

(3s.) **v. 37** 1 (2019): 113–124. ISSN-00378712 IN PRESS doi:10.5269/bspm.v37i1.20200

The Maximal Subgroups of Sylow Subgroups and the Structure of Finite Groups*

Changwen Li, Xuemei Zhang, Jianhong Huang

ABSTRACT: In this paper we investigate the influence of some subgroups of Sylow subgroups with semi cover-avoiding property and E-supplementation on the structure of finite groups. Some recent results are generalized and unified.

Key Words: Semi cover-avoiding property, E-supplemented, p-nilpotent.

Contents

1	Introduction	113
2	Preliminaries	114

3 Main results

1. Introduction

All groups considered in this paper will be finite.

A subgroup H of a group G is said to be S-quasinormal in G if H permutes with every Sylow subgroup of G. This concept was introduced by Kegel. In 2007, Skiba (see [22]) introduced the concept of S-supplemented subgroup. A subgroup H of G is said to be S-supplemented in G if there is a subgroup K of G such that G = HK and $H \cap K \leq H_{sG}$, where H_{sG} denotes the subgroup of H generated by all those subgroups of H which are S-quasinormal in G. As another generalization of the S-quasinormality, the concept of S-quasinormally embedded subgroup was given by Ballester-Bolinches and Pedraza-Aguilera (see [2]). A subgroup H is said to be S-quasinormally embedded in G if for each prime p dividing |H|, a Sylow p-subgroup of H is also a Sylow p-subgroup of some S-quasinormal subgroup of G. In 2012, Li (see [4]) proposed the definition of E-supplemented subgroup which covers properly both S-quasinormally embedding property and Skiba's weakly Ssupplementation. A subgroup H is said to be E-supplemented in G if there is a subgroup K of G such that G = HK and $H \cap K \leq H_{eG}$, where H_{eG} denotes the subgroup of H generated by all those subgroups of H which are S-quasinormally embedded in G.

On the other hand, we say that a subgroup H of a group G covers G-chief factor A/B if HA = HB, and H avoids A/B if $H \cap A = H \cap B$. If H covers or

Typeset by $\mathcal{B}^{s}\mathcal{M}_{M}$ style. © Soc. Paran. de Mat.

 $^{^{\}ast}\,$ The project is supported by the Natural Science Foundation of China (No: 11401264 and 11571145

²⁰¹⁰ Mathematics Subject Classification: 20D10, 20D20. Submitted March 18, 2013. Published December 10, 2016

avoids every chief factor of G, then H is said to have the cover-avoiding property in G. This conception was first studied by Gaschütz (see [2]) to study the solvable groups, later by Gillam (see [3]) and Ezquerro (see [5]), et al. As a generalization of the cover-avoiding property, Fan, Guo and Shum (see [8]) defined the semi cover-avoiding property. A subgroup H of a group G is said to have the semi cover-avoiding property in G, if there exists a chief series of G such that H either covers or avoids every G-chief factor of this series.

A subgroup that satisfies the cover-avoiding property does not necessary need to be E-supplemented and vice-versa. In this paper, we will focus on the two kinds of subgroups and establish the structure of groups under the assumption that all maximal subgroups of a Sylow subgroup either have the semi cover-avoiding property or are E-supplemented subgroups. A series of previously known results are generalized, such as in [6,9,11,13,15,16,17,18,19,21,23,24,25].

2. Preliminaries

In this section, we list some lemmas which will be useful for the proofs of our main results.

Lemma 2.1 ([11, Lemmas 2.5 and 2.6]). Suppose that H has the semi coveravoiding property in G.

(1) If $H \leq L \leq G$, then H has the semi cover-avoiding property in L.

(2) If $N \trianglelefteq G$ and $N \le H \le G$, then H/N has the semi cover-avoiding property in G/N.

(3) If H is a π -subgroup and N is a normal π' -subgroup of G, then HN/N has the semi cover-avoiding property in G/N.

Lemma 2.2 ([4, Lemma 2.3]). Let H be a E-supplemented subgroup of a group G.

(1) If $H \leq L \leq G$, then H is E-supplemented in L.

(2) If $N \triangleleft G$ and $N \leq H \leq G$, then H/N is E-supplemented in G/N.

(3) If H is a π -subgroup and N is a normal π' -subgroup of G, then HN/N is E-supplemented in G/N.

Lemma 2.3 ([11, Lemma 3.1]). Let p be a prime dividing the order of the group G with (|G|, p-1) = 1 and let P be a p-Sylow subgroup of G. If there is a maximal subgroup P_1 of P such that P_1 has the semi cover-avoiding property in G, then G is p-solvable.

Lemma 2.4 ([18, Lemma 2.8]). Let M be a maximal subgroup of G and P a normal p-subgroup of G such that G = PM, where p is a prime. Then $P \cap M$ is a normal subgroup of G.

Lemma 2.5 ([19, Lemma 2.7]). Let G be a group and p a prime dividing |G| with (|G|, p-1) = 1.

(1) If N is normal in G of order p, then $N \leq Z(G)$.

(2) If G has cyclic Sylow p-subgroup, then G is p-nilpotent.

(3) If $M \leq G$ and |G:M| = p, then $M \leq G$.

Lemma 2.6 ([20, Main Theorem]). Suppose that G has a Hall π -subgroup where π is a set of odd primes. Then all Hall π -subgroups of G are conjugate.

Lemma 2.7 ([21, Lemma 2.6]). Let $H \neq 1$ be a solvable normal subgroup of a group G. If every minimal normal subgroup of G which is contained in H is not contained in $\Phi(G)$, then the Fitting subgroup F(H) of H is the direct product of minimal normal subgroups of G which are contained in H.

Lemma 2.8 ([22, Lemma 2.16]). Let \mathcal{F} be a saturated formation containing \mathcal{U} . Suppose that G is a group with a normal subgroup N such that $G/N \in \mathcal{F}$. If N is cyclic, then $G \in \mathcal{F}$.

Lemma 2.9 ([27, Lemma 2.3]). Suppose that H is S-quasinormal in G, and let P be a Sylow p-subgroup of H. If $H_G = 1$, then P is S-quasinormal in G.

Lemma 2.10 ([28, Lemma A]). If P is an S-quasinormal p-subgroup of a group G for some prime p, then $N_G(P) \ge O^p(G)$.

Lemma 2.11 ([27, Lemma 2.4]). Suppose that P is a p-subgroup of a group G contained in $O_p(G)$. If P is S-quasinormally embedded in G, then P is S-quasinormal in G.

3. Main results

Theorem 3.1. Let p be a prime dividing the order of a group G with (|G|, p-1) = 1. If G has a Sylow p-subgroup P such that every maximal subgroup of P either has the semi cover-avoiding property or is E-supplemented in G, then G is p-nilpotent.

Proof: Assume that the assertion is false and let G be a minimal counterexample. We will derive a contradiction in several steps.

(1) $O_{p'}(G) = 1.$

Assume that $O_{p'}(G) \neq 1$. Then $PO_{p'}(G)/O_{p'}(G)$ is a Sylow *p*-subgroup of $G/O_{p'}(G)$. Suppose that $M/O_{p'}(G)$ is a maximal subgroup of $PO_{p'}(G)/O_{p'}(G)$. Then there exists a maximal subgroup P_1 of P such that $M = P_1O_{p'}(G)$. By the hypothesis of the theorem, P_1 either has the semi cover-avoiding property or is E-supplemented in G. Then $M/O_{p'}(G) = P_1O_{p'}(G)/O_{p'}(G)$ either has the semi cover-avoiding property or is E-supplemented in $G/O_{p'}(G)$ hy Lemmas 2.1 and 2.2. It is clear that $(|G/O_{p'}(G)|, p-1) = 1$. The minimal choice of G implies that $G/O_{p'}(G)$ is *p*-nilpotent, and so G is *p*-nilpotent, a contradiction. Therefore, we have $O_{p'}(G) = 1$.

(2) $O_p(G) \neq 1$.

If not, suppose that $O_p(G) = 1$. If there is a maximal subgroup of P which has the semi cover-avoiding property in G, then G is p-solvable by Lemma 2.3. Since $O_{p'}(G) = 1$ by step (1), we have $O_p(G) \neq 1$, a contradiction. Thus we may assume that all maximal subgroups of P are E-supplemented in G. If $p \neq 2$, then G is odd from the assumption that (|G|, p - 1) = 1. By the Feit-Thompson Theorem, G is solvable. It follows that $O_p(G) \neq 1$ by step (1), a contradiction. If p = 2, then we get also G is solvable by [4, Lemma 3.1], the same contradiction. (3) If $N \leq O_p(G)$, then G/N is *p*-nilpotent. Consequently, G is solvable.

Suppose that M/N is a maximal subgroup of P/N. Then M is a maximal subgroup of P. By the hypothesis of the theorem, M either has the semi coveravoiding property or is E-supplemented in G. Then M/N either has the semi cover-avoiding property or is E-supplemented in G/N by Lemmas 2.1 and 2.2. Therefore G/N satisfies the hypothesis of the theorem. The minimal choice of G implies that G/N is p-nilpotent. If p is odd, then G is solvable. If p = 2, then G/N is solvable, and so G is solvable.

(4) $O_p(G)$ is the unique minimal normal subgroup of G.

Let N be a minimal normal subgroup of G. Since G is solvable by step (3), N is an elementary abelian subgroup. Note that $O_{p'}(G) = 1$, then we have N is a psubgroup and so $N \leq O_p(G)$. Step (3) implies that $G/O_p(G)$ is p-nilpotent. Since the class of all p-nilpotent groups is a saturated formation, N is a unique minimal normal subgroup of G and $N \nleq \Phi(G)$. Choose M to be a maximal subgroup of G such that G = NM. Obviously, $G = O_p(G)M$ and so $O_p(G) \cap M$ is normal in G by Lemma 2.4. The uniqueness of N yields $N = O_p(G)$.

(5) The final contradiction.

By the proof in step (4), G has a maximal subgroup M such that $G = MO_p(G)$ and $G/O_p(G) \cong M$ is p-nilpotent. Clearly, $P = O_p(G)(P \cap M)$. Furthermore, $P \cap M < P$. Thus, there exists a maximal subgroup V of P such that $P \cap M \leq V$. Hence, $P = O_p(G)V$. By the hypothesis, V either has the semi cover-avoiding property or is E-supplemented in G.

Case I: V has the semi cover-avoiding property in G. Since $O_p(G)$ is the unique minimal normal subgroup of G, V covers or avoids $O_p(G)/1$. If V covers $O_p(G)/1$, then $VO_p(G) = V$, i.e., $O_p(G) \leq V$. It follows that $P = O_p(G)V = V$, a contradiction. If V avoids $O_p(G)/1$, then $V \cap O_p(G) = 1$. Since $V \cap O_p(G)$ is a maximal subgroup of $O_p(G)$, we have that $O_p(G)$ is of order p and so $O_p(G)$ lies in Z(G)by Lemma 2.5. By step (3), we have $G/O_p(G)$ is p-nilpotent. Then G/Z(G) is p-nilpotent, and so G is p-nilpotent, a contradiction.

Case II: V is E-supplemented in G. Then there is a subgroup T of G such that G = VT and $V \cap T \leq V_{eG}$. Assume that T is p-nilpotent. Let $T_{p'}$ be the normal Hall p'-subgroup of T. Since M is p-nilpotent, we may suppose M has a normal Hall p'-subgroup $M_{p'}$ and $M \leq N_G(M_{p'}) \leq G$. The maximality of M implies that M = $N_G(M_{p'})$ or $N_G(M_{p'}) = G$. If the latter holds, then $M_{p'} \leq G$ and $M_{p'}$ is actually the normal p-complement of G, which is contrary to the choice of G. Hence, we may assume $M = N_G(M_{p'})$. By applying Lemma 2.6 and the Feit-Thompson Theorem, there exists $g \in G$ such that $T_{p'}^g = M_{p'}$. Hence, $T^g \leq N_G(T_{p'}^g) = N_G(M_{p'}) = M$. However, $T_{p'}$ is normalized by T, so g can be considered as an element of V. Thus, $G = VT^g = VM$ and $P = V(P \cap M) = V$, a contradiction. Hence T is not p-nilpotent. If $V_{eG} = 1$, then $|T|_p = p$. By Lemma 2.5, T is p-nilpotent, a contradiction. Thus we may assume that $V_{eG} \neq 1$. Let $U_1, U_2, ..., U_s$ be all the nontrivial subgroups of V which are S-quasinormally embedded in G. For every $i \in \{1, 2, ..., s\}$, then there is an S-quasinormal subgroup K_i of G such that U_i is a Sylow *p*-subgroup of K_i . Suppose that for some $i \in \{1, 2, ..., s\}$, we have $(K_i)_G \neq 1$. Then $O_p(G) \leq (K_i)_G \leq K_i$ by step (4). It follows that $O_p(G) \leq U_i \leq V$, and so $P = O_p(G)V = V$. This contradiction shows that for all $i \in \{1, 2, ..., s\}$ we have $(K_i)_G = 1$. By Lemma 2.9, U_i is S-quasinormal in G. Hence V_{eG} is S-quasinormal in G. From Lemma 2.10 we have $O^p(G) \leq N_G(V_{eG})$. Since V_{eG} is subnormal in G, we have $V_{eG} \leq O_p(G)$. Thus, $V_{eG} \leq V \cap O_p(G)$ and $1 < V_{eG} \leq (V_{eG})^G = (V_{eG})^{P} = (V_{eG})^P \leq (V \cap O_p(G))^P = V \cap O_p(G) \leq O_p(G)$. It follows that $(V_{eG})^G = V \cap O_p(G) = O_p(G)$. Then $O_p(G) \leq V$ and so P = V, a contradiction. \Box

Corollary 3.2. Let p be a prime dividing the order of a group G with (|G|, p-1) = 1and H a normal subgroup of G such that G/H is p-nilpotent. If there exists a Sylow p-subgroup P of H such that every maximal subgroup of P either has the semi cover-avoiding property or is E-supplemented in G, then G is p-nilpotent.

Proof: In view of Lemmas 2.1 and 2.2, every maximal subgroup of P has the semi cover-avoiding property or is E-supplemented in H. By Theorem 3.1, H is p-nilpotent. Now, let $H_{p'}$ be the normal Hall p'-subgroup of H. Obviously, $H_{p'} \leq G$.

Case I: $H_{p'} \neq 1$. We consider $G/H_{p'}$. Applying Lemmas 2.1 and 2.2, it is easy to see that $G/H_{p'}$ satisfies the hypotheses for the normal subgroup $H/H_{p'}$. Therefore, $G/H_{p'}$ is *p*-nilpotent by induction. It follows that G is *p*-nilpotent.

Case II: $H_{p'} = 1$, i.e., H = P is a *p*-group. Since G/P is *p*-nilpotent, we can let K/P be the normal Hall *p'*-subgroup of G/P. By the Schur-Zassenhaus Theorem, there exists a Hall *p'*-subgroup $K_{p'}$ of K such that $K = PK_{p'}$. A new application of Theorem 3.1 yields that K is *p*-nilpotent and so $K = P \times K_{p'}$. It is easy to see that $K_{p'}$ is a normal *p*-complement of G. Consequently, G is *p*-nilpotent.

Corollary 3.3. Let P be a Sylow p-subgroup of a group G, where p is the smallest prime divisor of |G|. If every maximal subgroup of P either has the semi coveravoiding property or is E-supplemented in G, then G is p-nilpotent.

Corollary 3.4. Suppose that every maximal subgroup of any Sylow subgroup of a group G either has the semi cover-avoiding property or is E-supplemented in G. Then G is a Sylow tower group of supersolvable type.

Proof: Let p be the smallest prime dividing |G| and P a Sylow p-subgroup of G. By Theorem 3.1, G is p-nilpotent. Let T be the normal Hall p'-subgroup of G. In view of Lemmas 2.1 and 2.2, every maximal subgroup of any Sylow subgroup of Thas the semi cover-avoiding property or is E-supplemented in T. Thus T satisfies the hypothesis of the corollary. It follows by induction that T, and hence G is a Sylow tower group of supersolvable type. \Box

Corollary 3.5 ([13, Theorem 3.3]). Let G be a group, p a prime dividing the order of G, and P a Sylow p-subgroup of G. If (|G|, p-1) = 1 and every maximal subgroup of P has the semi cover-avoiding property in G, then G is p-nilpotent.

Corollary 3.6 ([11, Theorem 3.2]). Let P be a Sylow p-subgroup of a group G, where p is the smallest prime divisor of |G|. If P is cyclic or every maximal subgroup of P has the semi cover-avoiding property in G, then G is p-nilpotent.

Proof: If P is cyclic, by Lemma 2.5, we have that G is p-nilpotent. Thus we may assume that every maximal subgroup of P has the semi cover-avoiding property in G. By Theorem 3.1, G is p-nilpotent. \Box

Corollary 3.7 ([15, Theorem 3.4]). Let G be a group and P a Sylow p-subgroup of G, where p is the smallest prime dividing |G|. If all maximal subgroups of P are c-normal in G, then G is p-nilpotent.

Corollary 3.8 ([16, Theorem 3.2]). Let G be a group and P a Sylow p-subgroup of G, where p is the smallest prime dividing |G|. If all maximal subgroups of P are c-supplemented in G, then G is p-nilpotent.

Corollary 3.9 ([29, Theorem 3.1]). Let P be a Sylow p-subgroup of a group G, where p is a prime divisor of |G| with (|G|, p - 1) = 1. If every maximal subgroup of P is c-supplemented in G, then G is p-nilpotent.

Corollary 3.10 ([6, Theorem 3.1]). Let p be a prime dividing the order of a group G with (|G|, p-1) = 1. Suppose that every maximal subgroup of P is c-supplemented in G and $G \in C_{p'}$, then $G/O_p(G)$ is p-nilpotent and $G \in D_{p'}$.

Corollary 3.11 ([19, Theorem 3.1]). Let p be a prime dividing the order of a group G with (|G|, p-1) = 1. Assume that H is a normal subgroup of G such that G/H is p-nilpotent. If there exists a Sylow p-subgroup P of H such that every maximal subgroup of P is c^* -normal in G, then G is p-nilpotent.

Corollary 3.12 ([27, Theorem 3.1]). Let p be a prime dividing the order of a group G with (|G|, p-1) = 1. If there exists a Sylow p-subgroup P of G such that every maximal subgroup of P is S-quasinormally embedded in G, then G is p-nilpotent.

Corollary 3.13 ([29, Theorem 3.1]). Let p be the smallest prime dividing the order of a group G. If there exists a Sylow p-subgroup P of G such that every maximal subgroup of P is weakly S-permutably embedded in G, then G is p-nilpotent.

Corollary 3.14 ([30, Theorem 3.1]). Let p be the smallest prime dividing the order of a group G. If there exists a Sylow p-subgroup P of G such that every maximal subgroup of P is weakly S-permutable in G, then G is p-nilpotent.

Corollary 3.15 ([31, Theorem 3.1]). Let p be a prime dividing the order of a group G with (|G|, p-1) = 1. If there exists a Sylow p-subgroup P of G such that every maximal subgroup of P is weakly S-permutable in G, then G is p-nilpotent.

Corollary 3.16 ([32, Theorem 3.1]). Let p be the smallest prime dividing the order of a group G. If there exists a Sylow p-subgroup P of G such that every maximal subgroup of P is S-permutably embedded in G, then G is p-nilpotent.

Corollary 3.17 ([14, Theorem 3.1]). Let p be a prime dividing the order of a group G with (|G|, p - 1) = 1 and H a normal subgroup of G such that G/H is p-nilpotent. If there exists a Sylow p-subgroup P of H such that every maximal subgroup of P is c-normal or S-permutably embedded in G, then G is p-nilpotent.

Theorem 3.18. Let \mathfrak{F} be a saturated formation containing \mathfrak{U} , where \mathfrak{U} is the class of all supersolvable groups. A group $G \in \mathfrak{F}$ if and only if there is a normal subgroup H of G such that $G/H \in \mathfrak{F}$ and every maximal subgroup of any noncyclic Sylow subgroup of H either has the semi cover-avoiding property or is E-supplemented in G.

Proof: The necessity is obvious. We only need to prove the sufficiency. Suppose that the assertion is false and let G be a counterexample of minimal order.

(1) G has a minimal normal subgroup $N \leq H$ and N is an elementary abelian p-group, where p is the largest prime in $\pi(H)$.

By the hypothesis of the theorem, every maximal subgroup of any noncyclic Sylow subgroup of H either has the semi cover-avoiding property or is E-supplemented in G. Consequently, by Lemmas 2.1 and 2.2 every one also either has the semi cover-avoiding property or is E-supplemented in H. Applying Corollary 3.4, H is a Sylow tower group of supersolvable type. Let p be the largest prime divisor of |H| and P a Sylow p-subgroup of H. Then P is normal in H. Obviously, P is normal in G. Therefore, G has a minimal normal subgroup $N \leq H$ and N is an elementary abelian p-group.

(2) $G/N \in \mathcal{F}$ and N = P is the Sylow *p*-subgroup of *H*.

First, we want to prove that G/N satisfies the hypothesis of the theorem. In fact, $(G/N)/(H/N) \cong G/H \in \mathcal{F}$. Let P_1/N be a maximal subgroup of the Sylow *p*-subgroup P/N of H/N. Then P_1 is a maximal subgroup of the Sylow *p*-subgroup P of H. If P/N is noncyclic, then P is also noncyclic. By the hypothesis of the theorem, P_1 either has the semi cover-avoiding property or is E-supplemented in G. By Lemmas 2.1 and 2.2, P_1/N either has the semi cover-avoiding property or is E-supplemented in G/N. Let M_1/N be a maximal subgroup of the noncyclic Sylow q-subgroup QN/N of H/N, where $q \neq p$ and Q is a noncyclic Sylow q-subgroup of H. It is clear that $M_1 = Q_1 N$, where Q_1 is a maximal subgroup of Q. By the hypothesis of the theorem, Q_1 either has the semi cover-avoiding property or is E-supplemented in G. Hence M_1/N either has the semi cover-avoiding property or is E-supplemented in G/N by Lemmas 2.1 and 2.2. We now have proved that G/N satisfies the hypothesis of the theorem. By the minimal choice of G, we have $G/N \in \mathcal{F}$. Since \mathcal{F} is a saturated formation, N is the unique minimal normal subgroup of G contained in P and $N \leq \Phi(G)$. By Lemma 2.7, it follows that P = F(P) = N.

(3) |N| > p.

This follows from Lemma 2.8.

(4) The final contradiction.

Let M be a maximal subgroup of N. By the hypothesis, M either has the semi cover-avoiding property or is E-supplemented in G.

Case I: M is E-supplemented in G. Then there is a subgroup T of G such that G = MT and $M \cap T \leq M_{eG}$. Thus G = NT and $N = N \cap MT = M(N \cap T)$. This implies that $N \cap T \neq 1$. But since $N \cap T$ is normal in G and N is minimal normal in G, $N \cap T = N$. It follows that T = G and so $M = M_{eG}$. In view of Lemma 2.11, M is s-quasinormal in G. By Lemma 2.10, $O^p(G) \leq N_G(M)$. Thus $M \leq G_p O^p(G) = G$. It follows that M = 1 and so |N| = p, which contradicts step (3).

Case II: M has the semi cover-avoiding property in G. Then there exists a chief series of G

$$1 = G_0 < G_1 < \cdots < G_{n-1} < G_n = G$$

such that M covers or avoids every factor G_j/G_{j-1} . Since N is minimal normal in G, there exists j such that $G_j \cap N = N$ and $G_{j-1} \cap N = 1$. If M covers G_j/G_{j-1} , then $MG_j = MG_{j-1}$ and so $MG_j \cap N = MG_{j-1} \cap N$. Hence $M(G_j \cap N) = M(G_{j-1} \cap N)$, i.e., MN = M, a contradiction. If M avoids G_j/G_{j-1} , then $M \cap G_j = M \cap G_{j-1}$ and so $M \cap G_j \cap N = M \cap G_{j-1} \cap N$, i.e., M = 1. It follows |N| = p, a contradiction. \Box

Corollary 3.19 ([13, Theorem 3.6]). Let \mathcal{F} be a saturated formation containing \mathcal{U} . If there is a normal Hall subgroup H of G such that $G/H \in \mathcal{F}$ and every maximal subgroup of any Sylow subgroup of H has the semi cover-avoiding property in G, then $G \in \mathcal{F}$.

Corollary 3.20 ([21, Theorem 3.3]). Let H be a normal subgroup of a group G such that G/H is supersolvable. If every maximal subgroup of any Sylow subgroup of H is c-normal in G, then G is supersolvable.

Corollary 3.21 ([16, Theorem 4.2]). Let \mathcal{F} be a saturated formation containing \mathcal{U} . If there is a normal subgroup H of G such that $G/H \in \mathcal{F}$ and every maximal subgroup of any Sylow subgroup of H is c-supplemented in G, then $G \in \mathcal{F}$.

Corollary 3.22 ([23, Theorem 4.1]). Let \mathcal{F} be a saturated formation containing \mathcal{U} . If there is a normal subgroup H of G such that $G/H \in \mathcal{F}$ and every maximal subgroup of any noncyclic Sylow subgroup of H is c-supplemented in G, then $G \in \mathcal{F}$.

Corollary 3.23 ([32, Theorem 3.3]). Let \mathcal{F} be a saturated formation containing \mathcal{U} . If there is a normal subgroup H of a group G such that $G/H \in \mathcal{F}$ and every maximal subgroup of any Sylow subgroup of H is S-quasinormally embedded in G, then $G \in \mathcal{F}$.

Corollary 3.24 ([14, Theorem 3.3]). Let \mathcal{F} be a saturated formation containing \mathcal{U} . A group $G \in \mathcal{F}$ if and only if there is a normal subgroup H of G such that $G/H \in \mathcal{F}$ and every maximal subgroup of any Sylow subgroup of H is either s-quasinormally embedded or c-normal in G.

Theorem 3.25. Let \mathcal{F} be a saturated formation containing \mathcal{U} . Suppose that G is a group with a solvable normal subgroup N such that $G/N \in \mathcal{F}$. If every maximal subgroup of each non-cyclic Sylow subgroup of F(N) either has the semi coveravoiding property or is E-supplemented in G, then $G \in \mathcal{F}$.

Proof: Suppose that the theorem is false and let G be a counterexample of minimal order.

(1) $\Phi(G) \cap N = 1.$

Assume that $\Phi(G) \cap N \neq 1$. Then there exists a prime p dividing the order of $\Phi(G) \cap N$. Let P_0 be the Sylow *p*-subgroup of $\Phi(G) \cap N$. Then $P_o \leq G$. Since $(G/P_0)/(N/P_0) \cong G/N$, it follows that $(G/P_0)/(N/P_0) \in \mathcal{F}$. By [1, p.270 Satz 3.5], $F(N/P_0) = F(N)/P_0$. Let P_1/P_0 be a maximal subgroup of the Sylow p-subgroup P/P_0 of $F(N)/P_0$. Then P_1 is a maximal subgroup of the Sylow p-subgroup P of F(N). If P/P_0 is non-cyclic, then P is non-cyclic. By the hypothesis, P_1 either has the semi cover-avoiding property or is E-supplemented in G. Hence P_1/P_0 either has the semi cover-avoiding property or is E-supplemented in G/P_0 by Lemmas 2.1 and 2.2. Set Q_*/P_0 be a maximal subgroup of the non-cyclic Sylow q-subgroup of $F(N)/P_0$, where $p \neq q$. It is clear that $Q_* = Q_1^* P_0$, where Q_1^* is a maximal subgroup of the non-cyclic Sylow q-subgroup of F(N). Then Q_1^* either has the semi cover-avoiding property or is E-supplemented in G. Hence $Q_1^* P_0 / P_o$ either has the semi cover-avoiding property or is E-supplemented in G/P_o by Lemmas 2.1 and 2.2. Now we have proved that G/P_0 satisfies the hypotheses of the theorem. Therefore $G/P_0 \in \mathcal{F}$ by minimal choice of G. Since $P_0 \leq \Phi(G)$ and \mathcal{F} is a saturated formation, we have that $G \in \mathcal{F}$, a contradiction.

(2) $F(N) = L_1 \times L_2 \times \cdots \times L_n$, where every L_i is a minimal normal subgroup of G with prime order.

If N = 1, nothing need to be proved. So assume $N \neq 1$. Then $F(N) \neq 1$ by the solvability of N. By Lemma 2.7, F(N) is the direct product of some minimal normal subgroups of G. Let P be the Sylow p-subgroup of F(N). We can denote $P = R_1 \times R_2 \times \cdots \times R_m$, where every R_i is a minimal normal subgroup of G. We will show that $|R_i| = p$ $(i = 1, 2, \cdots, m)$. If not, then there exists an index i such that $|R_i| > p$. Without loss of generality, suppose that i = 1. Since $R_1 \nleq \Phi(G)$, there exist a maximal subgroup M of G such that $G = R_1 M$ and $R_1 \cap M = 1$. Then $G_p = R_1 M_p$. Pick a maximal subgroup G_p^* of G_p containing M_p . Then $|R_1 : G_p^* \cap R_1| = |R_1 G_p^* / G_p^*| = |G_p : G_p^*| = p$. Hence $R_1^* = G_p^* \cap R_1$ is a maximal subgroup of R_1 . This implies that $P^* = R_1^* R_2 \cdots R_m$ is a maximal subgroup of P. Obviously, P is not cyclic. By the hypothesis, P^* either has the semi cover-avoiding property or is E-supplemented in G. Let $K = R_2 \times \cdots \times R_m$.

Case I: P^* has the semi cover-avoiding property in G. By Lemma 2.1, P^*/K has the semi cover-avoiding property in G/K. Suppose that P^*/K cover-avoids a chief series $1 = \overline{K} \lhd G_1/K = \overline{G_1} \lhd \cdots \lhd G/K = \overline{G_n}$ of G/K. Let i be the smallest number in $\{1, 2, \cdots, n-1\}$ such that $\overline{G_{i+1}}/\overline{G_i}$ was covered by P^*/K in above chief series. Then we have $G_i \cap P^* = K$ and $G_{i+1} \leq G_i P^* = G_i R_1^*$. Hence $G_{i+1} = G_i(R_1^* \cap G_{i+1})$ and $R_1^* \cap G_{i+1} > 1$. Since R_1 is a minimal normal subgroup of G, we have $R_1 \leq G_{i+1}$ and $R_1 \cap G_i = 1$. Hence $|R_1| = |G_{i+1}/G_i| = |R_1^* \cap G_{i+1}| < |R_1|$, a contraction. Therefore, P^*/K does not cover any chief factor in above chief series. It follows that $P^*/K = 1$ and $|R_1| = p$, a contraction.

Case II: P^* is *E*-supplemented in *G*. Then there exists a subgroup *K* such that $G = P^*T$ and $P^* \cap T \leq (P^*)_{eG}$. Obviously, $(P^*) \leq G_p$. By Lemma 2.11, $(P^*)_{eG} = (P^*)_{sG}$. In view of [12, Lemma 2.10], $(P^*)_{sG} = (P^*)_G$. Denote $T_1 = KT$. Then $G = R_1^*T_1$ and $R_1^* \cap T_1 = R_1^* \cap T_1 \cap P^* = R_1 \cap K(P^* \cap T) \leq R_1 \cap K(P^*)_G = R_1 \cap K = 1$. Since $R_1 \cap T_1$ is normal in *G*, we have $R_1 \cap T_1 = 1$ or R_1 by the minimality of R_1 . If the former holds, then $R_1 = R_1 \cap R_1^*T_1 = R_1^*(R_1 \cap T_1) = R_1^*$,

a contraction. Hence $R_1 \cap T_1 = R_1$, i.e., $R_1 \leq T_1$. It follows that $R_1^* = 1$ and so $|R_1| = p$, a contraction.

(3) The final contradiction.

It is easy to see that $G/C_G(L_i)$ is abelian by step (2). Since $C_G(F(N)) = \bigcap_{i=1}^n C_G(L_i)$, we have that $G/C_G(F(N))$ is abelian. Hence $G/C_G(F(N)) \in \mathcal{U} \subseteq \mathcal{F}$. By the assumption, $G/N \in \mathcal{F}$, which implies that $G/N \cap C_G(F(N)) = G/C_N(F(N)) \in \mathcal{F}$ by the properties of formations. From the solvability of N, $C_N(F(N)) \leq F(N)$. In view of step (2), F(N) is abelian. Then $F(N) \leq C_N(F(N))$. Thus $F(N) = C_N(F(N))$ and $G/F(N) \in \mathcal{F}$. By Theorem 3.18, $G \in \mathcal{F}$, a contradiction.

Corollary 3.26 ([24, Theorem 1]). Let \mathcal{F} be a saturated formation containing \mathcal{U} . Suppose that G is a group with a solvable normal subgroup N such that $G/N \in \mathcal{F}$. If all maximal subgroups of all Sylow subgroups of F(N) are c-normal in G, then $G \in \mathcal{F}$.

Corollary 3.27 ([18, Theorem 4.5]). Let \mathcal{F} be a saturated formation containing \mathcal{U} . Suppose that G is a group with a solvable normal subgroup N such that $G/N \in \mathcal{F}$. If all maximal subgroups of all Sylow subgroups of F(N) are c-supplemented in G, then $G \in \mathcal{F}$.

Corollary 3.28 ([25, Theorem 1.6]). Let \mathcal{F} be a saturated formation containing \mathcal{U} . Suppose that G is a group with a solvable normal subgroup N such that $G/N \in \mathcal{F}$. If all maximal subgroups of all Sylow subgroups of F(N) are complemented in G, then $G \in \mathcal{F}$.

Corollary 3.29 ([32, Corollary 3.4]). Let \mathcal{F} be a saturated formation containing \mathcal{U} . Suppose that G is a group with a solvable normal subgroup N such that $G/N \in \mathcal{F}$. If all maximal subgroups of all Sylow subgroups of F(N) are complemented in G, then $G \in \mathcal{F}$.

References

- 1. B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-New York, 1967.
- 2. W. Gaschütz, Praefrattinigruppen, Arch. Math, 13 (1962) 418-426.
- 3. J. D. Gillam, Cover-avoid subgroups in finite solvable groups, J. Algebra, 29 (1974) 324-329.
- 4. C. Li, A note on a result of Skiba, J. Group Theory, 15 (2012) 385-396.
- L. M. Ezquerro, A contribution to the theory of finite supersolvable groups, Rend. Sem. Mat. Univ. Padova, 89 (1993) 161–170.
- Y. Wang, Finite groups with some subgroups of Sylow subgroups c-supplemented, J. Algebra, 224 (2000) 467-478.
- X. Guo, K. P. Shum, Cover-avoidance properties and the structure of finite groups, J. Pure Appl. Algebra, 181 (2003) 297–308.
- Y. Fan, X. Guo and K. P. Shum, Remarks on two generalizations of normality of subgroups, Chinese Ann. Math. (Chinese Series) A, 27 (2006) 169–176.
- 9. Y. Wang, c-Normality of groups and its properties, J. Algebra, 180 (1996) 954-965.
- X. Guo, J. Wang, K. P. Shum, On semi cover-avoiding maximal subgroup and solvability of finite groups, Comm. Algebra, 34 (2006) 3235–3244.

- X. Guo, P. Guo, K. P. Shum, On semi cover-avoiding subgroups of finite group, J. Pure Appl. Algebra, 209 (2007) 151–158.
- A. N. Skiba, On two questions of L. A. Shemetkov concerning hypercyclically embedded subgroups of finite groups, J. Group Theory, 13 (2010) 841–850.
- X. Li, Y. Yang, Semi CAP-subgroups and the structure of finite groups, Acta Math. Sin. (Chinese Series) 51 (2008) 1181–1187.
- S. Li, Y. Li, On s-quasionormal and c-normal subgroups of a finie group, Czech. Math. J, 58 (2008) 1083–1095.
- X. Guo, K. P. Shum, On c-normal maximal and minimal subgroups of Sylow p-subgroups of finite groups, Arch. Math. 80 (2003) 561–569.
- X. Guo, K. P. Shum, Finite p-nilpotent groups with some subgroups c-supplemented, J. Aust. Math. Soc. 78 (2005) 429–439.
- X. Guo, K. P. Shum, On p-nilpotency of finite groups with some subgroups c-supplemented, Algebra Colloq. 10 (2003) 259–266.
- Y. Wang, H. Wei, Y. Li, A generalization of Kramer's theorem and its application, Bull. Aust. Math. Soc. 65 (2002) 467–475.
- 19. H. Wei, Y. Wang, On c*-normality and its properties, J. Group Theory, 10 (2007) 211-223.
- 20. F. Gross, Conjugacy of odd order Hall subgroups, Bull. London Math. Soc, 19 (1987) 311-319.
- D. Li, X. Guo, The influence of c-normality of subgroups on the structure of finite groups, J. Pure Appl. Algebra 150 (2000) 53–60.
- A. N. Skiba, On weakly s-permutable subgroups of finite groups, J. Algebra 315 (2007) 192– 209.
- Y. Wang, H. Wei, On a problem of Skiba from the Kourovka Notebook, Sci. China Ser. A 47 (2004) 96–103.
- H. Wei, On c-normal maximal and minimal subgroups of Sylow subgroups of finite groups, Comm. Algebra, 29 (2001) 2193–2200.
- X. Guo, K. P. Shum, Complementarity of subgroups and the structure of finite groups, Algebra Colloq. 13 (2006) 9–16.
- A. Ballester-Bolinches, X. Guo, On complemented subgroups of finite groups, Arch. Math. 72 (1999) 161–166.
- Y. Li, Y. Wang, H. Wei, On p-nilpotency of finite groups with some subgroups πquasinormally embedded, Acta Math. Hungar. 108 (2005) 283–298.
- 28. P. Schmidt, Subgroups permutable with all Sylow subgroups, J. Algebra, 207 (1998) 285-293.
- Y. Li, S. Qiao, Y. Wang, On weakly s-permutably embedded subgroups of finite groups, Comm. Algebra, 37 (2009), 1086–1097.
- 30. Y. Li, S. Qiao, Y. Wang, A note on a result of Skiba, Siberian Math. J. 50 (2009) 467-473.
- L. Miao, On weakly s-permutable subgroups, Bull. Braz. Math. Soc, New Series, 41 (2010) 223–235.
- M. Asaad, A. A. Heliel, On s-quasinormally embedded subgroups of finite groups, J. Pure Appl. Algebra, 165 (2001) 129–135.

Changwen Li, School of Mathematics and Statistics, Jiangsu Normal University, China. E-mail address: lcw2000@126.com

and

Xuemei Zhang of Basic Sciences, Yancheng Institute of Technology, China.

and

Jianhong Huang, School of Mathematics and Statistics, Jiangsu Normal University, China.