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abstract: In this paper we propose a method for investigating the solvability
and iterative solution of a nonlinear fully fourth order boundary value problem.
Namely, by the reduction of the problem to an operator equation for the right-
hand side function we establish the existence and uniqueness of a solution and the
convergence of an iterative process. Our method completely differs from the methods
of other authors and does not require the condition of boundedness or linear growth
of the right-hand side function on infinity. Many examples, where exact solutions
of the problems are known or not, demonstrate the effectiveness of the obtained
theoretical results.
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1. Introduction

In this paper we consider the boundary value problem

u(4)(x) = f(x, u(x), u′(x), u′′(x), u′′′(x)), 0 < x < 1, (1.1)

u(0) = u(1) = u′′(0) = u′′(1) = 0, (1.2)

where f : [0, 1]× R
4 is continuous.

This problem models the bending equilibrium of a beam on an elastic founda-
tion, whose two ends are simply supported.
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The special case of equation (1.1), where f does not contain derivative terms
u′ and u′′′, i.e.

u(4)(x) = f(x, u(x), u′′(x)), 0 < x < 1, (1.3)

has studied by several authors. For example, in 1986, Aftabizadeh [1] showed the
existence of a solution to the probem (1.3)-(1.2) under the restriction that f is a
bounded function. In 1988 Yang [12] extended these results by letting f satisfy a
growth condition of the form |f(x, u, v)| ≤ a|u|+ b|v|+ c, where a, b, c are positive
constants such that a/π4 + b/π2 < 1.

In 1997 Ma et al. [9] and in 2004 Bai et al. [4] by the monotone method in
the presence of lower and upper solutions constructed two monotone sequences of
functions converging to the extremal solutions of the problem under some monotone
condition of f . The idea of Bai et al. is used in a recent work of Li [7]. Except for
the existence Li successfully investigated the uniqueness of the problem. It should
be emphasised that in the monotone method the assumption of the presence of
lower and upper solutions is always needed and the finding of them is not easy.

Differently from the approaches to the problem (1.3)-(1.2) of the authors men-
tioned above and the approaches to other nonlinear fourth order differential equa-
tions with various boundary conditions including nonlocal equations and nonlocal
boundary conditions, e.g., in [2,3,10,11], where the problem is led to integral op-
erators for the unknown function u(x), in [6] we reduce the original problem to an
operator equation for the right-hand side function. This idea was used by ourselves
first in a previous paper [5] when studying the Neumann problem for a biharmonic
type equation.

For the fully fourth order nonlinear boundary value problem (1.1)-(1.2), in 2013,
Li and Liang [8] established the existence of solution for the problem under the
restriction of the linear growth of the function f(x, u, y, v, z) in each variable on
the infinity. In the present paper by a completely different approach, namely by
the approach of [6] we free this restriction. Due to the reduction of the problem
to an operator equation for the right hand side function, which will be proved
to be contractive, we establish the existence and uniqueness of a solution and
the convergence of an iterative method for finding the solution. Some examples
demonstrate the applicability of our approach and the efficiency of the proposed
iterative method.

2. The existence and uniqueness of a solution

For investigating the problem (1.1)-(1.2) we set

ϕ = f(x, u, u′, u′′, u′′′), v = u′′. (2.1)

Then the problem is reduced to the two second order problems
{

v′′ = ϕ, 0 < x < 1,
v(0) = v(1) = 0,

(2.2)

{

u′′ = v, 0 < x < 1,
u(0) = u(1) = 0,

(2.3)
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Clearly, the solutions v and u of the above problems depend on ϕ, that is, v =
vϕ(x), u = uϕ(x). Therefore, for ϕ we have the equation

ϕ = Aϕ, (2.4)

where A is a nonlinear operator defined by

(Aϕ)(x) = f(x, uϕ(x), yϕ(x), vϕ(x), zϕ(x)), (2.5)

with yϕ(x) = u′
ϕ(x), zϕ(x) = v′ϕ(x).

We shall prove that under some conditions A is contractive operator.
For each number M > 0 denote

DM =

{

(x, u, y, v, z)| 0 ≤ x ≤ 1, |u| ≤
M

64
, |y| ≤

M

16
, |v| ≤

M

8
, |z| ≤

M

2

}

,

(2.6)
and by B[O,M ] we denote the closed ball centered at O with the radius M in the
space of continuous functions C[0, 1] with the norm

‖ϕ‖ = max
0≤x≤1

|ϕ(x)|.

Lemma 2.1. Assume that there exist numbers M, c0, c1, c2, c3 ≥ 0 such that

|f(x, u, y, v, z)| ≤ M, (2.7)

|f(x, u2, y2, v2, z2, )− f(x, u1, y1, v1, z1)| ≤

c0|u2 − u1|+ c1|y2 − y1|+ c2|v2 − v1|+ c3|z2 − z1| (2.8)

for any (x, u, y, v, z), (x, ui, yi, vi, zi) ∈ DM (i = 1, 2).
Then, the operator A defined by (2.5), where vϕ, uϕ are the solutions of the

problems (2.2),(2.3), maps the closed ball B[O,M ] into itself. Moreover, if

q :=
c0
64

+
c1
16

+
c2
8

+
c3
2

< 1 (2.9)

then A is contractive operator in B[O,M ].

Proof: Let ϕ be a function in B[O,M ]. The solution of the problems (2.2) and
(2.3) can be represented in the form

v(x) = −

∫ 1

0

G(x, t)ϕ(t)dt, u(x) = −

∫ 1

0

G(x, t)v(t)dt

where G(x, t) is the Green function for the differential operator −u′′ with homoge-
neous Dirichlet boundary condition

G(x, t) =

{

x(1− t), 0 ≤ x ≤ t ≤ 1,
t(1− x), 0 ≤ t ≤ x ≤ 1.
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Since
1
∫

0

|G(x, t)|dt ≤
1

8
, x ∈ [0, 1] (2.10)

1
∫

0

|G′
x(x, t)|dt ≤

1

2
, x ∈ [0, 1] (2.11)

we have

‖v‖ ≤
1

8
‖ϕ‖ ≤

1

8
M. (2.12)

Therefore, for the solution of the problem (2.3) we have the estimate

‖u‖ ≤
1

8
‖v‖ ≤

1

64
M. (2.13)

Hence

‖z‖ = ‖v′‖ ≤
1

2
‖ϕ‖ ≤

1

2
M,

‖y‖ = ‖u′‖ ≤
1

2
‖v‖ ≤

1

16
M.

(2.14)

Therefore, taking into account (2.5) and the condition (2.7), we have Aϕ ∈ B[0,M ],
i.e. the operator maps B[0,M ] into itself.
Now, let ϕ1, ϕ2 ∈ B[O,M ] and v1, v2;u1, u2 be the solutions of the problems (2.2),
(2.3), i.e., for i = 1, 2

{

v′′i = ϕi, 0 < x < 1,
vi(0) = vi(1) = 0,

(2.15)

{

u′′
i = vi, 0 < x < 1,

ui(0) = ui(1) = 0.
(2.16)

Using the representation of the solutions vi and ui via the Green function and the
estimates (2.10) and (2.11) we obtain

‖v2 − v1‖ ≤
1

8
‖ϕ2 − ϕ1‖, ‖u2 − u1‖ ≤

1

64
‖ϕ2 − ϕ1‖,

‖z2 − z1‖ ≤
1

2
‖ϕ2 − ϕ1‖, ‖y2 − y1‖ ≤

1

2
‖v2 − v1‖ ≤

1

16
‖ϕ2 − ϕ1‖.

(2.17)

Now from (2.5) and (2.8) it follows

|Aϕ2 −Aϕ1| = |f(x, u2, y2, v2, z2)− f(x, u1, y1, v1, z1)|

≤ c0|u2 − u1|+ c1|y2 − y1|+ c2|v2 − v1|+ c3|z2 − z1|.

Using the estimate (2.17) we obtain

‖Aϕ2 −Aϕ1‖ ≤
( c0
64

+
c1
16

+
c2
8

+
c3
2

)

‖ϕ2 − ϕ1‖

Therefore, A is an contractive operator in B[O,M ] provided the condition (2.9) is
satisfied. ✷
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Theorem 2.1. Under the assumptions of Lemma 2.1, the problem (1.1)-(1.2) has
a unique solution u and there hold the estimates

‖u‖ ≤
M

64
, ‖u′‖ ≤

M

16
, ‖u′′‖ ≤

M

8
, ‖u′′′‖ ≤

M

2
. (2.18)

Proof: It is easy to see that the solution of the problem (1.1)-(1.2) is the function
u(x) obtained from the problems (2.2),(2.3), where ϕ is the unique fixed point of
A. The estimates (2.18) indeed are the estimates (2.12)- (2.14). �

Now consider a particular case of Theorem 2.1. Let us denote

D
+
M =

{

(x, u, y, v, z)| 0 ≤ x ≤ 1; 0 ≤ u ≤
M

64
; |y| ≤

M

16
;
−M

8
≤ v ≤ 0; |z| ≤

M

2

}

,

(2.19)
and

SM = {ϕ ∈ C[0, 1] | 0 ≤ ϕ(x) ≤ M} .

✷

Theorem 2.2. (Positivity of solution) Suppose that in D
+
M the function f is such

that
0 ≤ f(x, u, y, v, z) ≤ M, (2.20)

and satisfies the Lipschitz condition (2.8). Then, the operator A defined by (2.5),
where vϕ, uϕ are the solutions of the problems (2.2),(2.3) maps the strip SM into it-
self. Moreover, if (2.9) is satisfied then A is contractive operator in SM . Therefore,
the problem (1.1)-(1.2) has a unique nonnegative solution.

Proof: The proof of the theorem is similar to that of Lemma 2.1 and Theorem
2.1, where instead of the ball we consider the strip SM . ✷

3. Iterative method

Consider the following iterative process:

1. Given
ϕ0(x) = f(x, 0, 0, 0, 0). (3.1)

2. Knowing ϕk (k = 0, 1, ...) solve consecutively two problems

{

v′′k = ϕk(x), 0 < x < 1,
vk(0) = vk(1) = 0,

(3.2)

{

u′′
k = vk(x), 0 < x < 1,

uk(0) = uk(1) = 0.
(3.3)

3. Update
ϕk+1 = f(x, uk, u

′
k, vk, v

′
k). (3.4)
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Set pk =
qk

1− q
‖ϕ1 − ϕ0‖. We obtain the following result.

Theorem 3.1. Under the assumptions of Lemma 2.1 the above iterative method
converges with the rate of geometric progression and there hold the estimates

‖uk − u‖ ≤
pk
64

, ‖u′
k − u′‖ ≤

pk
16

,

‖u′′
k − u′′‖ ≤

pk
8
, ‖u′′′

k − u′′′‖ ≤
pk
2
,

(3.5)

where u is the exact solution of the problem (1.1)-(1.2).

Proof: Notice that the above iterative method is the successive iteration method
for finding the fixed point of the operator A with the initial approximation (3.1) be-
longing to B[O,M ]. Therefore, it converges with the rate of geometric progression
and there is the estimate

‖ϕk − ϕ‖ ≤
qk

1− q
‖ϕ1 − ϕ0‖. (3.6)

Combining this estimate with those of the type (2.17) we obtain (3.5), and the
theorem is proved. ✷

For numerical realization of the iterative method we use the difference schemes
of fourth order accuracy for the Dirichlet problems (3.2), (3.3) on uniform grids
ωh = {xi = ih, i = 0, 1, ..., N ; h = 1/N}. Namely, for the typical second order
problem

{

v′′ = ϕ(x), 0 < x < 1,
v(0) = v(1) = 0.

we use the Numerov difference scheme

vi−1 − 2vi + vi+1

h2
=

ϕi−1 + 10ϕi + ϕi+1

12
, 1 ≤ i ≤ N − 1,

v0 = vN = 0

For grid functions on ωh we use the norm ‖u‖ωh
= max

0≤i≤N
|u(xi)|, but in what

follows for brevity we omit the subscript ωh. The iterations are performed until
ek = ‖uk−uk−1‖ ≤ 10−16. In the tables of results of computation n is the number of
grid points, error = ‖uk −ud‖, error1 = ‖u′

k −u′
d‖, error2 = ‖u′′

k −u′′
d‖, error3 =

‖u′′′
k − u′′′

d ‖ where ud is the exact solution.

4. Examples

In this section we consider some examples for demonstrating the applicability
of the obtained theoretical results.

First, we consider an example for the case of known exact solution.
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Example 4.1. Consider the boundary value problem






















u(4)(x) =−
u′′′(x)

3
+ cos

(

−
sinπx

π2
− u′′(x)

)

− u′(x) − u2(x) + sinπx

+
cosπx

π3
+

sin2 πx

π8
−

cosπx

3π
− 1, 0 < x < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0.

The exact solution of the problem is

u(x) =
sin(πx)

π4
.

In this example

f(x, u, y, v, z) =−
z

3
+ cos

(

−
sinπx

π2
− v

)

− y − u2 + sinπx

+
cosπx

π3
+

sin2 πx

π8
−

cosπx

3π
− 1.

It is easy to see that the function f(x, u, y, v, z) does not satisfy the conditions of [8,
Theorem 1], so this theorem cannot guarantee the existence of a solution. Below,
using the obtained theoretical results in Section 2 we show that the problem has a
unique solution and the iterative method is very efficient for finding the solution.

First, chooseM such that |f(x, u, y, v, z)| ≤ M . This numberM may be defined
from the inequality

|f(x, u, y, v, z)| ≤
M

6
+ 1 +

M

16
+

(

M

64

)2

+ 1 +
1

π3
+

1

π8
+

1

3π
+ 1 ≤ M

Clearly, M = 5 is a suitable choice. Then in the domain D5, since

f ′
u = −2u, f ′

y = −1, f ′
v = sin

(

−
sinπx

π2
− v

)

, f ′
z = −

1

3
,

|f ′
u| ≤ 2

(

5

64

)

=
5

32
, |f ′

y| = 1, |f ′
v| ≤ 1, |f ′

z| =
1

3

we can take c0 =
5

32
, c1 = c2 = 1, c3 =

1

3
. Then q =

c0
64

+
c1
16

+
c2
8
+
c3
2

≈ 0.3566 < 1.

All the conditions of Theorem 2.1 are satisfied. Hence, the problem has a unique
solution, and the iterative method converges.

The convergence of the iterative method for Example 4.1 is given in Table 1
and Figure 1.

Table 1: The convergence in Example 4.1
n k error error1 error2 error3

30 11 1.0339e-8 7.3102e-7 5.2161e-8 7.3898e-6
50 11 1.3400e-9 9.5834e-8 6.7722e-9 9.7008e-7
100 11 8.3781e-11 6.0186e-9 4.2351e-10 6.0994e-8
1000 11 3.0210e-15 6.1669e-13 2.3273e-14 6.1727e-12
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From Table 1 we observe that the convergence of the iterative method does not
depend on the grid size.
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−a
xi

s

Figure 1: The graph of ek in Example 4.1 for n = 100

In the next examples, the exact solution of problem (1.1)-(1.2) is not known.

Example 4.2. Consider the boundary value problem











u(4)(x) = −
u′′′(x)

12
− u2(x) (u′′(x))

2
− (u′′(x))

3
+

u′(x)

2
+ sinπx+ 2,

0 < x < 1,
u(0) = u(1) = u′′(0) = u′′(1) = 0.

In this example

f(x, u, y, v, z) = −
z

12
− u2v2 − v3 +

y

2
+ sinπx+ 2.

As in the previous example, obviously, that the function f(x, u, y, v, z) does not
satisfy the conditions of [8, Theorem 1], so this theorem cannot guarantee the
existence of a solution.

Analogously as in Example 4.1 we can choose M = 4 and therefore, it is easy
to verify that in the trip S4 all the conditions of Theorem 2.2 are satisfied with
0 ≤ f ≤ 4 and c0 = 0.03, c1 = 0.5, c2 = 0.75, c3 = 0.083, q ≈ 0.167 < 1. Hence, the
problem has a unique nonnegative solution, and the iterative method converges.

The numerical experiment for n = 100 shows that with the above stopping
criterion after k = 8 iterations the iterative process stops and e8 = 6.5919e− 17.

The convergence of the iterative method for Example 4.2 is given in Figure 2
and the graph of the approximate solution is depicted in Figure 3.
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Figure 2: The graph of ek in Example 4.2
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Figure 3: The graph of the approximate solution in Example 4.2

Example 4.3. Consider the boundary value problem with exponential nonlinearity
{

u(4)(x) = d1e
u + d2e

u′

+ d3e
u′′

+ d4e
u′′′

,
u(0) = u(1) = u′′(0) = u′′(1) = 0.

where d1, d2, d3, d4 ∈ R.

In this example

f(x, u, y, v, z) = d1e
u + d2e

y + d3e
v + d4e

z.

Take, for example, d1 = 1, d2 = 1, d3 = 1, d4 = 0. We can choose M = 4. Then
c0 = 1.0645, c1 = 1.2840, c2 = 1.6487, c3 = 0. Hence q ≈ 0.303. Hence, the problem
has a unique solution, and the iterative method converges.
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The numerical experiment for n = 100 shows that with the above stopping
criterion after k = 13 iterations the iterative process stops and e13 = 6.9389e− 18.

The convergence of the iterative method for Example 4.3 is given in Figure 4
and the graph of the approximate solution is depicted in Figure 5.
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Figure 4: The graph of ek in Example 4.3
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Figure 5: The graph of the approximate solution in Example 4.3

Moreover, below we show theoretically that this solution is nonnegative. Indeed,
consider the domain

D
+
4 =

{

(x, u, y, v, z) | 0 ≤ x ≤ 1; 0 ≤ u ≤
4

64
; |y| ≤

4

16
;
−4

8
≤ v ≤ 0; |z| ≤

4

2

}

,

and the strip S4

S4 = {ϕ ∈ C[0, 1] | 0 ≤ ϕ(x) ≤ 4} .
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Therefore, it is easy to see that in D
+
4 we have

0 ≤ f(x, u.y, v, z) ≤ 4

and all the conditions of Theorem 2.2 are satisfied. Hence, the problem has a
unique nonnegative solution.

Example 4.4. Consider the boundary value problem











u(4)(x) =g0(x) |u(x)|
k0 + g1(x) |u

′(x)|
k1 + g2(x) |u

′′(x)|
k2

+ g3(x) |u
′′′(x)|

k3 , 0 < x < 1,
u(0) = u(1) = u′′(0) = u′′(1) = 0.

where gi ∈ C[0, 1], ki are integer constants, ki ≥ 1, i = 0, 1, 2, 3.
Let

f(x, u, y, v, z) = g0(x)|u|
k0 + g1(x)|y|

k1 + g2(x)|v|
k2 + g3(x)|z|

k3 ,

Gi = max
x∈[0,1]

|gi(x)|, i = 0, 1, 2, 3. (4.1)

Firstly, we prove that the f(x, u, y, v, z) satisfies the Lipschitz condition with re-
spect to u, y, v, z. For this reason we need the following claim.

Claim 1. The function t(x) = |x|α, α ≥ 1 satisfies the Lipschitz condition in the
interval |x| ≤ A (A is any positive constants), i.e. exists L > 0 such that

|t(x) − t(y)| ≤ L|x− y|, ∀x, y ∈ {z : |z| ≤ A}.

Proof: Since the role of x, y is the same it sufficies to consider the following cases
of location of x, y.

Case 1. If 0 ≤ x ≤ y ≤ T then

|t(x) − t(y)| = ||x|α − |y|α| = |xα − yα| = αξα−1|x− y| ≤ αAα−1|x− y|,

where ξ ∈ (x, y).

Case 2. If −A ≤ y ≤ x ≤ 0 then from Case 1 we have

|t(x) − t(y)| = |t(−x)− t(−y)| ≤ αAα−1|x− y|.

Case 3. If −T ≤ y ≤ 0, 0 ≤ x ≤ A we have

|t(x)− t(y)| ≤ |t(x) − t(0)|+ |t(y)− t(0)| ≤ αAα−1x− αAα−1y

= αAα−1(x − y) = αAα−1|x− y|.
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Thus, in all cases we can choose L = αAα−1, and Claim 1 is proved.
✷

Now, return to the function f given by (4.1). Using Claim 1 we have

|f(x, u1, y1, v1, z1)− f(x, u2, y2, v2, z2)|

≤ G0

∣

∣|u1|
k0 − |u2|

k0

∣

∣+G1

∣

∣|y1|
k1 − |y2|

k1

∣

∣+G2

∣

∣|v1|
k2 − |v2|

k2

∣

∣

+G3

∣

∣|z1|
k3 − |z2|

k3

∣

∣

≤ G0k0

(

M

64

)k0−1

|u1 − u2|+G1k1

(

M

16

)k1−1

|y1 − y2|

+G2k2

(

M

8

)k2−1

|v1 − v2|+G3k3

(

M

2

)k3−1

|z1 − z2|.

Thus, the function f satisfies the Lipschitz condition (2.8) and the quantity q given
by (2.9) has the value

q =
k0G0

64

(

M

64

)k0−1

+
k1G1

16

(

M

16

)k1−1

+
k2G2

8

(

M

8

)k2−1

+
k3G3

2

(

M

2

)k3−1

.

(4.2)
Assume that the constants G0, G1, G2, G3 satisfy the condition

G0

64
+

G1

16
+

G2

8
+

G3

2
< 1. (4.3)

Then, it is not difficult to choose M > 0, so that q < 1. Moreover, this M is such
that |f(x, u, y, v, z)| ≤ M . Indeed, set K = min{ki, i = 0, 1, 2, 3} ≥ 1. Then for
any (x, u, y, v, z) ∈ DM we have

|f(x, u, y, v, z)| ≤ G0

(

M

64

)k0

+G1

(

M

16

)k1

+G2

(

M

8

)k2

+G3

(

M

2

)k3

≤

(

k0G0

64

(

M

64

)k0−1

+
k1G1

16

(

M

16

)k1−1

+
k2G2

8

(

M

8

)k2−1

+
k3G3

2

(

M

2

)k3−1
)

M

K

=
qM

K
.

So, since q < 1,K ≥ 1 we have |f(x, u, y, v, z)| ≤ M. Thus, all the conditions of
Theorem 2.1 are satisfied. Hence, the problem has a unique solution.

Remark 4.1. In all Examples 4.1-4.4 the right-hand side functions do not satisfy
the condition of linear growth at infinity, therefore, [8, Theorem 1] cannot ensure
the existence of a solution of the problems. But as seen above using the theory
in Section 2 and 3 we have established the existence and uniqueness of a solution
and the convergence of the iterative method. This convergence is also confirmed by
numerical experiments.
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Remark 4.2. Theorem 2.1 gives only sufficient conditions for the problem (1.1),
(1.2) to have a unique solution and the iterative method (3.1)-(3.4) to be convergent.
When these conditions are not met, in some cases the problem may have a solution
and the iterative method may be convergent, too. Below, we show two examples, for
one of them an exact solution is known, and for the other, Theorem 2.1 gives no
information of its solution, but in the both examples the iterative method converges.

Example 4.5. Consider the problem

{

u(4)(x) = π|u|
1

2 + π|u′|
1

2 − |u′′|
1

2 − |u′′′|
1

2 + π4 sinπx, 0 < x < 1,
u(0) = u(1) = u′′(0) = u′′(1) = 0.

We can verify that the function u(x) = sin(πx) is an exact solution of the
problem. It is interesting that for this example the starting approximation is
ϕ0(x) = π4 sinπx, and solving the problems at the 0−iteration

{

v′′0 = ϕ0(x), 0 < x < 1,
v0(0) = v0(1) = 0,

{

u′′
0 = v0(x), 0 < x < 1,

u0(0) = u0(1) = 0.

we obtain u0(x) = sinπx, which coincides with the exact solution.

Example 4.6. Consider the boundary value problem

{

u(4)(x) = π|u|
1

2 + π|u′|
1

2 + |u′′|
1

2 + |u′′′|
1

2 + 1, 0 < x < 1,
u(0) = u(1) = u′′(0) = u′′(1) = 0.

In this example f(x, u, y, v, z) = π|u|
1

2 +π|y|
1

2 + |v|
1

2 + |z|
1

2 +1. The convergence
of the iterative method for Example 4.6 with the criterion for stopping iterations
ek ≤ 10−12 is given in Table 2 and the graph of the approximate solution is depicted
in Figure 6.

Table 2: The convergence in Example 4.6
n k error

50 25 5.7446e− 13
200 29 9.2934e− 13
1000 27 2.7030e− 13
10000 25 9.1095e− 13
30000 26 4.5841e− 13



222 Dang Quang A and Ngo Thi Kim Quy

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

x−axis

u−
ax

is

Figure 6: The graph of the approximate solution in Example 4.6 for n = 200

Notice that the existence of a solution in Examples 4.5 and 4.6 is guaranteed
by [8].

5. Conclusion

In this paper we have established the existence and uniqueness of a solution of
a fully fourth order nonlinear boundary value problem. Differently from the ap-
proaches of the other authors, we have reduced the problem to an operator equation
for the right-hand side function. The investigation of the resulting operator equa-
tion does not require any condition for the right-hand side function with respect to
all variables on infinity. The convergence of an iterative method has proved. Many
examples have confirmed the validity of the obtained theoretical results and the
wide applicability of the iterative method.

The proposed method can be used for some other nonlinear boundary value
problems for ordinary and partial differential equations. This is the direction of
our research in the future.
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