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1. Introduction

All groups considered in this paper will be finite.
A subgroup H of a group G is said to be S-quasinormal in G if H permutes

with every Sylow subgroup of G. This concept was introduced by Kegel. In 2007,
Skiba (see [22]) introduced the concept of S-supplemented subgroup. A subgroup
H of G is said to be S-supplemented in G if there is a subgroup K of G such that
G = HK and H ∩K ≤ HsG, where HsG denotes the subgroup of H generated by
all those subgroups of H which are S-quasinormal in G. As another generalization
of the S-quasinormality, the concept of S-quasinormally embedded subgroup was
given by Ballester-Bolinches and Pedraza-Aguilera (see [2]). A subgroup H is said
to be S-quasinormally embedded in G if for each prime p dividing |H |, a Sylow
p-subgroup of H is also a Sylow p-subgroup of some S-quasinormal subgroup of G.
In 2012, Li (see [4]) proposed the definition of E-supplemented subgroup which
covers properly both S-quasinormally embedding property and Skiba’s weakly S-
supplementation. A subgroup H is said to be E-supplemented in G if there is a
subgroup K of G such that G = HK and H ∩K ≤ HeG, where HeG denotes the
subgroup of H generated by all those subgroups of H which are S-quasinormally
embedded in G.

On the other hand, we say that a subgroup H of a group G covers G-chief
factor A/B if HA = HB, and H avoids A/B if H ∩ A = H ∩ B. If H covers or
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avoids every chief factor of G, then H is said to have the cover-avoiding property
in G. This conception was first studied by Gaschütz (see [2]) to study the solvable
groups, later by Gillam (see [3]) and Ezquerro (see [5]), et al. As a generalization
of the cover-avoiding property, Fan, Guo and Shum (see [8]) defined the semi
cover-avoiding property. A subgroup H of a group G is said to have the semi
cover-avoiding property in G, if there exists a chief series of G such that H either
covers or avoids every G-chief factor of this series.

A subgroup that satisfies the cover-avoiding property does not necessary need
to be E-supplemented and vice-versa. In this paper, we will focus on the two
kinds of subgroups and establish the structure of groups under the assumption
that all maximal subgroups of a Sylow subgroup either have the semi cover-avoiding
property or are E-supplemented subgroups. A series of previously known results
are generalized, such as in [6,9,11,13,15,16,17,18,19,21,23,24,25].

2. Preliminaries

In this section, we list some lemmas which will be useful for the proofs of our
main results.

Lemma 2.1 ( [11, Lemmas 2.5 and 2.6]). Suppose that H has the semi cover-

avoiding property in G.

(1) If H ≤ L ≤ G, then H has the semi cover-avoiding property in L.
(2) If N ✂G and N ≤ H ≤ G, then H/N has the semi cover-avoiding property

in G/N .

(3) If H is a π-subgroup and N is a normal π′-subgroup of G, then HN/N has

the semi cover-avoiding property in G/N .

Lemma 2.2 ( [4, Lemma 2.3]). Let H be a E-supplemented subgroup of a group

G.

(1) If H ≤ L ≤ G, then H is E-supplemented in L.
(2) If N ✁G and N ≤ H ≤ G, then H/N is E-supplemented in G/N .

(3) If H is a π-subgroup and N is a normal π′-subgroup of G, then HN/N is

E-supplemented in G/N .

Lemma 2.3 ( [11, Lemma 3.1]). Let p be a prime dividing the order of the group

G with (|G|, p− 1) = 1 and let P be a p-Sylow subgroup of G. If there is a maximal

subgroup P1 of P such that P1 has the semi cover-avoiding property in G, then G
is p-solvable.

Lemma 2.4 ( [18, Lemma 2.8]). Let M be a maximal subgroup of G and P a

normal p-subgroup of G such that G = PM , where p is a prime. Then P ∩M is a

normal subgroup of G.

Lemma 2.5 ( [19, Lemma 2.7]). Let G be a group and p a prime dividing |G| with
(|G|, p− 1) = 1.

(1) If N is normal in G of order p, then N ≤ Z(G).
(2) If G has cyclic Sylow p-subgroup, then G is p-nilpotent.
(3) If M ≤ G and |G : M | = p , then M ✂G.
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Lemma 2.6 ( [20, Main Theorem]). Suppose that G has a Hall π-subgroup where

π is a set of odd primes. Then all Hall π-subgroups of G are conjugate.

Lemma 2.7 ( [21, Lemma 2.6]). Let H 6= 1 be a solvable normal subgroup of a

group G. If every minimal normal subgroup of G which is contained in H is not

contained in Φ(G), then the Fitting subgroup F (H) of H is the direct product of

minimal normal subgroups of G which are contained in H.

Lemma 2.8 ( [22, Lemma 2.16]). Let F be a saturated formation containing U.

Suppose that G is a group with a normal subgroup N such that G/N ∈ F. If N is

cyclic, then G ∈ F.

Lemma 2.9 ( [27, Lemma 2.3]). Suppose that H is S-quasinormal in G, and let

P be a Sylow p-subgroup of H. If HG = 1, then P is S-quasinormal in G.

Lemma 2.10 ( [28, Lemma A]). If P is an S-quasinormal p-subgroup of a group

G for some prime p, then NG(P ) ≥ Op(G).

Lemma 2.11 ( [27, Lemma 2.4]). Suppose that P is a p-subgroup of a group G con-

tained in Op(G). If P is S-quasinormally embedded in G, then P is S-quasinormal

in G.

3. Main results

Theorem 3.1. Let p be a prime dividing the order of a group G with (|G|, p−1) = 1.
If G has a Sylow p-subgroup P such that every maximal subgroup of P either has

the semi cover-avoiding property or is E-supplemented in G, then G is p-nilpotent.

Proof: Assume that the assertion is false and let G be a minimal counterexample.
We will derive a contradiction in several steps.

(1) Op′ (G) = 1.
Assume that Op′(G) 6= 1. Then POp′(G)/Op′(G) is a Sylow p-subgroup of

G/Op′(G). Suppose that M/Op′(G) is a maximal subgroup of POp′(G)/Op′ (G).
Then there exists a maximal subgroup P1 of P such that M = P1Op′(G). By the
hypothesis of the theorem, P1 either has the semi cover-avoiding property or is
E-supplemented in G. Then M/Op′(G) = P1Op′(G)/Op′ (G) either has the semi
cover-avoiding property or is E-supplemented in G/Op′(G) by Lemmas 2.1 and
2.2. It is clear that (|G/Op′ (G)|, p− 1) = 1. The minimal choice of G implies that
G/Op′(G) is p-nilpotent, and so G is p-nilpotent, a contradiction. Therefore, we
have Op′ (G) = 1.

(2) Op(G) 6= 1.
If not, suppose that Op(G) = 1. If there is a maximal subgroup of P which has

the semi cover-avoiding property in G, then G is p-solvable by Lemma 2.3. Since
Op′(G) = 1 by step (1), we have Op(G) 6= 1, a contradiction. Thus we may assume
that all maximal subgroups of P are E-supplemented in G. If p 6= 2, then G is odd
from the assumption that (|G|, p − 1) = 1. By the Feit-Thompson Theorem, G is
solvable. It follows that Op(G) 6= 1 by step (1), a contradiction. If p = 2, then we
get also G is solvable by [4, Lemma 3.1], the same contradiction.
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(3) If N ≤ Op(G), then G/N is p-nilpotent. Consequently, G is solvable.
Suppose that M/N is a maximal subgroup of P/N . Then M is a maximal

subgroup of P . By the hypothesis of the theorem, M either has the semi cover-
avoiding property or is E-supplemented in G. Then M/N either has the semi
cover-avoiding property or is E-supplemented in G/N by Lemmas 2.1 and 2.2.
Therefore G/N satisfies the hypothesis of the theorem. The minimal choice of G
implies that G/N is p-nilpotent. If p is odd, then G is solvable. If p = 2, then G/N
is solvable, and so G is solvable.

(4) Op(G) is the unique minimal normal subgroup of G.
Let N be a minimal normal subgroup of G. Since G is solvable by step (3), N

is an elementary abelian subgroup. Note that Op′(G) = 1, then we have N is a p-
subgroup and so N ≤ Op(G). Step (3) implies that G/Op(G) is p-nilpotent. Since
the class of all p-nilpotent groups is a saturated formation, N is a unique minimal
normal subgroup of G and N � Φ(G). Choose M to be a maximal subgroup of G
such that G = NM . Obviously, G = Op(G)M and so Op(G) ∩M is normal in G
by Lemma 2.4. The uniqueness of N yields N = Op(G).

(5) The final contradiction.
By the proof in step (4), G has a maximal subgroup M such that G = MOp(G)

and G/Op(G) ∼= M is p-nilpotent. Clearly, P = Op(G)(P ∩ M). Furthermore,
P ∩M < P . Thus, there exists a maximal subgroup V of P such that P ∩M ≤ V .
Hence, P = Op(G)V . By the hypothesis, V either has the semi cover-avoiding
property or is E-supplemented in G.

Case I: V has the semi cover-avoiding property in G. Since Op(G) is the unique
minimal normal subgroup of G, V covers or avoids Op(G)/1. If V covers Op(G)/1,
then V Op(G) = V , i.e., Op(G) ≤ V . It follows that P = Op(G)V = V , a contra-
diction. If V avoids Op(G)/1, then V ∩Op(G) = 1. Since V ∩Op(G) is a maximal
subgroup of Op(G), we have that Op(G) is of order p and so Op(G) lies in Z(G)
by Lemma 2.5. By step (3), we have G/Op(G) is p-nilpotent. Then G/Z(G) is
p-nilpotent, and so G is p-nilpotent, a contradiction.

Case II: V is E-supplemented in G. Then there is a subgroup T of G such that
G = V T and V ∩ T ≤ VeG. Assume that T is p-nilpotent. Let Tp′ be the normal
Hall p′-subgroup of T . SinceM is p-nilpotent, we may supposeM has a normal Hall
p′-subgroup Mp′ and M ≤ NG(Mp′) ≤ G. The maximality of M implies that M =
NG(Mp′) or NG(Mp′) = G. If the latter holds, then Mp′ E G and Mp′ is actually
the normal p-complement of G, which is contrary to the choice of G. Hence, we may
assume M = NG(Mp′). By applying Lemma 2.6 and the Feit-Thompson Theorem,
there exists g ∈ G such that T g

p′ = Mp′ . Hence, T g ≤ NG(T
g
p′) = NG(Mp′) = M .

However, Tp′ is normalized by T , so g can be considered as an element of V .
Thus, G = V T g = VM and P = V (P ∩ M) = V , a contradiction. Hence T is
not p-nilpotent. If VeG = 1, then |T |p = p. By Lemma 2.5, T is p-nilpotent, a
contradiction. Thus we may assume that VeG 6= 1. Let U1, U2, ..., Us be all the
nontrivial subgroups of V which are S-quasinormally embedded in G. For every
i ∈ {1, 2, ..., s}, then there is an S-quasinormal subgroup Ki of G such that Ui is a
Sylow p-subgroup of Ki. Suppose that for some i ∈ {1, 2, ..., s}, we have (Ki)G 6= 1.
Then Op(G) ≤ (Ki)G ≤ Ki by step (4). It follows that Op(G) ≤ Ui ≤ V , and so
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P = Op(G)V = V . This contradiction shows that for all i ∈ {1, 2, ..., s} we have
(Ki)G = 1. By Lemma 2.9, Ui is S-quasinormal in G. Hence VeG is S-quasinormal
in G. From Lemma 2.10 we have Op(G) ≤ NG(VeG). Since VeG is subnormal in
G, we have VeG ≤ Op(G). Thus, VeG ≤ V ∩ Op(G) and 1 < VeG ≤ (VeG)

G =
(VeG)

Op(G)P = (VeG)
P ≤ (V ∩ Op(G))P = V ∩ Op(G) ≤ Op(G). It follows that

(VeG)
G = V ∩Op(G) = Op(G). Then Op(G) ≤ V and so P = V , a contradiction.✷

Corollary 3.2. Let p be a prime dividing the order of a group G with (|G|, p−1) = 1
and H a normal subgroup of G such that G/H is p-nilpotent. If there exists a

Sylow p-subgroup P of H such that every maximal subgroup of P either has the

semi cover-avoiding property or is E-supplemented in G, then G is p-nilpotent.

Proof: In view of Lemmas 2.1 and 2.2, every maximal subgroup of P has the
semi cover-avoiding property or is E-supplemented in H . By Theorem 3.1, H
is p-nilpotent. Now, let Hp′ be the normal Hall p′-subgroup of H . Obviously,
Hp′ E G.

Case I: Hp′ 6= 1. We consider G/Hp′ . Applying Lemmas 2.1 and 2.2, it is
easy to see that G/Hp′ satisfies the hypotheses for the normal subgroup H/Hp′ .
Therefore, G/Hp′ is p-nilpotent by induction. It follows that G is p-nilpotent.

Case II: Hp′ = 1, i.e., H = P is a p-group. Since G/P is p-nilpotent, we can let
K/P be the normal Hall p′-subgroup of G/P . By the Schur-Zassenhaus Theorem,
there exists a Hall p′-subgroup Kp′ of K such that K = PKp′ . A new application
of Theorem 3.1 yields that K is p-nilpotent and so K = P ×Kp′ . It is easy to see
that Kp′ is a normal p-complement of G. Consequently, G is p-nilpotent. ✷

Corollary 3.3. Let P be a Sylow p-subgroup of a group G, where p is the smallest

prime divisor of |G|. If every maximal subgroup of P either has the semi cover-

avoiding property or is E-supplemented in G, then G is p-nilpotent.

Corollary 3.4. Suppose that every maximal subgroup of any Sylow subgroup of a

group G either has the semi cover-avoiding property or is E-supplemented in G.

Then G is a Sylow tower group of supersolvable type.

Proof: Let p be the smallest prime dividing |G| and P a Sylow p-subgroup of G.
By Theorem 3.1, G is p-nilpotent. Let T be the normal Hall p′-subgroup of G. In
view of Lemmas 2.1 and 2.2, every maximal subgroup of any Sylow subgroup of T
has the semi cover-avoiding property or is E-supplemented in T . Thus T satisfies
the hypothesis of the corollary. It follows by induction that T , and hence G is a
Sylow tower group of supersolvable type. ✷

Corollary 3.5 ( [13, Theorem 3.3]). Let G be a group, p a prime dividing the

order of G, and P a Sylow p-subgroup of G. If (|G|, p− 1) = 1 and every maximal

subgroup of P has the semi cover-avoiding property in G, then G is p-nilpotent.

Corollary 3.6 ( [11, Theorem 3.2]). Let P be a Sylow p-subgroup of a group G,

where p is the smallest prime divisor of |G|. If P is cyclic or every maximal

subgroup of P has the semi cover-avoiding property in G, then G is p-nilpotent.
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Proof: If P is cyclic, by Lemma 2.5, we have that G is p-nilpotent. Thus we may
assume that every maximal subgroup of P has the semi cover-avoiding property in
G. By Theorem 3.1, G is p-nilpotent. ✷

Corollary 3.7 ( [15, Theorem 3.4]). Let G be a group and P a Sylow p-subgroup
of G, where p is the smallest prime dividing |G|. If all maximal subgroups of P are

c-normal in G, then G is p-nilpotent.

Corollary 3.8 ( [16, Theorem 3.2]). Let G be a group and P a Sylow p-subgroup
of G, where p is the smallest prime dividing |G|. If all maximal subgroups of P are

c-supplemented in G, then G is p-nilpotent.

Corollary 3.9 ( [29, Theorem 3.1]). Let P be a Sylow p-subgroup of a group G,

where p is a prime divisor of |G| with (|G|, p− 1) = 1. If every maximal subgroup

of P is c-supplemented in G, then G is p-nilpotent.

Corollary 3.10 ( [6, Theorem 3.1]). Let p be a prime dividing the order of a group

G with (|G|, p−1) = 1. Suppose that every maximal subgroup of P is c-supplemented

in G and G ∈ Cp′ , then G/Op(G) is p-nilpotent and G ∈ Dp′ .

Corollary 3.11 ( [19, Theorem 3.1]). Let p be a prime dividing the order of a group

G with (|G|, p− 1) = 1. Assume that H is a normal subgroup of G such that G/H
is p-nilpotent. If there exists a Sylow p-subgroup P of H such that every maximal

subgroup of P is c∗-normal in G, then G is p-nilpotent.

Corollary 3.12 ( [27, Theorem 3.1]). Let p be a prime dividing the order of a group

G with (|G|, p − 1) = 1. If there exists a Sylow p-subgroup P of G such that every

maximal subgroup of P is S-quasinormally embedded in G, then G is p-nilpotent.

Corollary 3.13 ( [29, Theorem 3.1]). Let p be the smallest prime dividing the order

of a group G. If there exists a Sylow p-subgroup P of G such that every maximal

subgroup of P is weakly S-permutably embedded in G, then G is p-nilpotent.

Corollary 3.14 ( [30, Theorem 3.1]). Let p be the smallest prime dividing the order

of a group G. If there exists a Sylow p-subgroup P of G such that every maximal

subgroup of P is weakly S-permutable in G, then G is p-nilpotent.

Corollary 3.15 ( [31, Theorem 3.1]). Let p be a prime dividing the order of a

group G with (|G|, p− 1) = 1. If there exists a Sylow p-subgroup P of G such that

every maximal subgroup of P is weakly S-permutable in G, then G is p-nilpotent.

Corollary 3.16 ( [32, Theorem 3.1]). Let p be the smallest prime dividing the order

of a group G. If there exists a Sylow p-subgroup P of G such that every maximal

subgroup of P is S-permutably embedded in G, then G is p-nilpotent.

Corollary 3.17 ( [14, Theorem 3.1]). Let p be a prime dividing the order of a

group G with (|G|, p − 1) = 1 and H a normal subgroup of G such that G/H is

p-nilpotent. If there exists a Sylow p-subgroup P of H such that every maximal

subgroup of P is c-normal or S-permutably embedded in G, then G is p-nilpotent.
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Theorem 3.18. Let F be a saturated formation containing U, where U is the class

of all supersolvable groups. A group G ∈ F if and only if there is a normal subgroup

H of G such that G/H ∈ F and every maximal subgroup of any noncyclic Sylow

subgroup of H either has the semi cover-avoiding property or is E-supplemented in

G.

Proof: The necessity is obvious. We only need to prove the sufficiency. Suppose
that the assertion is false and let G be a counterexample of minimal order.

(1) G has a minimal normal subgroup N ≤ H and N is an elementary abelian
p-group, where p is the largest prime in π(H).

By the hypothesis of the theorem, every maximal subgroup of any noncyclic Sy-
low subgroup ofH either has the semi cover-avoiding property or isE-supplemented
in G. Consequently, by Lemmas 2.1 and 2.2 every one also either has the semi
cover-avoiding property or is E-supplemented in H . Applying Corollary 3.4, H is
a Sylow tower group of supersolvable type. Let p be the largest prime divisor of
|H | and P a Sylow p-subgroup of H . Then P is normal in H . Obviously, P is
normal in G. Therefore, G has a minimal normal subgroup N ≤ H and N is an
elementary abelian p-group.

(2) G/N ∈ F and N = P is the Sylow p-subgroup of H .
First, we want to prove that G/N satisfies the hypothesis of the theorem. In

fact, (G/N)/(H/N) ∼= G/H ∈ F. Let P1/N be a maximal subgroup of the Sylow
p-subgroup P/N of H/N . Then P1 is a maximal subgroup of the Sylow p-subgroup
P of H . If P/N is noncyclic, then P is also noncyclic. By the hypothesis of the
theorem, P1 either has the semi cover-avoiding property or is E-supplemented in
G. By Lemmas 2.1 and 2.2, P1/N either has the semi cover-avoiding property or is
E-supplemented in G/N . Let M1/N be a maximal subgroup of the noncyclic Sylow
q-subgroup QN/N of H/N , where q 6= p and Q is a noncyclic Sylow q-subgroup
of H . It is clear that M1 = Q1N , where Q1 is a maximal subgroup of Q. By the
hypothesis of the theorem, Q1 either has the semi cover-avoiding property or is
E-supplemented in G. Hence M1/N either has the semi cover-avoiding property
or is E-supplemented in G/N by Lemmas 2.1 and 2.2. We now have proved that
G/N satisfies the hypothesis of the theorem. By the minimal choice of G, we have
G/N ∈ F. Since F is a saturated formation, N is the unique minimal normal
subgroup of G contained in P and N � Φ(G). By Lemma 2.7, it follows that
P = F (P ) = N .

(3) |N | > p.
This follows from Lemma 2.8.
(4) The final contradiction.
Let M be a maximal subgroup of N . By the hypothesis, M either has the semi

cover-avoiding property or is E-supplemented in G.
Case I: M is E-supplemented in G. Then there is a subgroup T of G such that

G = MT and M ∩ T ≤ MeG. Thus G = NT and N = N ∩ MT = M(N ∩ T ).
This implies that N ∩ T 6= 1. But since N ∩ T is normal in G and N is minimal
normal in G, N ∩ T = N . It follows that T = G and so M = MeG. In view of
Lemma 2.11, M is s-quasinormal in G. By Lemma 2.10, Op(G) ≤ NG(M). Thus



120 C. Li, X. Zhang, J. Huang

M E GpO
p(G) = G. It follows that M = 1 and so |N | = p, which contradicts step

(3).
Case II: M has the semi cover-avoiding property in G. Then there exists a chief

series of G
1 = G0 < G1 < · · ·Gn−1 < Gn = G

such that M covers or avoids every factor Gj/Gj−1. Since N is minimal normal
in G, there exists j such that Gj ∩ N = N and Gj−1 ∩ N = 1. If M covers
Gj/Gj−1, then MGj = MGj−1 and so MGj ∩N = MGj−1 ∩N . Hence M(Gj ∩
N) = M(Gj−1 ∩N), i.e., MN = M , a contradiction. If M avoids Gj/Gj−1, then
M ∩Gj = M ∩Gj−1 and so M ∩Gj ∩N = M ∩Gj−1 ∩N , i.e., M = 1. It follows
|N | = p, a contradiction. ✷

Corollary 3.19 ( [13, Theorem 3.6]). Let F be a saturated formation containing U.

If there is a normal Hall subgroup H of G such that G/H ∈ F and every maximal

subgroup of any Sylow subgroup of H has the semi cover-avoiding property in G,

then G ∈ F.

Corollary 3.20 ( [21, Theorem 3.3]). Let H be a normal subgroup of a group G
such that G/H is supersolvable. If every maximal subgroup of any Sylow subgroup

of H is c-normal in G, then G is supersolvable.

Corollary 3.21 ( [16, Theorem 4.2]). Let F be a saturated formation containing

U. If there is a normal subgroup H of G such that G/H ∈ F and every maximal

subgroup of any Sylow subgroup of H is c-supplemented in G, then G ∈ F.

Corollary 3.22 ( [23, Theorem 4.1]). Let F be a saturated formation containing

U. If there is a normal subgroup H of G such that G/H ∈ F and every maximal

subgroup of any noncyclic Sylow subgroup of H is c-supplemented in G, then G ∈ F.

Corollary 3.23 ( [32, Theorem 3.3]). Let F be a saturated formation containing

U. If there is a normal subgroup H of a group G such that G/H ∈ F and every

maximal subgroup of any Sylow subgroup of H is S-quasinormally embedded in G,

then G ∈ F.

Corollary 3.24 ( [14, Theorem 3.3]). Let F be a saturated formation containing U.

A group G ∈ F if and only if there is a normal subgroup H of G such that G/H ∈ F

and every maximal subgroup of any Sylow subgroup of H is either s-quasinormally

embedded or c-normal in G.

Theorem 3.25. Let F be a saturated formation containing U. Suppose that G is

a group with a solvable normal subgroup N such that G/N ∈ F. If every maximal

subgroup of each non-cyclic Sylow subgroup of F (N) either has the semi cover-

avoiding property or is E-supplemented in G, then G ∈ F.

Proof: Suppose that the theorem is false and let G be a counterexample of minimal
order.

(1) Φ(G) ∩N = 1.
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Assume that Φ(G) ∩N 6= 1. Then there exists a prime p dividing the order of
Φ(G) ∩ N . Let P0 be the Sylow p-subgroup of Φ(G) ∩ N . Then Po ✂ G. Since
(G/P0)/(N/P0) ∼= G/N , it follows that (G/P0)/(N/P0) ∈ F. By [1, p.270 Satz 3.5],
F (N/P0) = F (N)/P0. Let P1/P0 be a maximal subgroup of the Sylow p-subgroup
P/P0 of F (N)/P0. Then P1 is a maximal subgroup of the Sylow p-subgroup P of
F (N). If P/P0 is non-cyclic, then P is non-cyclic. By the hypothesis, P1 either has
the semi cover-avoiding property or is E-supplemented in G. Hence P1/P0 either
has the semi cover-avoiding property or is E-supplemented in G/P0 by Lemmas
2.1 and 2.2. Set Q∗/P0 be a maximal subgroup of the non-cyclic Sylow q-subgroup
of F (N)/P0, where p 6= q. It is clear that Q∗ = Q∗

1P0, where Q∗
1 is a maximal

subgroup of the non-cyclic Sylow q-subgroup of F (N). Then Q∗
1 either has the

semi cover-avoiding property or is E-supplemented in G. Hence Q∗
1P0/Po either

has the semi cover-avoiding property or is E-supplemented in G/Po by Lemmas 2.1
and 2.2. Now we have proved that G/P0 satisfies the hypotheses of the theorem.
Therefore G/P0 ∈ F by minimal choice of G. Since Po ≤ Φ(G) and F is a saturated
formation, we have that G ∈ F, a contradiction.

(2) F (N) = L1 × L2 × · · · × Ln, where every Li is a minimal normal subgroup
of G with prime order.

If N = 1, nothing need to be proved. So assume N 6= 1. Then F (N) 6= 1 by
the solvability of N . By Lemma 2.7, F (N) is the direct product of some minimal
normal subgroups of G. Let P be the Sylow p-subgroup of F (N). We can denote
P = R1 ×R2 × · · · ×Rm, where every Ri is a minimal normal subgroup of G. We
will show that |Ri| = p (i = 1, 2, · · ·,m). If not, then there exists an index i such
that |Ri| > p. Without loss of generality, suppose that i = 1. Since R1 � Φ(G),
there exist a maximal subgroup M of G such that G = R1M and R1 ∩ M = 1.
Then Gp = R1Mp. Pick a maximal subgroup G∗

p of Gp containing Mp. Then
|R1 : G∗

p ∩ R1| = |R1G
∗
p/G

∗
p| = |Gp : G∗

p| = p. Hence R∗
1 = G∗

p ∩ R1 is a maximal
subgroup of R1. This implies that P ∗ = R∗

1R2 · · ·Rm is a maximal subgroup of P .
Obviously, P is not cyclic. By the hypothesis, P ∗ either has the semi cover-avoiding
property or is E-supplemented in G. Let K = R2 × · · · ×Rm.

Case I: P ∗ has the semi cover-avoiding property in G. By Lemma 2.1, P ∗/K has
the semi cover-avoiding property in G/K. Suppose that P ∗/K cover-avoids a chief
series 1 = K✁G1/K = G1✁ · · ·✁G/K = Gn of G/K. Let i be the smallest number
in {1, 2, · · ·, n− 1} such that Gi+1/Gi was covered by P ∗/K in above chief series.
Then we haveGi∩P

∗ = K andGi+1 ≤ GiP
∗ = GiR

∗
1. HenceGi+1 = Gi(R

∗
1∩Gi+1)

and R∗
1∩Gi+1 > 1. SinceR1 is a minimal normal subgroup ofG, we haveR1 ≤ Gi+1

and R1 ∩ Gi = 1. Hence |R1| = |Gi+1/Gi| = |R∗
1 ∩ Gi+1| < |R1|, a contraction.

Therefore, P ∗/K does not cover any chief factor in above chief series. It follows
that P ∗/K = 1 and |R1| = p, a contraction.

Case II: P ∗ is E-supplemented in G. Then there exists a subgroup K such
that G = P ∗T and P ∗ ∩ T ≤ (P ∗)eG. Obviously, (P ∗) ✂ Gp. By Lemma 2.11,
(P ∗)eG = (P ∗)sG. In view of [12, Lemma 2.10], (P ∗)sG = (P ∗)G. Denote T1 = KT .
Then G = R∗

1T1 and R∗
1 ∩ T1 = R∗

1 ∩ T1 ∩P ∗ = R1 ∩K(P ∗ ∩ T ) ≤ R1 ∩K(P ∗)G =
R1 ∩ K = 1. Since R1 ∩ T1 is normal in G, we have R1 ∩ T1 = 1 or R1 by the
minimality of R1. If the former holds, then R1 = R1 ∩R∗

1T1 = R∗
1(R1 ∩ T1) = R∗

1,
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a contraction. Hence R1 ∩ T1 = R1, i.e., R1 ≤ T1. It follows that R∗
1 = 1 and so

|R1| = p, a contraction.
(3) The final contradiction.
It is easy to see that G/CG(Li) is abelian by step (2). Since CG(F (N)) =⋂n

i=1 CG(Li), we have that G/CG(F (N)) is abelian. Hence G/CG(F (N)) ∈ U ⊆ F.
By the assumption, G/N ∈ F, which implies thatG/N∩CG(F (N)) = G/CN (F (N)) ∈
F by the properties of formations. From the solvability of N , CN (F (N)) ≤ F (N).
In view of step (2), F (N) is abelian. Then F (N) ≤ CN (F (N)). Thus F (N) =
CN (F (N)) and G/F (N) ∈ F. By Theorem 3.18, G ∈ F, a contradiction. ✷

Corollary 3.26 ( [24, Theorem 1]). Let F be a saturated formation containing U.

Suppose that G is a group with a solvable normal subgroup N such that G/N ∈ F.

If all maximal subgroups of all Sylow subgroups of F (N) are c-normal in G, then

G ∈ F.

Corollary 3.27 ( [18, Theorem 4.5]). Let F be a saturated formation containing U.

Suppose that G is a group with a solvable normal subgroup N such that G/N ∈ F.

If all maximal subgroups of all Sylow subgroups of F (N) are c-supplemented in G,

then G ∈ F.

Corollary 3.28 ( [25, Theorem 1.6]). Let F be a saturated formation containing U.

Suppose that G is a group with a solvable normal subgroup N such that G/N ∈ F.

If all maximal subgroups of all Sylow subgroups of F (N) are complemented in G,

then G ∈ F.

Corollary 3.29 ( [32, Corollary 3.4]). Let F be a saturated formation containing U.

Suppose that G is a group with a solvable normal subgroup N such that G/N ∈ F.

If all maximal subgroups of all Sylow subgroups of F (N) are complemented in G,

then G ∈ F.
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