + 1, n)-absorbing ideals are just n-absorbing ideals. Moreover, there are several generalizations of n-absorbing ideals of a ring to submodules of a module (see, for example, [8,10]). In this paper, we study the notion of an n-prime submodule of a module as a generalization of a prime submodule.

Typeset by $\mathcal{B}^{s}\mathcal{A}_{M}$ style. © Soc. Paran. de Mat.

²⁰¹⁰ Mathematics Subject Classification: 13A15, 13C13, 13C99, 13E05.

Submitted October 20, 2016. Published March 11, 2017

Let M be an R-module. A proper submodule N of M is called a prime submodule if for $r \in R$, $m \in M$, $rm \in N$ implies that $r \in (N : M)$ or $m \in N$. Prime submodules have been introduced by J. Dauns in [4], and then this class of submodules has been extensively studied by several authors (see, for example, [5,7]).

Definition 1.1. Let R be a ring, U(R) the set of units of R, M an R-module and n a positive integer. A proper submodule N of M is called an n-prime submodule of M if whenever $a_1 \cdots a_{n+1}m \in N$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and $m \in M$, then $m \in N$ or there are n of the a_i 's whose product is in (N : M), where $(N : M) = \{r \in R \mid rM \subseteq N\}$. An ideal I of R is called an n-prime ideal of R if it is an n-prime submodule of the R-module R.

By this definition, a 1-prime submodule is just a prime submodule. Moreover, every *n*-prime ideal is an *n*-absorbing ideal, but the converse is not true in general (Example 2.6). It is shown that if R is a non-local PID or a polynomial ring S[X] over a domain S, then every *n*-prime ideal of R is just a prime ideal of R (Theorems 2.8 and 2.12). However, an example of an *n*-prime ideal of a ring is given which is not a prime ideal (Example 2.6).

It is shown that every *n*-prime submodule is primary. Also, if R is a Bézout ring and M is a faithful multiplication R-module, then every *n*-prime submodule contains the *n*th power of its radical (Theorem 2.4). Moreover it is proved that if M is a multiplication R-module, then N is an *n*-prime submodule of M if and only if (N:M) is an *n*-prime ideal of R (Corollary 4.6).

It is shown that if $N \times N'$ is an *n*-prime submodule of $M \times M'$, then N and N' are respectively an *n*-prime submodule of M and M'. The converse is true if (N:M) = (N':M') (Theorem 3.10). Using this fact, an example of an *n*-prime submodule of a module is given which is not prime submodule (Example 3.11).

Finally, we introduce and study AP *n*-modules. Indeed, an AP *n*-module M has the property that for each *n*-absorbing ideal I of R, IM is an *n*-prime submodule of M. If R is an AP *n*-module over itself, then we call it AP *n*-ring. For example, every Artin local ring is an AP *n*-ring for some positive integer n (Theorem 4.8). Moreover, Noetherian valuation domains are AP *n*-rings for all positive integer n(Theorem 4.9). It is shown that every finitely generated faithful multiplication module over an AP *n*-ring is an AP *n*-module (Corollary 4.7).

2. On *n*-prime submodules

We start with several elementary results.

Theorem 2.1. Let R be a ring, M a non-zero R-module and n be a positive integer.

- (1) A proper submodule N of M is an n-prime submodule of M if and only if whenever $a_1 \cdots a_t m \in N$ for $a_1, \ldots, a_t \in R \setminus U(R)$ and $m \in M$ with t > n, then $m \in N$ or there are n of the a_i 's whose product is in (N : M).
- (2) If N is an n-prime submodule of M, then N is a t-prime submodule of M for all t ≥ n.

Proof: The proof is routine, and thus it is omitted.

Let N be a proper submodule of an R-module M. If N is an n-prime submodule of M for some positive integer n, then define $\nu(N) = \min\{n \mid N \text{ is an } n\text{-prime} \text{ submodule of } M\}$; otherwise, set $\nu(N) = \infty$. It is convenient to define $\nu(M) = 0$. Thus for any submodule N of M, we have $\nu(N) \in \mathbb{N} \cup \{0, \infty\}$ with $\nu(N) = 1$ if and only if N is a prime submodule of M and $\nu(N) = 0$ if and only if N = M. So $\nu(N)$ measures, in some sense, how far N is from being a prime submodule of M. Clearly $\omega(I) \leq \nu(I)$, where $\omega(I) = \min\{n \mid I \text{ is an } n\text{-absorbing ideal of } R\}$.

Lemma 2.2. Let R be a ring, M a non-zero R-module and n a positive integer. Then the following hold:

- (1) A proper submodule N of M is an n-prime submodule if and only if whenever $a_1 \cdots a_{n+1} K \subseteq N$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and submodule K of M, then $K \subseteq N$ or there are n of the a_i 's whose product is in (N : M).
- (2) If a proper submodule N of M is an n-prime submodule of M, then (N : M) is an n-prime ideal of R and so it is an n-absorbing ideal of R. Moreover ω(N : M) ≤ ν(N).

Proof: (1) Let N be an n-prime submodule of M and $a_1 \cdots a_{n+1} K \subseteq N$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and for a submodule K of M. Let $K \notin N$ and $m \in K \setminus N$. Since $a_1 \cdots a_{n+1} m \in N$ and N is an n-prime submodule of M, there are n of the a_i 's whose product is in (N : M). Conversely, if the given condition is true for a submodule N of M, and $a_1 \cdots a_{n+1} m \in N$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and $m \in M$, then it suffices to take K = Rm.

(2) Let $a_1 \cdots a_{n+1}r \in (N:M)$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$, $r \in R$ and no proper subproduct of the a_i 's is in (N:M). Then $a_1 \cdots a_{n+1}rM \subseteq N$. Thus, by (1), $rM \subseteq N$. The "In particular" statement is clear. \Box

The converse of the Lemma 2.2(2) is not necessarily true, as the following example shows.

- **Example 2.3.** (1) Let $R = \mathbb{Z}$, $M = \mathbb{Z} \oplus \mathbb{Z}$ and $N = 4\mathbb{Z} \oplus 4\mathbb{Z}$. Then, by [1, Theorem 2.1(d)], $(N : M) = 4\mathbb{Z}$ is a 2-absorbing ideal of R, but N is not an n-prime submodule of M for any positive integer n. In fact, if $a_1 = 2$ and a_2, \ldots, a_{n+1} are odd prime numbers, then $a_1 \cdots a_{n+1}(2, 0) \in N$, but no proper subproduct of the a_i 's is in (N : M) and $(2, 0) \notin N$.
 - (2) Let $R = \mathbb{Z}$, $M = \mathbb{Z}(p^{\infty}) \oplus \mathbb{Z}_p$ and $N = 0 \oplus \mathbb{Z}_p$ for some prime integer p. Then (N : M) = 0 is 1-prime, but by [7, Example 3.7] N is not a 1-prime submodule of M.

Let N be a submodule of an R-module M. By radical of N, denoted rad N, we mean that the intersection of all prime submodules of M containing N. If there is no such prime exists, we define rad N = M. For an ideal I of R, we denote the radical of I by \sqrt{I} .

An *R*-module *M* is called a multiplication module, if for each submodule *N* of *M* there exists an ideal *I* of *R* such that N = IM. In this case, we can take I = (N : M). If $N_1 = I_1M$ and $N_2 = I_2M$ are two submodules of an *R*-module *M* for some ideals I_1 and I_2 of *R*, then N_1N_2 is used to denote I_1I_2M .

Theorem 2.4. Let R be a ring, M an R-module and N a submodule of M. If N is an n-prime submodule of M for some positive integer n, then:

- (1) N is a primary submodule of M, and so (N : M) is a primary ideal of R and $\sqrt{N : M}$ is a prime ideal of R.
- (2) If (N:M) is a prime ideal of R, then N is a prime submodule of M.
- (3) If M is finitely generated faithful multiplication, then rad N is a prime submodule of M.
- (4) If R is a Bézout ring and M is multiplication, then $(\operatorname{rad} N)^n \subseteq N$. In particular, this holds if R is a valuation domain.

Proof: (1) Let $am \in N$ for $a \in R$ and $m \in M \setminus N$. Clearly $a \in R \setminus U(R)$. Then $a^{n+1}m \in N$ implies that $a \in \sqrt{N : M}$.

(2) Since (N : M) is a prime ideal of R, $\sqrt{N : M} = (N : M)$. Let $am \in N$ for $a \in R$ and $m \in M \setminus N$. By (1) N is primary and then $a \in \sqrt{N : M} = (N : M)$. Thus N is a prime submodule of M.

(3) Since N is proper and M is multiplication, by [5, Theorem 2.12], rad $N = \sqrt{N:MM}$. By (1), $\sqrt{N:M}$ is prime. Now since M is finitely generated faithful, by [5, Theorem 3.1 and Lemma 2.10], rad $N \neq M$ is a prime submodule of M.

(4) By (1) and Lemma 2.2(2), $\sqrt{N:M}$ is a prime ideal of R and (N:M) is an n-absorbing ideal of R. Since R is Bézout, by [1, Lemma 5.4], $(\sqrt{N:M})^n \subseteq (N:M)$. Thus by using [5, Theorem 2.12], $(\operatorname{rad} N)^n = (\sqrt{N:M})^n M \subseteq (N:M)M = N$. \Box

Theorem 2.5. Let (R, \mathfrak{m}) be a local ring, M an R-module and N a submodule of M such that $\mathfrak{m}^n \subseteq (N : M)$ for some positive integer n. Then N is an n-prime submoule of M.

Proof: Let $a_1 \cdots a_{n+1} m \in N$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and $m \in M \setminus N$. Since $R \setminus U(R) = \mathfrak{m}$ and $\mathfrak{m}^n \subseteq (N : M)$, every *n*-subproduct of the a_i 's is in (N : M). \Box

Example 2.6. Let $R = \mathbb{Z}_{p^t}$ and $\mathfrak{m} = \bar{p}R$, where $p \in \mathbb{Z}$ is a positive integer. Then (R, \mathfrak{m}) is local. Every proper ideal of R has the form $I_n = \bar{p}^n R$ for n < t. Thus by Theorem 2.5, I_n is an n-prime ideal of R.

Corollary 2.7. Let R be a Noetherian ring, M an R-module and N a p-primary submodule of M for some prime ideal p of R. Then N_p is an n-prime submodule of M_p for some positive integer n.

Proof: Let N be a p-primary submodule of M. Then (N : M) is a p-primary ideal of R. Thus by [9, Theorem 5.37], $(N : M)_p$ is a pR_p -primary ideal of R_p . Since (R_p, pR_p) is Noetherian local ring, $p^nR_p \subseteq (N : M)_p \subseteq (N_p : M_p)$ for some positive integer n. Now by Theorem 2.5, N_p is an n-prime submodule of M_p . \Box

Theorem 2.8. Let R be a PID and n > 1 an integer.

- (1) If (R, \mathfrak{m}) is local, then every ideal of R is n-prime for some positive integer n.
- (2) If R is not local, then every n-prime ideal of R is prime.

Proof: (1) Let *I* be an ideal of *R*. Since every non-zero prime ideal of *R* is maximal and (R, \mathfrak{m}) is local, *I* is \mathfrak{m} -primary. Now since *R* is Noetherian, $\mathfrak{m}^n \subseteq I$ for some positive integer *n*. Then by Theorem 2.5, *I* is an *n*-prime ideal of *R*.

(2) Let R be a non-local PID. Then R has at least two distinct prime elements. Now if I is an n-prime ideal of R, then I is primary by Theorem 2.4(1). Thus $I = p^t R$ for some prime element p of R and positive integer $t \le n$. Let $t \ne 1$ and $a_1 = \cdots = a_{t-1} = r = p$ and $a_t = \cdots = a_{n+1} = q$ which $q \ne p$ is a prime element of R. Then $a_1 \cdots a_{n+1} r \in I$. However, $r \notin I$ and no proper n-subproduct is in I, a contradiction. Therefore t = 1 and hence I is prime.

Remark 2.9. It is clear that every n-prime ideal of R is an n-absorbing ideal of R. However, the converse need not be true in general. For example, if $R = \mathbb{Z}$ and $I = 4\mathbb{Z}$, then I is a 2-absorbing ideal of R which is not a 2-prime ideal of R by Theorem 2.8.

Theorem 2.10. Let R be a ring such that every proper ideal of R is an n-prime ideal for some positive integer n. Then R is a local ring.

Proof: Let \mathfrak{m}_1 and \mathfrak{m}_2 be two maximal ideals of R. Then $I = \mathfrak{m}_1 \cap \mathfrak{m}_2$ is an *n*-prime ideal for some positive integer n. By Theorem 2.4(1), I is a primary ideal of R. Then $\mathfrak{m}_1 = \mathfrak{m}_2$.

Corollary 2.11. Let R be a ring and n a positive integer such that every proper ideal of R is an n-prime ideal of R. Then R is local and $\dim R = 0$.

Proof: By Theorem 2.10, R is local. Since every n-prime ideal is an n-absorbing ideal, by [1, Theorem 5.9], dim R = 0.

Theorem 2.12. Let R = S[X] be a polynomial ring with coefficients in a domain S. Then every n-prime ideal of R is prime.

Proof: Let *I* be a non-prime ideal of R = S[X]. Then there are $f, g \in R \setminus I$ such that $fg \in I$. Since *S* is domain, *S* has not non-zero nilpotent element. Then by [9, Exercise 1.36], fg+1 is non-unit. On the other hand, $f(fg+1)^n g = fg(fg+1)^n \in I$. However, $g \notin I$ and $(fg+1)^n \notin I$ and $f(fg+1)^{n-1} \notin I$. Then *I* is not an *n*-prime ideal of *R*.

Theorem 2.13. Let R be a Dedekind domain and M be a finitely generated faithful multiplication R-module. If N is an n-prime submodule of M, then $N = N_1 \cdots N_t$ for some maximal submodules N_1, \ldots, N_t of M with $1 \le t \le n$.

Proof: Suppose that N is an n-prime submodule of M. Then by Lemma 2.2(2), (N : M) is an n-absorbing ideal of R. Now by [1, Theorem 5.1], $(N : M) = m_1 \cdots m_t$ for some maximal ideals m_1, \ldots, m_t of R with $1 \le t \le n$. Thus $N = (N : M)M = m_1 \cdots m_tM = m_1M \cdots m_tM$ and m_1M, \ldots, m_tM are maximal submodules of M by [5, Theorem 2.5 and Theorem 3.1].

3. Extensions of *n*-prime submodules

In this section, we investigate the stability of n-prime submodules in various module-theoretic constructions.

Let N be a proper submodule of an R-module M. For $x \in M$, $N_x = (N : x) = \{r \in R \mid rx \in N\}$ is an ideal of R and clearly $(N : M) \subseteq (N : x)$.

Proposition 3.1. Let R be a ring and M an R-module. If N is an n-prime submodule of M, then N_x is an n-prime ideal of R and so is an n-absorbing ideal of R for all $x \in M \setminus N$. Moreover $\omega(N_x) \leq \nu(N)$ for all $x \in M$.

Proof: Let N be an n-prime submodule of M and $a_1 \cdots a_{n+1} r \in N_x$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and $r \in R \setminus N_x$. Then $a_1 \cdots a_{n+1} r x \in N$ and $r x \notin N$. Since N is an n-prime submodule of M, there are n of the a_i 's whose product is in $(N:M) \subseteq (N:x) = N_x$. This implies that N_x is an n-prime ideal and so is an n-absorbing ideal of R.

The "moreover" statement is clear if $x \in M \setminus N$ by above argument. If $x \in N$, then $N_x = R$ and hence $\omega(N_x) = 0 \le \nu(N)$.

For each $r \in R$ and every submodule N of M, we consider $N_r = (N :_M r) = \{x \in M \mid rx \in N\}.$

Proposition 3.2. Let R be a ring. If N is an n-prime submodule of an R-module M, then N_r is an n-prime submodule of M for any $r \in \sqrt{N : M} \setminus (N : M)$.

Proof: Let $a_1 \cdots a_{n+1}m \in N_r$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$, $m \in M$. Then $a_1 \cdots a_{n+1}rm \in N$. Since N is an n-prime submodule of M, $rm \in N$ or there are n of the a_i 's whose product is in (N:M). Thus $m \in N_r$ or there are n of the a_i 's whose product is in (N:M). \square

Proposition 3.3. Let R be a ring and M an R-module. If N_i is an n_i -prime submodule of M such that $(N_i : M) = (N_j : M)$ for all $1 \le i, j \le t$, then $\cap_{i=1}^t N_i$ is an n-prime submodule of M for $n = \max\{n_i \mid 1 \le i \le t\}$.

Proof: Let t = 2 and $n = \max\{n_1, n_2\}$. Suppose that $a_1 \cdots a_{n+1} m \in N_1 \cap N_2$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R), m \in M$. Then $a_1 \cdots a_{n+1} m \in N_1$ and $a_1 \cdots a_{n+1} m \in N_2$.

Since N_1 and N_2 are respectively n_1 -prime and n_2 -prime, either $m \in N_1 \cap N_2$ or there are n_1 of the a_i 's whose product is in $(N_1 : M)$ or there are n_2 of the a_i 's whose product is in $(N_2 : M)$. If $m \in N_1 \cap N_2$, then we are done. In otherwise, there are n of the a_i 's whose product is in $(N_1 \cap N_2 : M) = (N_1 : M) = (N_2 : M)$ for $n = \max\{n_1, n_2\}$. This implies that $N_1 \cap N_2$ is an n-prime submodule of M. The proof for t > 2 is follows similarly by induction on t. \Box

The following example shows that Proposition 3.3 is not true in general.

Example 3.4. Let $R = \mathbb{Z}$, $M = \mathbb{Z} \oplus \mathbb{Z}$, $N_1 = 2\mathbb{Z} \oplus \mathbb{Z}$ and $N_2 = 3\mathbb{Z} \oplus \mathbb{Z}$. Then N_1 and N_2 are 1-prime submodules, but $N = N_1 \cap N_2 = 6\mathbb{Z} \oplus \mathbb{Z}$ is not an n-prime submodule for all positive integer n. Since $(N : M) = 6\mathbb{Z}$ is not n-prime, by Theorem 2.8 and then by Lemma 2.2(2), N is not an n-prime submodule of M.

Theorem 3.5. Let R be a ring, M an R-module and N an n-prime submodule of M. Then for any submodule K of M either $K \subseteq N$ or $N \cap K$ is an n-prime submodule of K.

Proof: Let K be a submodule of M such that $K \nsubseteq N$. Then $N \cap K \subset K$. Now if $a_1 \cdots a_{n+1}k \in N \cap K$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and $k \in K$, then $a_1 \cdots a_{n+1}k \in N$. Since N is an n-prime submodule of $M, k \in N$ or there are n of the a_i 's whose product is in (N : M). Thus $k \in N \cap K$ or there are n of the a_i 's whose product is in $(N \cap K : K)$, since $(N : M) \subseteq (N \cap K : K)$.

Theorem 3.6. Let R be a ring and $f : M \to M'$ be a homomorphism of R-modules. Then the following hold:

- (1) If N' is an n-prime submodule of M' such that $f(M) \not\subseteq N'$, then $f^{-1}(N')$ is an n-prime submodule of M.
- (2) If f is surjective and N is an n-prime submodule of M such that ker $f \subseteq N$, then f(N) is an n-prime submodule of M'.

Proof: (1) Let N' be an *n*-prime submodule of M' and $a_1 \cdots a_{n+1}m \in f^{-1}(N')$ for non-unit elements $a_1, \ldots, a_{n+1} \in R$ and $m \in M$. Then $a_1 \cdots a_{n+1}f(m) = f(a_1 \cdots a_{n+1}m) \in N'$. Since N' is an *n*-prime submodule of M, $f(m) \in N'$ or there are *n* of the a_i 's whose product is in (N' : M'). Hence $m \in f^{-1}(N')$ or there are *n* of the a_i 's whose product is in $(f^{-1}(N') : M)$, since $(N' : M') \subseteq (f^{-1}(N') : M)$. (2) Let *N* be an *n*-prime submodule of *M* and $a_1 \cdots a_{n+1}m' \in f(N)$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and $m' \in M'$. Since *f* is surjective, m' = f(m) for some $m \in M$. Then

$$a_1 \cdots a_{n+1}m' = a_1 \cdots a_{n+1}f(m) = f(a_1 \cdots a_{n+1}m) = f(n)$$

for some $n \in N$. Thus $a_1 \cdots a_{n+1}m - n \in \ker f \subseteq N$. Therefore $a_1 \cdots a_{n+1}m \in N$. Since N is an n-prime submodule of M, either $m \in N$ or there are n of the a_i 's whose product is in (N : M). Hence $m' \in f(N)$ or there are n of the a_i 's whose product is in (f(N) : M') (Note that, $(N : M) \subseteq (f(N) : M')$, since f is surjective). **Corollary 3.7.** Let R be a ring, M an R-module and N, K proper submodules of M such that $N \subseteq K$. Then K is an n-prime submodule of M if and only if K/N is an n-prime submodule of M/N.

Proof: Consider the natural projection $\pi: M \to M/N$ defined by $\pi(m) = m + N$ and use Theorem 3.6.

Let R be a ring and M an R-module. Let N be a submodule of M. A submodule K of M maximal with respect to the property that $K \cap N = 0$ is called a complement of N in M. A submodule K of M will be called complement in M if there exists a submodule N of M such that K is a complement of N in M. A submodule N of M will be called essential if $N \cap K \neq 0$ for every non-zero submodule K of M. Also a submodule N of M will be called essential in a submodule L of M containing N, if N is essential as a submodule of L. It is not difficult to prove that if K is a complement in M, then K is not essential in any submodule L of M containing K.

Theorem 3.8. Let R be a ring, M an R-module and N an n-prime submodule of M. If K is a submodule of M containing N such that K/N is a complement in M/N, then K is an n-prime submodule of M.

Proof: Let $a_1 \cdots a_{n+1} m \in K$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and $m \notin K$. Then L = K + Rm is a submodule of M which contains K properly and $a_1a_2 \cdots a_{n+1}L \subseteq K$. K/N is not essential in L/N, since K/N is a complement in M/N. Thus there exists a submodule L' of L such that $N \subset L'$ and $K \cap L' = N$. Let $m' \in L' \setminus N$. Then $a_1a_2 \cdots a_{n+1}m' \in a_1a_2 \cdots a_{n+1}L' \subseteq (a_1a_2 \cdots a_{n+1}L) \cap L' \subseteq K \cap L' = N$. Since N is an n-prime submodule of M, there are n of the a_i 's whose product is in $(N:M) \subseteq (K:M)$. Hence K is an n-prime submodule of M.

Let M be an R-module. By zero divisors of M, denoted $Z_R(M)$, we mean that the set of elements $r \in R$ such that rm = 0 for some non-zero element $m \in M$.

Theorem 3.9. Let R be a ring, M an R-module and N a submodule of M. Let S be a multiplicatively closed subset of R such that $S \cap Z_R(M/N) = \emptyset$. If N is an n-prime submodule of M, then $S^{-1}N$ is an n-prime submodule of $S^{-1}M$.

Proof: Let N be an n-prime submoule of M. Since $S \cap Z_R(M/N) = \emptyset$, it is easily seen that $S^{-1}N \neq S^{-1}M$. Suppose that $\frac{a_1}{s_1} \cdots \frac{a_{n+1}}{s_{n+1}} \frac{m}{s} \in S^{-1}N$ for $\frac{a_1}{s_1}, \ldots, \frac{a_{n+1}}{s_{n+1}} \in S^{-1}R \setminus U(S^{-1}R)$ and $\frac{m}{s} \in S^{-1}M$. Then $\frac{a_1}{s_1} \cdots \frac{a_{n+1}}{s_{n+1}} \frac{m}{s} = \frac{n}{t}$ for some $n \in N$ and $t \in S$. Thus $a_1 \cdots a_{n+1}tum = s_1 \cdots s_{n+1}sun \in N$ for some $u \in S$. Clearly a_i 's are non-unit in R. Thus, since N is an n-prime submodule of M, there are n of the a_i 's whose product is in (N:M) or there are n-1 of the a_i 's whose product with tu is in (N:M) or $m \in N$. If $m \in N$, then $\frac{m}{s} \in S^{-1}N$. If there are n of the a_i 's whose product is in (N:M), then there are n of the $\frac{a_i}{s_i}$'s whose product is in $S^{-1}(N:M) \subseteq (S^{-1}N:S^{-1}M)$. If there are n-1 of the a_i 's

whose product with tu is in (N:M), for example $a_1 \cdots a_{n-1}(tu) \in (N:M)$, then $a_1 \cdots a_n(tu) \in (N:M)$. Thus

$$\frac{a_1}{s_1} \cdots \frac{a_{n-1}}{s_{n-1}} \frac{a_n}{s_n} = \frac{a_1}{s_1} \cdots \frac{a_{n-1}}{s_{n-1}} \frac{a_n(tu)}{s_n(tu)}$$
$$= \frac{a_1 \cdots a_n(tu)}{s_1 \cdots s_n(tu)} \in S^{-1}(N:M) \subseteq (S^{-1}N:S^{-1}M).$$

This implies that $S^{-1}N$ is an *n*-prime submodule of $S^{-1}M$.

Theorem 3.10. Let R be a ring, M, M' R-modules, N a submodule of M, N' a submodule of M' and I, I' two ideals of R. Then the following hold:

- (1) If $N \times N'$ is an n-prime submodule of $M \times M'$, then N and N' are respectively an n-prime submodule of M and M'. The converse is true if (N : M) = (N' : M').
- (2) N (resp. N') is an n-prime submodule of M (resp. M') if and only if N×M' (resp. M×N') is an n-prime submodule of M×M'.
- (3) If $I \times I'$ is an n-prime submodule of the R-module $R \times R$, then I and I' are n-prime ideals of R. The converse is true if I = I'.
- (4) If I × I' is an n-prime ideal of R × R, then I and I' are n-prime ideals of R. The converse is true if I = I'.
- (5) I (resp. I') is an n-prime ideal of R (resp. R') if and only if I × R' (resp. R × I') is an n-prime submodule of the R-module R × R'.
- (6) I (resp. I') is an n-prime ideal of R (resp. R') if and only if I × R' (resp. R × I') is an n-prime ideal of R × R'.

Proof: (1) Let $N \times N'$ be an *n*-prime submodule of $M \times M'$ and let $a_1 \cdots a_{n+1}m \in N$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and $m \in M$. Then $a_1 \cdots a_{n+1}(m, 0) \in N \times N'$. Thus $(m, 0) \in N \times N'$ or there are *n* of the a_i 's whose product is in $(N \times N' : M \times M') = (N : M) \cap (N' : M')$. Hence *N* is an *n*-prime submodule of *M*. By a similar argument, N' is an *n*-prime submodule of M'. Convesely let $a_1 \cdots a_{n+1}(m, m') \in N \times N'$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and $(m, m') \in M \times M' \setminus N \times N'$. Then $m \notin N$ or $m' \notin N'$. Let $m \notin N$. Then $a_1 \cdots a_{n+1}m \in N$, implies that there are *n* of the a_i 's whose product is in $(N : M) = (N \times N' : M \times M')$.

(2) Let N be an n-prime submodule of M and $a_1 \cdots a_{n+1}(m, m') \in N \times M'$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and $(m, m') \in M \times M'$. Then $a_1 \cdots a_{n+1} m \in N$. Since N is an n-prime submodule of M, either $m \in N$ or there are n of the a_i 's whose product is in $(N : M) = (N \times M' : M \times M')$. This implies that $N \times M'$ is an n-prime submodule of $M \times M'$. The converse is similar to (1). By a similar argument, N' is an n-prime submodule of M' if and only if $M \times N'$ is an n-prime submodule of $M \times M'$.

(3) By (1).

(4) The proof is similar to the proof of (1).

(5) By (2).

(6) The proof is similar to the proof of (2).

Example 3.11. Let $R = \mathbb{Z}_{P^t}$, $M = R \oplus R$, $N_n = I_n \oplus I_n$, $L_n = R \oplus I_n$ and $K_n = I_n \oplus R(n < t)$. Then by Example 2.6 and Theorem 3.10(3), N_n , L_n and K_n are n-prime submodules of M.

Let R be a ring and M an R-module. Then $R(+)M = R \times M$ is a ring with identity (1,0) under addition defined by (r,m) + (s,n) = (r+s,m+n) and multiplication defined by (r,m)(s,n) = (rs,rn+sm). We view R as a subring of R(+)M via $r \mapsto (r,0)$.

Theorem 3.12. Let R be a ring, M an R-module, I an n_1 -absorbing ideal of R and N an n_2 -prime submodule of M with $IM \subseteq N$. Then I(+)N is an n-absorbing ideal of R(+)M for $n = n_1 + n_2$. Conversely if I(+)N is an n-absorbing ideal of R(+)M, then I is an n-absorbing ideal of R.

Proof: Let $n = n_1 + n_2$. Assume that $(a_1, m_1) \cdots (a_{n+1}, m_{n+1}) \in I(+)N$ for $(a_1, m_1), \ldots, (a_{n+1}, m_{n+1}) \in R(+)M$. Without loss of generality suppose that these elements are not in U(R(+)M). Then $a_1 \cdots a_{n+1} \in I$ and

$$\sum_{i=1}^{n+1} a_1 \cdots a_{i-1} a_{i+1} \cdots a_{n+1} m_i \in N$$
(3.1)

Since *I* is an n_1 -absorbing ideal of *R*, there are n_1 of the a_i 's whose product is in *I*. For example, let $a_1 \cdots a_{n_1} \in I$. The terms of (3.1) that contain $a_1 \cdots a_{n_1}$, are in $IM \subseteq N$. Thus $\sum_{i=1}^{n_1} a_1 \cdots a_{i-1} a_{i+1} \cdots a_{n+1} m_i \in N$, where a_0 is assumed that to be 1. But

$$\sum_{i=1}^{n_1} a_1 \cdots a_{i-1} a_{i+1} \cdots a_{n+1} m_i = a_{n_1+1} \cdots a_{n+1} \sum_{i=1}^{n_1} a_1 \cdots a_{i-1} a_{i+1} m_i \in N$$

Since U(R(+)M) = U(R)(+)M by [2, Theorem 3.7], a_i 's $(1 \le i \le n+1)$ are nonunit. Now, since N is an n_2 -prime submodule of M, $\sum_{i=1}^{n_1} a_1 \cdots a_{i-1} a_{i+1} m_i \in N$ or there are n_2 of the a_i 's $(n_1 + 1 \le i \le n+1)$ whose product is in (N:M).

If $\sum_{i=1}^{n_1} a_1 \cdots a_{i-1} a_{i+1} m_i \in N$, then $(a_1, m_1) \cdots (a_{n_1}, m_{n_1}) \in I(+)N$, and if there are n_2 of the a_i 's $(n_1 + 1 \le i \le n + 1)$ whose product is in (N : M), for example $a_{n_1+1} \cdots a_n \in (N : M)$, then

$$(a_1, m_1) \cdots (a_{n_1}, m_{n_1}) (a_{n_1+1}, m_{n_1+1}) \cdots (a_n, m_n) \in I(+)N.$$

Hence I(+)N is an $n = n_1 + n_2$ -absorbing ideal of R(+)M. Now let I(+)N be an *n*-absorbing ideal of R(+)M, and let $a_1 \cdots a_{n+1} \in I$ for $a_1, \ldots, a_{n+1} \in R$. Then $(a_1, 0) \cdots (a_{n+1}, 0) \in I(+)N$. Thus there are *n* of $(a_i, 0)$'s whose product is in I(+)N. Hence there are *n* of the a_i 's whose product is in I and so I is an *n*-absorbing ideal of R. \Box

4. AP *n*-modules

Let R be a ring, M an R-module and I a proper ideal of R. Let $M_n(I)$ denote a submodule of M generated by the following set: $\{m \mid a_1 \cdots a_{n+1}m \in IM \text{ for some } a_1, \ldots, a_{n+1} \in R \setminus U(R) \text{ such that } a_1 \cdots a_{n+1} \notin I\}$

Lemma 4.1. Let R be a ring, M an R-module and I an n-absorbing ideal of R. If $M_n(I) \subseteq IM \neq M$, then IM is an n-prime submodule of M.

Proof: Let $a_1 \cdots a_{n+1} m \in IM$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ such that no proper subproduct of the a_i 's is in (IM : M). Since $I \subseteq (IM : M)$ and I is an *n*-absorbing ideal of R, $a_1 \cdots a_{n+1} \notin I$. Thus $m \in M_n(I) \subseteq IM \neq M$, and hence IM is an *n*-prime submodule of M.

The following example shows that Lemma 4.1 fails if the condition that $M_n(I) \subseteq IM$ is removed.

Example 4.2. Let $R = \mathbb{Z}$ and $M = \mathbb{Z} \oplus \mathbb{Z}$. Then $I = 4\mathbb{Z}$ is a 2-absorbing ideal of R, but $IM = 4\mathbb{Z} \oplus 4\mathbb{Z}$ is not a 2-prime submodule of M. It is easily seen that $2\mathbb{Z} \oplus 2\mathbb{Z} \subseteq M_2(I)$, and thus $M_2(I) \notin IM$.

Definition 4.3. Let R be a ring, M an R-module and n a positive integer. We say that M is an AP n-module if $M_n(I) \subseteq IM \neq M$ for any n-absorbing ideal I of R. Also, R is called an AP n-ring if R is an AP n-module as R-module.

Remark 4.4. We say that M is an AP n-module because for any n-Absorbing ideal I of R, IM is an n-Prime submodule of M by Lemma 4.1.

Lemma 4.5. Let R be a ring and n a positive integer. Then R is an AP n-ring if and only if every n-absorbing ideal of R is an n-prime ideal of R.

Proof: Let R be an AP n-ring, I an n-absorbing ideal of R and let $a_1 \cdots a_{n+1} r \in I$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and $r \in R$ such that no proper subproduct of the a_i 's is in I. Since I is n-absorbing, $a_1 \cdots a_{n+1} \notin I$. Thus $r \in M_n(I) \subseteq I$. Hence I is n-prime. Conversely suppose that every n-absorbing ideal of R is an n-prime ideal of R. Let I be an n-absorbing ideal of R and $r \in R$ be a generator of $M_n(I)$. Then $a_1 \cdots a_{n+1}r \in IR = I$ for some $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ such that $a_1 \cdots a_{n+1} \notin I$. Thus no proper subproduct of the a_i 's is in I and hence $r \in I$, since I is an n-prime ideal of R. Therefore R is an AP n-ring.

Corollary 4.6. Let M be a multiplication R-module, N a proper submodule of M and n a positive integer. Consider the following statements:

(1) N is an n-prime submodule of M.

 $I\}.$

- (2) (N:M) is an n-prime ideal of R.
- (3) N = IM for some *n*-prime ideal I of R.

Then $(1) \Leftrightarrow (2) \Rightarrow (3)$. Moreover, if M is a finitely generated faithful module, then $(3) \Rightarrow (2)$.

Proof: (1) \Rightarrow (2) By Lemma 2.2(2).

 $(2) \Rightarrow (1)$ Let I = (N : M). We show that $(M_n(I) : M) \subseteq I$ and use Lemma 4.1. Let $r \in (M_n(I) : M)$ and $m \in M \setminus M_n(I)$. Then $rm \in M_n(I)$. Thus $rm = s_1m_1 + \dots + s_tm_t$ for some $s_i \in R$ and $m_i \in M_n(I)$ $(1 \le i \le t)$ by definition of $M_n(I)$. Since $m_i \in M_n(I)$, there are $a_{i_1}, \dots, a_{i_{n+1}} \in R \setminus U(R)$ such that $a_{i_1} \cdots a_{i_{n+1}}m_i \in IM$ and $a_{i_1} \cdots a_{i_{n+1}} \notin I$. Then $\prod_{i=1}^t \prod_{j=1}^{n+1} a_{i_j}rm \in IM$. Since $m \notin M_n(I)$,

$$a_{1_1} \cdots a_{1_{n+1}} (\prod_{i=2}^t \prod_{j=1}^{n+1} a_{i_j} r) \in I.$$

Thus we have $\prod_{i=2}^{t} \prod_{j=1}^{n+1} a_{i_j} r \in I$, since I is an n-prime and no proper subproduct of a_{1_j} 's $(1 \leq j \leq n+1)$ is in I. Repeating this process follows that $r \in I$. Hence $(M_n(I): M) \subseteq I$. Since M is multiplication, $M_n(I) \subseteq IM = N$. $(2) \Rightarrow (3)$ Clear. $(3) \Rightarrow (2)$ By [5, Theorem 3.1], (N:M) = I.

Corollary 4.7. Let R be a ring and M a finitely generated faithful multiplication R-module. Then R is an AP n-ring if and only if M is an AP n-module.

Proof: Let R be an AP n-ring and I an n-absorbing ideal of R. Then I is an n-prime ideal of R, by Lemma 4.5. Since M is a multiplication module, by the proof of Corollary 4.6((2) \Rightarrow (1)), $M_n(I) \subseteq IM$. Now since M is a finitely generated faithful multiplication module, by [5, Theorem 3.1], $IM \neq M$. Hence M is an AP n-module. Conversely suppose that M is an AP n-module and I is an n-absorbing ideal of R. Then by Lemma 4.1, IM is an n-prime submodule of M. Since M is a finitely generated faithful multiplication module, by Lemma 4.1, IM is an n-prime submodule of M. Since M is a finitely generated faithful multiplication module, by Lemma 2.2(2) and [5, Theorem 3.1], (IM : M) = I is an n-prime ideal of R. Hence by Lemma 4.5, R is an AP n-ring.

Theorem 4.8. Let (R, \mathfrak{m}) be an Artinian local ring and n a positive integer such that $\mathfrak{m}^n = \mathfrak{m}^{n+1} = \cdots$. Then every ideal of R is an n-prime ideal. In particular, R is an AP n-ring.

Proof: Note that R is Noetherian and dim R = 0, by [9, Corollary 8.45]. Let I be an ideal of R. Then I is an m-primary. Thus $\mathfrak{m}^n \subseteq \mathfrak{m}^t \subseteq I$ for some positive integer $t \leq n$. Hence by Theorem 2.5, I is an *n*-prime ideal of R. The "in particular" statement is clear.

Theorem 4.9. Let R be a Noetherian valuation domain and n a positive integer. Then R is an AP n-ring.

Proof: Note that (R, \mathfrak{m}) is a local PID and then dimR = 1. Let I be an n-absorbing ideal of R. By [9, Theorem 15.42], $I = \mathfrak{m}^t$ for some positive integer t. Let $\mathfrak{m} = Rp$ for some prime element $p \in R$ and t > n. Then $p^n = rp^t$ for some $r \in R$, since I is an n-absorbing ideal of R. Thus $rp^{t-n} = 1$ and hence p is unit, which is a contradiction. Therefore $t \leq n$. Then by Theorem 2.5, I is a t-prime ideal of R. Hence by Lemma 4.5, R is an AP n-ring.

Corollary 4.10. Let R be a DVR and n a positive integer. Then R is an AP n-ring.

Example 4.11. Let $R = \mathbb{Z}[\sqrt{-5}]$, $M = 2R + (\sqrt{-5} - 1)R$ and n a positive integer. Since R is a Dedekind domain, M is a finitely generated faithful multiplication R-module. Then by Corollary 4.10, R_P is an AP n-ring for all non-zero prime ideal P of R. Since M_P is a finitely generated faithful multiplication R_P -module, by Corollary 4.7, M_P is an AP n-module.

Theorem 4.12. Let R be a zero-dimensional Bézout ring and n a positive integer. Then for each prime ideal p of R, R_p is an AP n-ring.

Proof: Without loss of generality, we may assume that R is a local ring. Let I be an *n*-absorbing ideal of R. Since (R, \mathfrak{m}) is local and $\dim R = 0$, $\sqrt{I} = \mathfrak{m}$. By [1, Lemma 5.4], $\mathfrak{m}^n \subseteq I$. Thus by Theorem 2.5, I is an *n*-prime ideal of R. \Box

Proposition 4.13. Let R be a ring, M an R-module and N_i an n_i -prime submodule of M for all $1 \le i \le t$. Then $(\cap_{i=1}^t N_i : M)$ is an n-absorbing ideal of R for $n = n_1 + \cdots + n_t$. Moreover if M is a multiplication AP n-module, then $\cap_{i=1}^t N_i$ is an n-prime submodule of M.

Proof: By Theorem 4.6, $(N_i : M)$ is an n_i -absorbing ideal of R. Hence by [1, Theorem 2.1(c)], $(\cap_{i=1}^t N_i : M) = \cap_{i=1}^t (N_i : M)$ is an n-absorbing ideal of R for $n = n_1 + \cdots + n_t$.

For "moreover" part, since M is multiplication, $\bigcap_{i=1}^{t} N_i = (\bigcap_{i=1}^{t} N_i : M)M$. Therefore $\bigcap_{i=1}^{t} N_i$ is an *n*-prime submodule of M, by Lemma 4.1.

Let R be a ring and M an R-module. If I is an n_1 -absorbing ideal of a ring R and N is an n_2 -prime submodule of an R-module M, then IN is not necessarily an n-prime submodule of M for some positive integer n, as the following example shows.

Example 4.14. Let $R = \mathbb{Z}$ and $M = \mathbb{Z} \oplus \mathbb{Z}$. Then $I = 4\mathbb{Z}$ is a 2-absorbing ideal of R and $N = 3\mathbb{Z} \oplus \mathbb{Z}$ is a 1-prime (prime) submodule of M but $IN = 12\mathbb{Z} \oplus 4\mathbb{Z}$ is not an n-prime submodule of M for any positive integer n. Since $(IN : M) = 12\mathbb{Z}$ is not an n-prime ideal of R, by Theorem 2.8.

Theorem 4.15. Let R be a ring, M a finitely generated faithful multiplication R-module, I an n_1 -absorbing ideal of R and N an n_2 -prime submodule of M. If R is an AP n-ring for $n = n_1 + n_2$ and two ideals I and (N : M) are comaximal, then IN is an n-prime submodule of M.

Proof: Since M is a multiplication R-module, (IN : M)M = IN = I(N : M)M. By [5, Theorem 3.1], hypoteses and [1, Theorem 2.1(c)], $(IN : M) = I(N : M) = I \cap (N : M)$ is an n-absorbing ideal of R for $n = n_1 + n_2$. Hence, IN is an n-prime submodule of M, by Corollary 4.7 and Lemma 4.1.

Lemma 4.16. Let M be a finitely generated faithful multiplication R-module. Then the ideals I_1, \ldots, I_t are pairwise comaximal ideals of R if and only if $N_1 = I_1M, \ldots, N_t = I_tM$ are pairwise comaximal submodules of M. In this case, $N_1 \cdots N_t = N_1 \cap \cdots \cap N_t$.

Proof: The necessity is clear. To prove the sufficiency, we observe that $(I_1 + I_2)M = I_1M + I_2M = N_1 + N_2 = M$. Since M is finitely generated faithful multiplication, by [5, Theorem 3.1], $I_1 + I_2 = R$. In this case, by [5, Corollary 1.7], $N_1N_2 = I_1I_2M = (I_1 \cap I_2)M = I_1M \cap I_2M = N_1 \cap N_2$. Now the assertion follows by induction on t.

Theorem 4.17. Let R be a ring and M a finitely generated faithful multiplication R-module. If R is an AP n-ring and P_1, \ldots, P_n are prime submodules of M that are pairwise comaximal, then $N = P_1 \cdots P_n$ is an n-prime submodule of M.

Proof: By [5, Corollary 2.11], $P_i = p_i M$ for some prime ideal p_i of R and by Lemma 4.16, p_i 's are pairwise comaximal. Then $N = P_1 \cdots P_n = p_1 \cdots p_n M$. By [1, Theorem 2.6], $p_1 \cdots p_n$ is an *n*-absorbing ideal of R. Therefore N is an *n*-prime submodule of M, by Corollary 4.7 and Lemma 4.1.

Lemma 4.18. Let R be a ring, M a multiplication R-module and N a maximal submodule of M. If M is an AP n-module, then N^n is an n-prime submodule of M. Moreover, $\nu(N^n) \leq n$, and $\nu(N^n) = n$ if $N^{n+1} \subset N^n$.

Proof: By [5, Theorem 2.5], N = mM for some maximal ideal m of R. Then m^n is an n-absorbing ideal of R, by [1, Lemma 2.8]. Hence, $N^n = m^n M$ is an n-prime submodule of M, by Lemma 4.1.

The first part of the "moreover" statement is clear. Now if $N^{n+1} \subset N^n$, then $m^{n+1} \subset m^n$. Thus by [1, Lemma 2.8], $\omega(m^n) = n$. On the other hand, $(N^n : M) = m^n$ and by Lemma 2.2(2), $\omega(N^n : M) \leq \nu(N^n)$. Hence $\nu(N^n) = n$. \Box

Theorem 4.19. Let R be a ring, M a multiplication R-module and N_1, \ldots, N_n are maximal submodules of M. If M is an AP n-module, then $N = N_1 \cdots N_n$ is an n-prime submodule of M. Moreover, $\nu(N) \leq n$. **Proof:** By [5, Theorem 2.5], $N_i = m_i M$ for some maximal ideal m_i of R. Then $N = m_1 M \cdots m_n M = m_1 \cdots m_n M$ and $m_1 \cdots m_n$ is an *n*-absorbing ideal of R by [1, Theorem 2.9]. Since M is an AP *n*-module, N is an *n*-prime submodule of M, by Lemma 4.1. The "moreover" statement is clear.

We call a submodule N is a minimal n-prime submodule of M if N is minimal among all n-prime submodules of M with respect to inclusion.

Proposition 4.20. Let R be a ring, M a finitely generated faithful multiplication R-module and n a positive integer. If M is an AP n-module, then the set of minimal n-prime submodules of M is equal to

 $\{IM \mid I \text{ is a minimal } n \text{-absorbing ideal of } R\}.$

Proof: Let *I* be a minimal *n*-absorbing ideal of *R*. Since *M* is an AP *n*-module, *IM* is an *n*-prime submodule of *M*. Assume that *N* is an *n*-prime submodule of *M* such that $N \subseteq IM$. Then by [5, Theorem 3.1],

$$(N:M) \subseteq (IM:M) = I.$$

Since I is a minimal n-absorbing ideal of R and (N : M) is an n-absorbing ideal of R by Lemma 2.2(2), (N : M) = I. Hence N = (N : M)M = IM and thus IM is a minimal n-prime submodule of M. Now, assume that N is a minimal n-prime submodule of M. Then (N : M) is an n-absorbing ideal of R and N = (N : M)M. Assume that I is an n-absorbing ideal of R such that $I \subseteq (N : M)$. Then $IM \subseteq N$ and IM is an n-prime submodule of M. Thus minimality of N implies that IM = N. Therefore I = (IM : M) = (N : M). Hence (N : M) is a minimal n-absorbing ideal of R. \Box

At the end of this paper should be noted that every *n*-absorbing ideal of a ring R contains a minimal *n*-absorbing ideal [6, Corollary 2.2]. Now if M is a finitely generated faithful multiplication AP *n*-module, then by Proposition 4.20 every *n*-prime submodule N of M contains a minimal *n*-prime submodule of M.

Acknowledgments

The authors would like to thank the referee for helpful comments.

References

- D. F. Anderson, A. Badawi, On n-absorbing ideals in commutative rings, Comm. Algebra 39, 1646-1672, (2011).
- 2. D. D. Anderson, M. Winders, Idealization of a module, Comm. Algebra 1, 3-56, (2011).
- A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75, 417-429, (2007).
- 4. J. Dauns, Prime submodules, J. Reine Angew. Math. 298, 156-181, (1978).
- 5. Z. El-Bast, P. F. Smith, Multiplication modules, Comm. Algebra 16, 755-799, (1988).

- H. Fazaeli Moghimi, S. Rahimi Naghani, On n-absorbing ideals and the n-Krull dimension of a commutative ring, J. Korean Math. Soc. 53(6), 1225-1236, (2016).
- R. L. McCasland, M. E. Moore, P. F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra 25, 79-103, (1997).
- S. Moradi, A. Azizi, 2-absorbing and n-weakly prime submodules, Miskolc Math. Notes 13, 75-86, (2012).
- 9. R. Y. Sharp, *Steps in Commutative Algebra*, London Mathematical Society Student Texts 51, Cambridge Univ. Press, Cambridge 1990.
- A. Yousefian Darani, F. Soheilnia, On n-absorbing submodules, Math. commun. 17, 547-557, (2012).
- B. Zarei Jalal Abadi, H. Fazaeli Moghimi, On (m, n)-absorbing ideals of commutative rings, To appear in Proc. Indian Nat. Sci. Acad., DOI: 10.1007/s12044-016-0323-2.

Hosein Fazaeli Moghimi (Corresponding Author), Department of Mathematics, University of Birjand, Iran. E-mail address: hfazaeli@birjand.ac.ir

and

Batool Zarei Jalal Abadi, Department of Mathematics, University of Birjand, Iran. E-mail address: zareijalalabadi@birjand.ac.ir