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abstract: In this paper, a new approximate method for solving the system of
nonlinear Volterra integro-differential equations of arbitrary (integer and fractional)
order is introduced. For this purpose, the generalized fractional order of the Cheby-
shev orthogonal functions (GFCFs) based on the classical Chebyshev polynomials
of the first kind has been introduced that can be used to obtain the solution of the
integro-differential equations (IDEs). Also, we construct the fractional derivative
operational matrix of order α in the Caputo’s definition for GFCFs. This method
reduces a system of IDEs by collocation method into a system of algebraic equa-
tions. Some examples to illustrate the simplicity and the effectiveness of the propose
method have been presented.
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1. Introduction

Many problems of theoretical physics, epidemic models, Hydrodynamic models
and many disciplines lead to nonlinear Volterra IDEs [1,2,3], thus application of
numerical methods for solving these equations are attractive. There are some
methods to solve system of nonlinear Volterra IDEs, such as, Chebyshev wavelets
[4], block-pulse functions [5], Sumudu decomposition method [6], Taylor series
method [7], radial basis function networks [8], Differential transforms [9], He’s
Homotopy perturbation method [10], and operational Tau method [11].

The main goal of this paper is to present a numerical method (GFCF collocation
method) for approximating the solution of a system of nonlinear Volterra IDEs of
arbitrary (integer and fractional) order as follows:

M
∑

j=1

Fij

(

t, yj , ..., y
(γij)

j

)

+
M
∑

j=1

∫ t

0
Kij(t, x)Φij

(

t, yj(x), ..., y
(λij )

j (x)
)

dx = fi(t), (1.1)

with the boundary conditions:

y
(k)
j (t0) = ykj0, k = 0, 1, ..., s− 1, s.t. ⌈ max

1≤i≤M
{λij , γij}⌉ = s, s ∈ N, (1.2)

for i, j = 1, 2, ...,M , and

Fij

(
t, yj , ..., y

(γij)

j

)
=

n1∑

l=0

pl(t)

γij∏

r=0

(
y
(l)
j (t)

)γijlr

, (1.3)

Φij

(
t, yj, ..., y

(λij)
j

)
=

n2∑

l=0

ql(t)

λij∏

r=0

(
y
(l)
j (t)

)λijlr

, (1.4)

where t ∈ [0, η], η > 0, ⌈∗⌉ is the smallest integer greater than or equal to ∗,
n1, n2, γijlr , λijlr ∈ N

⋃{0}, and fi(t), pl(t), ql(t) ∈ L2([0, η)), Kij(t, x) ∈
L2([0, η)2) are known functions, M ∈ N, and yj(t), j = 1, ...,M are the unknown
functions.

In this study, by substituting the GFCFs with the unknown coefficient that
satisfies in the boundary conditions, we convert the nonlinear Volterra IDEs sys-
tem of arbitrary order into nonlinear algebraic system. Because of the fractional
derivatives can be in the IDE, we use the fractional derivative operational matrix of
GFCFs to convert nonlinear Volterra IDEs system into nonlinear algebraic system.
By solving such system, the approximate solution of exact solution is obtained.

The organization of the paper is expressed as follows: in section 2, some basic
definitions and theorems are expressed. In section 3, the GFCFs and their prop-
erties are obtained. In section 4, the operational matrix of fractional derivative to
GFCFs is obtained. In Section 5, application of the method is explained. Illustra-
tive examples of the proposed method are shown in section 6. Finally, a conclusion
is provided.

2. Basical definitions

In this section, some basic definitions and theorems which are useful for our
method have been introduced [12,13].
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Definition 1. For any real function f(t), t > 0, if there exists a real number p > µ,
such that f(t) = tpf1(t), where f1(t) ∈ C(0,∞), is said to be in space Cµ, µ ∈ ℜ,
and it is in the space Cn

µ if and only if fn ∈ Cµ, n ∈ N .
Definition 2. The fractional derivative of f(t) in the Caputo sense by the Riemann-
Liouville fractional integral operator of order α > 0 is defined as [14]

Dαf(t) =
1

Γ(m− α)

∫ t

0

(t− s)m−α−1Dmf(s)ds, α > 0,

for m− 1 < α ≤ m, m ∈ N, t > 0 and f ∈ Cm
−1.

Some properties of the operator Dα are as follows. For f ∈ Cµ, µ ≥ −1, α, β ≥ 0,
γ ≥ −1, N0 = {0, 1, 2, ...} and constant C:

(i) DαC = 0,

(ii) DαDβf(t) = Dα+βf(t),

(iii) Dαtγ =





0 γ ∈ N0 and γ < α,

Γ(γ+1)
Γ(γ−α+1) t

γ−α, Otherwise.

(2.1)

(iv) Dα(

n∑

i=1

cifi(t)) =

n∑

i=1

ciD
αfi(t), where ci ∈ R. (2.2)

Definition 3. Suppose that f(t), g(t) ∈ C(0, η] and w(t) is a weight function,
then we define

‖ f(t) ‖2w =

∫ η

0

f2(t)w(t)dt,

〈f(t), g(t)〉w =

∫ η

0

f(t)g(t)w(t)dt,

Theorem 1. (Generalized Taylor’s formula) Suppose that f(t) ∈ C[0, η] and
Dkαf(t) ∈ C[0, η], where k = 0, 1, ...,m, 0 < α ≤ 1, and η > 0. Then we have

f(t) =

m−1∑

i=0

tiα

Γ(iα+ 1)
Diαf(0+) +

tmα

Γ(mα+ 1)
Dmαf(ξ), (2.3)

with 0 < ξ 6 t, ∀t ∈ [0, η]. And thus for Mα > |Dmαf(ξ)|:

|f(t)−
m−1∑

i=0

tiα

Γ(iα+ 1)
Diαf(0+)| 6 Mα

tmα

Γ(mα+ 1)
. (2.4)

Proof: See Ref. [15].
In case of α = 1, the generalized Taylor’s formula (2.3) reduces to the classical

Taylor’s formula.

Theorem 2. Suppose that {Pi(t)} be a sequence of orthogonal polynomials, w(t)
is weight function for {Pi(t)}, and q(t) is a polynomial of degree at most n − 1,
then for pn(t) ∈ {Pi(t)} we have: 〈pn(t), q(t)〉w = 0.
Proof: See the section 2.3 in Ref. [16].
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3. Generalized Fractional order of the Chebyshev Functions

In this section, the generalized fractional order of the Chebyshev functions of
the first kind have been defined, and then some properties and convergence of them
for our method have been introduced.

3.1. The Chebyshev functions

The Chebyshev polynomials have been used in numerical analysis, frequently,
including polynomial approximation, Gauss-quadrature integration, integral and
differential equations and spectral methods. Some of Chebyshev polynomials prop-
erties are: orthogonality, recursive, real zeros, complete for the space of polynomi-
als, etc. For these reasons, many researchers have employed these polynomials in
their research [17,18,19,20,21,22,23].

The number of researchers by using some transformations extended Chebyshev
polynomials to semi-infinite or infinite domain for example by using x = t−L

t+L
, L > 0

the rational Chebyshev functions are introduced [24,25,26,27,28,29,30].
In this study, by transformation x = 1 − 2( t

η
)α; α, η > 0 on the Chebyshev

polynomials of the first kind, the generalized fractional order of the Chebyshev
orthogonal functions (GFCF) in interval [0, η] have been introduced, that we can
use them to solve nonlinear Volterra IDEs.

3.2. The GFCFs definition

The efficient methods have been used by many researchers to solve the differ-
ential equations (DE) is based on series expansion of the form

∑n
i=0 cit

i, such as
Adomian’s decomposition method [31] and Homotopy perturbation method [32].
But the exact solution of many DEs can’t be estimated by polynomials basis, for a
simple example: the ODE of 4yy′′ = 3t, y(0) = y′(0) = 0, that the exact solution

is y(t) = t
3
2 , therefore we have defined a new basis for Spectral methods to solve

them as follows:

Φn(t) =

n∑

i=0

cit
iα.

Now by transformation z = 1 − 2( t
η
)α; α, η > 0 on classical Chebyshev poly-

nomials of the first kind, we defined the GFCFs in interval [0, η], that be denoted
by ηFTα

n (t) = Tn(1− 2( t
η
)α).

The ηFTα
n (t) can be obtained using recursive relation as follows (n = 1, 2, · · · ):

ηFTα
0 (t) = 1 , ηFTα

1 (t) = 1− 2(
t

η
)α,

ηFTα
n+1(t) = (2− 4(

t

η
)α) ηFTα

n (t)− ηFTα
n−1(t),

The analytical form of ηFTα
n (t) of degree nα is given by

ηFTα
n (t) =

n∑

k=0

βn,k,η,α.t
αk, t ∈ [0, η], (3.1)
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where

βn,k,η,α = (−1)k
n22k(n+ k − 1)!

(n− k)!(2k)!ηαk
and β0,k,η,α = 1.

Note that ηFTα
n (0) = 1 and ηFTα

n (η) = (−1)n.

The GFCFs are orthogonal with respect to the weight function w(t) = t
α
2

−1
√
ηα−tα

in the interval [0, η]:
∫ η

0
ηFTα

n (t) ηFTα
m(t)w(t)dt =

π

2α
cnδmn. (3.2)

where δmn is Kronecker delta, c0 = 2, and cn = 1 for n ≥ 1. The Eq. (3.2) is
provable using the properties of orthogonality in the Chebyshev polynomials.
Figs. 1 show the graphs of GFCFs for various values of n and α and η = 5.

(a) Graph of the GFCFs with α = 0.25 and
various values of n

(b) Graph of the GFCFs with n = 5 and
various values of α

Figure 1: Graphs of the GFCFs for various values of n and α.

3.3. Approximation of functions

Any function y(t), t ∈ [0, η], can be expanded as the follows [16]:

y(t) =

∞∑

n=0

an ηFTα
n (t),

where the coefficients an are obtained by inner product:

〈y(t), ηFTα
n (t)〉w = 〈

∞∑

n=0

an ηFTα
n (t), ηFTα

n (t)〉w ,

and using the property of orthogonality in the GFCFs:

an =
2α

πcn

∫ η

0
ηFTα

n (t)y(t)w(t)dt, n = 0, 1, 2, · · · .

In practice, we have to use first m-terms GFCFs and approximate y(t):

y(t) ≃ ym(t) =
m−1∑

n=0

an ηFTα
n (t) = ATΦ(t), (3.3)
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with

A = [a0, a1, ..., am−1]
T , (3.4)

Φ(t) = [ηFTα
0 (t), ηFTα

1 (t), ..., ηFTα
m−1(t)]

T . (3.5)

3.4. Convergence of method

The following theorem shows that by increasing m, the approximation solution
fm(t) is convergent to f(t) exponentially.
Theorem 3. Suppose that Dkαf(t) ∈ C[0, η] for k = 0, 1, ...,m, and ηF

α
m is the

subspace generated by {ηFTα
0 (t),η FTα

1 (t), ...,η FTα
m−1(t)}. If fm = ATΦ (in Eq.

(3.3)) is the best approximation to f(t) from ηF
α
m, then the error bound is presented

as follows

‖ f(t)− fm(t) ‖w≤
ηmαMα

2mΓ(mα+ 1)

√
π

α.m!
,

where Mα ≥ |Dmαf(t)|, t ∈ [0, η].

Proof. By theorem 1, y(t) =
∑m−1

i=0
tiα

Γ(iα+1)D
iαf(0+) and

|f(t)− y(t)| ≤ Mα

tmα

Γ(mα+ 1)
.

Since ATΦ(t) is the best approximation to f(t) from ηF
α
m, and y ∈ ηF

α
m, one has

‖ f(t)− fm(t) ‖2w ≤ ‖ f(t)− y(t) ‖2w

≤ M2
α

Γ(mα+ 1)2

∫ η

0

t
α
2 +2mα−1

√
ηα − tα

dt

=
M2

α

Γ(mα+ 1)2
η2mαπ

α22mm!
.

Now by taking the square roots, the theorem can be proved. ∗
Theorem 4. The generalized fractional order of the Chebyshev function ηFTα

n (t),
has precisely n real zeros on interval (0, η) in the form

tk = η

(
1− cos( (2k−1)π

2n )

2

) 1
α

, k = 1, 2, ..., n.

Moreover, d
dt η

FTα
n (t) has precisely n−1 real zeros on interval (0, η) in the following

points:

t′k = η

(
1− cos(kπ

n
)

2

) 1
α

, k = 1, 2, ..., n− 1.

Proof. The Chebyshev polynomial Tn(x) has n real zeros [33,34]:

xk = cos(
(2k − 1)π

2n
), k = 1, 2, ..., n.



System of Nonlinear Volterra Integro-Differential Equations 39

Therefore Tn(x) can be written as

Tn(x) = (x− x1)(x− x2)...(x − xn).

Using transformation x = 1− 2( t
η
)α yields to

ηFTα
n (t) = ((1 − 2(

t

η
)α)− x1)((1 − 2(

t

η
)α)− x2)...((1 − 2(

t

η
)α)− xn),

so, the real zeros of ηFTα
n (t) are tk = η(1−xk

2 )
1
α .

Also, we know that, the real zeros of d
dt
Tn(t) occurs in the following points [34]:

x′
k = cos(

kπ

n
), k = 1, 2, ..., n− 1.

Same as in the previous, the absolute extremes of ηFTα
n (t) are t′k = η(

1−x′

k

2 )
1
α . ∗

4. The fractional derivative operational matrix of GFCFs

In the next theorem, the operational matrix of the Caputo fractional derivative
of order α > 0 for GFCFs is generalized, which can be expressed by:

DαΦ(t) = D(α)Φ(t). (4.1)

Theorem 5. Let Φ(t) be GFCFs vector in Eq. (3.5), and D(α) is an m × m

operational matrix of the Caputo fractional derivatives of order α > 0, then:

D
(α)
i,j =





2√
πcj

∑i

k=1

∑j

s=0 βi,k,η,αβj,s,η,α
Γ(αk+1)Γ(s+k− 1

2 )η
α(k+s−1)

Γ(αk−α+1)Γ(s+k) , i > j

0 otherwise

for i, j = 0, 1, ...,m− 1.
Proof. Using Eq. (4.1)




D0,0 · · · D0,j · · · D0,m−1

...
...

...
...

...
Di,0 · · · Di,j · · · Di,m−1

...
...

...
...

...
Dm−1,0 · · · Dm−1,j · · · Dm−1,m−1







Φ0

...
Φj

...
Φm−1



=




DαΦ0

...
DαΦi

...
DαΦm−1



,

and orthogonally property of GFCFs, the Eqs.(2.1) and (3.1), for i, j = 0, 1, ...,m−
1:

D
(α)
i,j =

2α

πcj

∫ η

0

Dα(ηFTα
i (t))(ηFTα

j (t))w(t)dt.
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Since DαFTα
0 (t) = 0, therefore D

(α)
0,j =

∫ η

0 DαFTα
0 (t)FTα

j (t)w(t)dt = 0.
And if i ≤ j then deg(Dα(ηFTα

i (t))) < deg(ηFTα
j (t)), therefore by theorem 2,

D
(α)
i,j = 0 for any i ≤ j. Now for i > j we have:

D
(α)
i,j =

2α

πcj

∫ η

0

i∑

k=1

βi,k,η,α

Γ(αk + 1)tαk−α

Γ(αk − α+ 1)

j∑

s=0

βj,s,η,αt
αs t

α
2 −1

√
ηα − tα

dt

=
2α

πcj

i∑

k=1

j∑

s=0

βi,k,η,αβj,s,η,α

Γ(αk + 1)

Γ(αk − α+ 1)

∫ η

0

tα(k+s− 1
2 )−1

√
ηα − tα

dt.

Now, by integration of above equation, the theorem can be proved.∗

Remark: The fractional derivative operational matrix of GFCFs is an lower-
triangular matrix and for α = 1 is same as shifted Chebyshev polynomials [35].

5. Application of the GFCF collocation method

In this section, we apply the GFCFs collocation method to solve the system of
nonlinear Volterra IDEs of arbitrary order.

For satisfying the boundary conditions the Eq. (1.2), we satisfy the boundary
conditions as follows, for j = 1, 2, ...,M :

ŷjm(t) =

s−1∑

k=0

ykj0 tk + ts yjm(t), (5.1)

where yjm(t) is defined in Eq. (3.3).
To apply the collocation method, we construct the residual functions by sub-

stituting ŷjm(t) in Eq. (5.1) for yj(t) in the system of nonlinear Volterra IDEs of
arbitrary order the Eq. (1.1), for i = 1, 2, ...,M :

Resi(t) =

M∑

j=1

Fij

(
t, ŷjm, ..., ŷjm

(γij)
)

+

M∑

j=1

∫ t

0

Kij(t, x)Φij

(
t, ŷjm, ..., ŷjm

(λij)
)
dx− fi(t) (5.2)

The equations for obtaining the coefficient {ajn}M,m−1
j=1,n=0 arise from equalizingResi(t)

to zero on m collocation points:

Resi(tk) = 0, k = 0, 1, ...,m− 1. (5.3)

In this study, the roots of the GFCFs in the interval [0, η] (Theorem 4) are used as
collocation points. By solving the obtained set of 2m× 2m equations, we have the
approximating functions ŷjm(t), j = 1, 2, ...,M .
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Note that if we have a fractional derivative in system, we can not use the Eq.
(5.1) for the unknown function, instead, we use Eqs. (3.3) and (4.1), and then the
boundary conditions will applied.

And also consider that all of the computations have been done by Maple 2015
on a laptop with CPU Core i7, Windows 8.1 64bit, and 8GB of RAM.

6. Illustrative examples

In this section, by using the present method we solve some well-known examples
to show efficiently and applicability GFCFs method based on Spectral method.
These examples have been studied by other researchers. We apply the present
method to solve the system of nonlinear Volterra IDEs of arbitrary order, and
their outputs are compared with the corresponding analytical solution.

6.1. Nonlinear system of Volterra IDEs of integer order

We applied the present method to solve some system of Volterra IDEs of integer
order.

Example 1. Consider nonlinear system of Volterra IDEs with boundary con-
ditions u(0) = 0, u′(0) = 1, u′′(0) = 0, v(0) = 1, v′(0) = 0 and v′′(0) = −1, as
follows [4]





u′′′(t) + u′(t) +
∫ t

0
(u′′2(x) + v′′2(x))dx = t

v′′′(t)−
∫ t

0 (u
′′(x)v(x))dx = sin(t) + 1

2 sin
2(t)

(6.1)

The exact solutions of this problem are u(t) = sin(t) and v(t) = cos(t).
By applying the technique described in last section, we satisfy the boundary con-
ditions as follows:

ŷ1m(t) = t+ t3 y1m(t),

ŷ2m(t) = 1− t2

2
+ t3 y2m(t).

We construct the residual functions as follows:

Res1(t) = ŷ1m
′′′(t) + ŷ1m

′(t) +

∫ t

0

(ŷ1m
′′2(x) + ŷ2m

′′2(x))dx − t

Res2(t) = ŷ2m
′′′(t)−

∫ t

0

(ŷ1m
′′(x)ŷ2m(x))dx − sin(t)− 1

2
sin2(t)

Therefore, to obtain the coeffcient {ajn}2,m−1
j=1,n=0; Resi(t), i = 1, 2 is equalized to

zero at m collocation point. By solving this set of nonlinear algebraic equations,
we can find the approximating function ŷjm(t).

Figure 2 shows the logarithmic graph of the absolute and the residual errors of
the approximate solutions and the analytic solutions for m = 20, and α = 0.50.
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(a) Graphs of the absolute errors (b) Graphs of the residual errors

Figure 2: Log graphs of the absolute and the residual errors for example 1.

Example 2. Consider the following linear system of Fredholm IDEs with
boundary conditions u(0) = 1, u′(0) = 0, v(0) = −1 and v′(0) = 2, as follows [4]





u′′(t) + v′(t) +
∫ 1

0 2tx(u(x)− 3v(x))dx = 3t2 + 3
10 t+ 8

v′′(t) + u′(t) +
∫ 1

0 (6t+ 3x2)(u(x)− 2v(x))dx = 21t+ 4
5

(6.2)

The exact solutions of this problem are u(t) = 3t2 + 1 and v(t) = t3 + 2t− 1.
We satisfy the boundary conditions:

ŷ1m(t) = 1 + t2 y1m(t),

ŷ2m(t) = −1 + 2t+ t2 y2m(t),

and construct the residual functions as follows:

Res1(t) = ŷ1m
′′(t) + ŷ2m

′(t) +

∫ 1

0

2tx(ŷ1m(x) − 3ŷ2m(x))dx − 3t2 − 3

10
t− 8

Res2(t) = ŷ2m
′′
(t) + ŷ1m

′
(t) +

∫ 1

0

(6t+ 3x2)(ŷ1m(x) − 2ŷ2m(x))dx − 21t− 4

5

Figure 3 shows the logarithmic graph of the absolute and the residual errors of
the approximate solutions and the analytic solutions for m = 15, and α = 0.50.
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(a) Graphs of the absolute errors (b) Graphs of the residual errors

Figure 3: Log graphs of the absolute and the residual errors for example 2.

Example 3. Consider the nonlinear Volterra IDEs problem with boundary
conditions u(0) = 0 and v(0) = 1, as follows [5]





u′(t) + 1
2v

′2(t)−
∫ t

0 ((t− x)v(x) + v(x)u(x))dx = 1

v′(t)−
∫ t

0 ((t− x)u(x) − v2(x) + u2(x))dx = 2t

(6.3)

The exact solutions of this problem are u(t) = sinh(t) and v(t) = cosh(t).
We satisfy the boundary conditions:

ŷ1m(t) = t y1m(t),

ŷ2m(t) = 1 + t y2m(t),

and construct the residual functions as follows:

Res1(t) = ŷ1m
′
(t) +

1

2
ŷ2m

′2
(t)−

∫ t

0

((t− x)ŷ2m(x) + ŷ2m(x)ŷ1m(x))dx − 1

Res2(t) = ŷ2m
′
(t)−

∫ t

0

((t− x)ŷ1m(x) − ŷ2m
2
(x) + ŷ1m

2
(x))dx − 2t

Figure 4 shows the logarithmic graph of the absolute and the residual errors of
the approximate solutions and the analytic solutions for m = 15, and α = 0.25.
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(a) Graphs of the absolute errors (b) Graphs of the residual errors

Figure 4: Log graphs of the absolute and the residual errors for example 3.

Example 4. Consider the nonlinear Volterra IDEs problem with boundary
conditions u(0) = 1, u′(0) = 2, v(0) = −1 and v′(0) = 0, as follows [5]





u′′(t) + 1
2v

′2(t)− 1
2

∫ t

0
(u2(x) + v2(x))dx = 1− t3

3

v′′(t) + tu(t)− 1
4

∫ t

0
(u2(x) − v2(x))dx = −1 + t2

(6.4)

The exact solutions of this problem are u(t) = t+ et and v(t) = t− et.
We satisfy the boundary conditions:

ŷ1m(t) = 1 + 2t+ t2 y1m(t),

ŷ2m(t) = −1 + t2 y2m(t),

and construct the residual functions as follows:

Res1(t) = ŷ1m
′′
(t) +

1

2
ŷ2m

′2
(t)− 1

2

∫ t

0

(ŷ1m
2
(x) + ŷ2m

2
(x))dx − 1 +

t3

3

Res2(t) = ŷ2m
′′
(t) + tŷ1m(t)− 1

4

∫ t

0

(ŷ1m
2
(x)− ŷ2m

2
(x))dx + 1− t2

Figure 5 shows the logarithmic graph of the absolute and the residual errors of
the approximate solutions and the analytic solutions for m = 20, and α = 0.50.
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(a) Graphs of the absolute errors (b) Graphs of the residual errors

Figure 5: Log graphs of the absolute and the residual errors for example 4.

Example 5. Consider the nonlinear Volterra IDEs problem with boundary
conditions u(0) = 1, u′(0) = 1, v(0) = 1 and v′(0) = 2, as follows [6]





u′′(t)−
∫ t

0
et−x(u2(x) + v2(x))dx = 7

3e
t − e2t − 1

3e
4t

v′′(t)−
∫ t

0 e
t−x(u2(x) − v2(x))dx = 2

3e
t + 3e2t + 1

3e
4t

(6.5)

The exact solutions of this problem are u(t) = et and v(t) = e2t.
We satisfy the boundary conditions:

ŷ1m(t) = 1 + t+ t2 y1m(t),

ŷ2m(t) = 1 + 2t+ t2 y2m(t),

and construct the residual functions as follows:

Res1(t) = ŷ1m
′′
(t)−

∫ t

0

et−x(ŷ1m
2
(x) + ŷ2m

2
(x))dx − (

7

3
et − e2t − 1

3
e4t)

Res2(t) = ŷ2m
′′
(t)−

∫ t

0

et−x(ŷ1m
2
(x)− ŷ2m

2
(x))dx − (

2

3
et + 3e2t +

1

3
e4t)

Figure 6 shows the logarithmic graph of the absolute and the residual errors of
the approximate solutions and the analytic solutions for m = 17, and α = 0.50.
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(a) Graphs of the absolute errors (b) Graphs of the residual errors

Figure 6: Log graphs of the absolute and the residual errors for example 5.

Example 6. Consider the nonlinear Volterra IDEs problem with boundary
conditions u(0) = u′′(0) = 0, u′(0) = 1, v(0) = 1, v′(0) = 0 and v′′(0) = −1, as
follows [7]





u′′′(t) + u′(t) +
∫ t

0 e
t+x(u′′2(x) + v′′2(x))dx = et(et − 1)

v′′′(t)−
∫ t

0
u′′(x)v(x)dx = sin(t)

(
1 + 1

2 sin(t)
) (6.6)

The exact solutions of this problem are u(t) = sin(t) and v(t) = cos(t).
We satisfy the boundary conditions:

ŷ1m(t) = t+ t3 y1m(t),

ŷ2m(t) = 1− t2

2
+ t3 y2m(t),

and construct the residual functions as follows:

Res1(t) = ŷ1m
′′′(t) + ŷ1m

′(t) +

∫ t

0

et+x(ŷ1m
′′2(x) + ŷ2m

′′2(x))dx − et(et − 1)

Res2(t) = ŷ2m
′′′(t)−

∫ t

0

ŷ1m
′′(x)ŷ2m(x)dx − sin(t)

(
1 +

1

2
sin(t)

)

Figure 7 shows the logarithmic graph of the absolute and the residual errors of
the approximate solutions and the analytic solutions for m = 20, and α = 0.50.
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(a) Graphs of the absolute errors (b) Graphs of the residual errors

Figure 7: Log graphs of the absolute and the residual errors for example 6.

Example 7. Consider the nonlinear Volterra IDEs problem with boundary
conditions u(0) = 0, u′(0) = 1, v(0) = 0 and v′(0) = 0, as follows [7]





u′′(t) + t
2v

′(t) + v2(t)−
∫ t

0
((t− x)v(x) + u(x)v(x)) dx = f1(t)

u′′(t) + u2(t)−
∫ t

0

(
(t− x)u(x) − v2(x) + u2(x)

)
dx = f2(t)

(6.7)

where




f1(t) =
7
6 t

6 − 49
20 t

5 + 4
3 t

4 + 3
2 t

3 − t2 − 2

f2(t) =
1
7 t

7 − 1
3 t

6 + 19
12 t

4 − 5
2 t

3 + t2 + 6t− 2

The exact solutions of this problem are u(t) = t− t2 and v(t) = t3 − t2.
We satisfy the boundary conditions:

ŷ1m(t) = t+ t2 y1m(t),

ŷ2m(t) = t2 y2m(t),

and construct the residual functions as follows:

Res1(t) = ŷ1m
′′(t) +

t

2
ŷ2m

′(t) + ŷ2m
2(t)

−
∫ t

0

((t− x)ŷ2m(x) + ŷ1m(x)ŷ2m(x)) dx− f1(t)

Res2(t) = ŷ1m
′′
(t) + ŷ1m

2
(t)

−
∫ t

0

(
(t− x)ŷ1m(x)− ŷ2m

2
(x) + ŷ1m

2
(x)
)
dx− f2(t)
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Figure 8 shows the logarithmic graph of the absolute and the residual errors of
the approximate solutions and the analytic solutions for m = 10, and α = 0.50.

(a) Graphs of the absolute errors (b) Graphs of the residual errors

Figure 8: Log graphs of the absolute and the residual errors for example 7.

6.2. Nonlinear system of Volterra IDEs of fractional order

We applied the present method to solve some system of Volterra IDEs of frac-
tional order.

Example 8. Consider the nonlinear Volterra IDEs problem with initial condi-
tions u(0) = 1, v(0) = 1 and v′(0) = 1, as follows





D
1
2u(t)− v′(t) +

∫ t

0 (v(x) + u(x))dx = f1(t)

D
1
4u(t) + 2v′′(t) +

∫ t

0
v2(x)dx = f2(t)

(6.8)

where





f1(t) =
1

Γ(0.50)

(
16
5 t

5
2 + 2t

1
2

)
+ t4

4 + t2

2 + t+ 1

f2(t) =
1

Γ(0.75)

(
128
77 t

11
4 + 4

3 t
3
4

)
+ 2et + 1

2e
2t − 1

2

The exact solutions of this problem are u(t) = t3 + t+ 1 and v(t) = et.
By applying the technique described in last section, we satisfy some boundary
conditions as follows:

ŷ1m(t) = y1m(t) = AT
1 Φ(t),

ŷ2m(t) = 1 + t+ t2 y2m(t),
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and construct the residual functions as follows:

Res1(t) = AT
1 D

( 1
2 )Φ(t)− ŷ1m

′
(t) +

∫ t

0

(ŷ1m(x) + ŷ1m(x))dx − f1(t)

Res2(t) = AT
1 D

( 1
4 )Φ(t) + 2ŷ1m

′′
(t) +

∫ t

0

ŷ1m
2
(x)dx − f2(t)

where D( 1
2 ) = D( 1

4 )D( 1
4 ), D( 1

4 ) are the operational matrix of fractional derivative
defined in Eq. (4.1) and AT

1 is defined in Eq. (3.3).
Therefore, to obtain the coeffcient {ajn}2,m−1

j=1,n=0; Resi(t), i = 1, 2 is equalized
to zero at m collocation point and replace the one collocation with the boundary
condition ŷ1m(0)− 1 = 0.
By solving this set of nonlinear algebraic equations, we can find the approximating
function ŷjm(t).

Figure 9 shows the logarithmic graph of the absolute and the residual errors of
the approximate solutions and the analytic solutions for m = 20, and α = 0.25.

(a) Graphs of the absolute error (b) Graphs of the residual error

Figure 9: Log graphs of the absolute and the residual errors for example 8.

Example 9. Consider the nonlinear Volterra IDEs problem with boundary
conditions u(0) = 1, v(0) = 2 and v(1) = 1, as follows





D
1
2u(t) +D

3
2 v(t) +

∫ t

0 (u(x)− v(x))dx = f1(t)

u′(t) +D
1
2 v(t) +

∫ t

0
(u(x) + v(x))dx = f2(t)

(6.9)

where 



f1(t) =
1

Γ(0.50)

(
16t

5
2 − 10t

1
2

)
+ 4t3

3 − 2t

f2(t) =
1

Γ(0.50)

(
128
35 t

7
2 − 8t

3
2 + 2t

1
2

)
+ 7t4

4 + t2

2 + t+ 1
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The exact solutions of this problem are u(t) = t3+ t+1 and v(t) = t4− 3t2+ t+2.
By applying the technique described in last section, we define:

ŷ1m(t) = y1m(t) = AT
1 Φ(t),

ŷ2m(t) = y2m(t) = AT
2 Φ(t),

and construct the residual functions as follows:

Res1(t) = AT
1 D

( 1
2 )Φ(t) +AT

2 D
( 3
2 )Φ(t) +

∫ t

0

(ŷ1m(x)− ŷ2m(x))dx − f1(t)

Res2(t) = ŷ1m
′(t) +AT

2 D
( 1
2 )Φ(t) +

∫ t

0

(ŷ1m(x) + ŷ2m(x))dx − f2(t)

where D( 3
2 ) = D( 1

2 )D( 1
2 )D( 1

2 ), D( 1
2 ) are the operational matrix of fractional deriva-

tive defined in Eq. (4.1) and AT
1 , AT

2 are defined in Eq. (3.3).
Therefore, to obtain the coeffcient {ajn}2,m−1

j=1,n=0; Resi(t), i = 1, 2 is equalized
to zero at m collocation point and replace the three collocations with the boundary
conditions ŷ1m(0)− 1 = 0, ŷ2m(0)− 2 = 0 and ŷ2m(1)− 1 = 0.
By solving this set of nonlinear algebraic equations, we can find the approximating
function ŷjm(t).

Figure 10 shows the logarithmic graph of the absolute and the residual errors
of the approximate solutions and the analytic solutions for m = 10, and α = 0.50.

(a) Graphs of the absolute errors (b) Graphs of the residual errors

Figure 10: Log graphs of the absolute and the residual errors for example 9.

Example 10. Consider the nonlinear Volterra IDEs problem with boundary
conditions D

1
2 u(0) = 0, v(0) = 1 and v′(0) = −1, as follows




D
1
2 u(t) + v′(t) +

∫ t

0
(u(x)v(x))dx = f1(t)

D
1
2 u(t) + v′′(t) +

∫ t

0 (u(x) − v(x))dx = f2(t)

(6.10)
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where




f1(t) = t− e−t +
∑∞

k=1
1

Γ(k+ 1
2 )
tk−

1
2

f2(t) = et + 2e−t − 2 +
∑∞

k=1
1

Γ(k+ 1
2 )
tk−

1
2

The exact solutions of this problem are u(t) = et and v(t) = e−t.
By applying the technique described in last section, we satisfy some boundary
conditions as follows:

ŷ1m(t) = y1m(t) = AT
1 Φ(t),

ŷ2m(t) = 1− t+ t2 y2m(t).

We construct the residual functions as follows:

Res1(t) = AT
1 D

( 1
2 )Φ(t) + ŷ2m

′
(t) +

∫ t

0

ŷ1m(x)ŷ2m(x)dx − f1(t)

Res2(t) = AT
1 D

( 1
2 )Φ(t) + ŷ2m

′′
(t) +

∫ t

0

(ŷ1m(x)− ŷ2m(x))dx − f2(t)

where D( 1
2 ) is the operational matrix of fractional derivative defined in Eq. (4.1)

and AT
1 is defined in Eq. (3.3).

Therefore, to obtain the coeffcient {ajn}2,m−1
j=1,n=0; Resi(t), i = 1, 2 is equalized

to zero at m collocation point and replace the one collocation with the boundary
condition AT

1 D
( 1
2 )Φ(0) = 0.

By solving this set of nonlinear algebraic equations, we can find the approximating
function ŷjm(t).

Figure 11 shows the logarithmic graph of the absolute and the residual errors
of the approximate solutions and the analytic solutions for m = 25, and α = 0.50.

(a) Graphs of the absolute errors (b) Graphs of the residual errors

Figure 11: Log graphs of the absolute and the residual errors for example 10.
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7. Conclusion

In this paper, the generalized fractional order of the Chebyshev functions (GFCFs)
of the first kind have been introduced as a new basis for Spectral methods and this
basis can be used to develop a framework or theory in Spectral methods. Next
an operational matrix of fractional derivative for these orthogonal functions is ob-
tained. These functions and matrix can be used to solve the system of nonlinear
Volterra integro-differential equations of arbitrary order. The comparison of the
approximate solutions and the exact solutions shows that the proposed method is
more efficient tool and more practical for solving linear and non-linear systems of
integro-differential equations and plots confirm.
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