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abstract: We study the Schouten-van Kampen connection associated to a Sasakian
structure. With the help of the Schouten-van Kampen connection we character-
ize sasakian manifolds and find certain curvature properties of this connection on
Sasakian manifolds. Also we study Ricci solitons on a Sasakian manifold with re-
spect to the Schouten-van Kampen connection. Finally, an illustrative example is
given to verify some results.
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1. Introduction

The Schouten-van Kampen connection have been introduced in the third decade
of last century for a study of non-holomorphic manifolds [3,4]. In 2006 Bejancu [5]
study Schouten-van Kampen connection on Foliated manifolds. Recently Olszak [9]
study Schouten-van Kampen connection on almost(para) contact metric structure
and prove some interesting results. In 1960 Sasakian manifolds introduced by
Sasaki [6], can be descibed as an odd-dimensional counterpart of Kähler manifolds.
The notion of local symmetry of a Riemannian manifolds began with the work of
Cartan [10]. The notion of locally symmetry of a Riemannian manifold has been
weakend by many authers in several directions. As a weaker version of locally
symmetry, in 1977 Takahashi [11] introduced the notion of local φ-symmetry on a
Sasakian manifold. In this paper we are interested to study Schouten-van Kampen
connection and find certain curvature properties of this connection on Sasakian
manifold.
A Sasakian manifold is said to be η-Einstein if

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where S is the Ricci tensor of type (0, 2) and a, b are smooth function. It is known
that [2] in an η-Einstein Sasakian manifold the associated scalars are constant.

A transformation of a (2n + 1)-dimensional Riemannian manifold M , which
transforms every geodesic circle of M into a geodesic circle, is called a concircular
transformation ( [27], [28]). A Concircular transformation is always a conformal
transformation [28]. Here geodesic circle means a curve in M whose first curvature
is constant and second curvature is identically zero. Thus the geometry of concir-
cular transformation that is the concircular geometry, is generalisation of inversive
geometry in the sense that the change of metric is more general than that induced
by a circle preserving diffeomorphism [29]. An interesting invariant of a concircular
transformation is the concircular curvature tensor Z with respect to the Levi-Civita
connection. It is defined by ( [28], [29])

Z(X,Y )Z = R(X,Y )Z −
r

2n(2n+ 1)
[g(Y, Z)X − g(X,Z)Y ], (1.1)

where X,Y, Z are differentiable vector fields, R and r are curvature tensor and
the scalar curvature with respect to the Levi-Civita connection respectively. A
Riemannian manifold with vanishing concircular curvature tensor is of constant
curvature. Thus, the concircular curvature tensor is the measure of the failure of
a Riemannian manifold to be of constant curvature.

Definition 1.1. If the conformal curvature tensor C satisfies [31] C(X,Y )ξ = 0
for all differentiable vector fields X,Y on the manifold, then the manifold is called
ξ-conformally flat.

Definition 1.2. If the conformal curvature tensor C satisfies [31]

φ2C(X,Y )Z = 0, (1.2)
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for all differentiable vector fields X,Y, Z on the manifold, then the manifold is
called φ-conformally flat.

In an analogous way we define ξ-concircularly flat and φ-concircularly flat
Sasakian manifolds.

A Ricci soliton is a generalization of an Einstein metric. In a Riemannian
manifold (M, g), g is called a Ricci soliton if ( [23], [18])

(£V g + 2S + 2λg)(X,Y ) = 0,

where£ is the Lie derivative, S is the Ricci tensor, V is a complete vector field onM

and λ is a constant. The Ricci soliton is said to be shrinking, steady and expanding
according as λ is negative, zero and positive respectively. For more details we refer
to the reader ( [24], [25]). Motivated by the above studies we study Sasakian
manifolds admitting Schoten-van Kampen connection in the present paper.

This article is arranged as follows: Section 2 is a review of all the necessary
background in Sasakian manifolds. In section 3, we obtain the expressions of the
curvature tensor and Ricci tensor R̄ and S̄ with respect to the Schouten-van Kam-
pen connection and then prove some results. Section 4 covers locally symmetric
Sasakian manifolds with respect to the Schouten-van Kampen connection. Section
5 deals with φ-sectional curvature admitting Schouten-van Kampen connection.
Section 6, is devoted to study Ricci semisymmetric Sasakian manifolds and we
prove that locally φ-Ricci symmetry with respect to ∇̄ and ∇ are equivalent. Next
it is shown that a Sasakian manifold admitting Schoten-van Kampen connection is
ξ-concircularly flat if and only if the scalar curvature of the manifold vanishes. In
this section we also prove that a Sasakian manifold admitting Schouten-van Kam-
pen connection is ξ-concircularly flat if and only if the manifold is an η-Einstein
manifold with respect to the Levi-Civita connection. Next in section 8, we prove
that if a Sasakian manifold admits Ricci soliton with respect to the Schouten-van
Kampen connection then the manifold is an η-Einstein manifold and the Ricci
soliton is shrinking, steady or expanding according as r > 0, r = 0 or r < 0.
Finaly, we construct an example of a 5-dimensional Sasakian manifold admitting
Schouten-van Kampen connection to veryfy some results.

2. Sasakian manifolds

LetM be a (2n+1)-dimensional Sasakian manifold with the structure (φ, ξ, η, g),
where φ is a (1, 1) tensor field, ξ is a vector field, η is 1-form and g is a Riemannian
metric.Then the following relations hold ( [1], [7], [12], [13])

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0, (2.1)

g(X,Y ) = g(φX, φY ) + η(X)η(Y ), (2.2)

g(X,φY ) = −g(φX, Y ), g(X, ξ) = η(X), (2.3)

for all vectors field X,Y .

(∇Xφ)Y = g(X,Y )ξ − η(Y )X, (2.4)
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for all vectors field X,Y , where ∇ is the Levi-Civita connection of the Riemannian
metric. From the above equation it follows that

∇Xξ = −φX, (2.5)

(∇Xη)Y = g(X,φY ). (2.6)

Moreover, the curvature tensor R, the Ricci tensor S and the Ricci operator Q

satisfy ( [8], [15], [22])

R(X,Y )ξ = η(Y )X − η(X)Y, (2.7)

S(X, ξ) = 2nη(X), (2.8)

Qξ = 2nξ. (2.9)

S(φX, φY ) = S(X,Y )− 2nη(X)η(Y ). (2.10)

Sasakian manifolds have been studied many author such as Boyer [7], Tachibana
[8], Tanno [14], Godliński et al [30], De et al [19], Mihai et al ( [20], [21]) and many
others.

3. Curvature tensor and Ricci tensor with respect to the

Schouten-van Kampen connection

The Schouten-van Kampen connection ∇̄ is given by [9],

∇̄XY = ∇XY − η(Y )∇Xξ − (∇Xη)(Y )ξ, (3.1)

for any X,Y tangent to M .
With the help of (2.5) and (2.6) , the above equation takes the form,

∇̄XY = ∇XY + g(X,φY )ξ + η(Y )φX. (3.2)

Putting Y = ξ in (3.2) and using (2.1) we have

∇̄Xξ = ∇Xξ + η(X)ξ −X. (3.3)

Using (2.5) in (3.3) we get
∇̄Xξ = 0.

Let R and R̄ denote the curvature tensor ∇ and ∇̄ respectively. Then

R̄(X,Y )Z = ∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z. (3.4)

Using (3.2) in (3.4) yields

R̄(X,Y )Z = R(X,Y )Z − g(Y, φZ)X + g(X,φZ)φY − η(Y )η(Z)X

+η(X)η(Z)Y. (3.5)



Schouten-van Kampen Connection 175

Using (2.7) and putting Z = ξ in (3.5) we get

R̄(X,Y )ξ = 0.

Taking inner product with W of (3.5),

g(R̄(X,Y )Z,W ) = g(R(X,Y )Z,W )− g(Y, φZ)g(φX,W ) +

g(X,φZ)g(φY,W )− η(Y )η(Z)g(X,W )

+η(X)η(Z)g(Y,W ). (3.6)

Let {e1, e2, e3, ..., e2n+1} be a local orthonormal basis of the tangent space at a
point of the manifold M . Then by putting X = W = ei in (3.6) and taking
summation over i, 1 6 i 6 (2n+ 1), we obtain

S̄(Y, Z) = S(Y, Z) + g(Y, Z)− (2n+ 1)η(Y )η(Z), (3.7)

where S̄ and S are the Ricci tensor of M with respect to ∇̄ and ∇ respectively.

Let r̄ and r denote the scalar curvature of M with respect to ∇̄ and ∇ respec-
tively. Let {e1, e2, e3, ..., e2n+1} be a local orthonormal basis of the tangent space
at a point of the manifold M . Then by putting Y = Z = ei in (3.7) and taking
summation over i, 1 6 i 6 (2n+ 1), we have

r̄ = r. (3.8)

Therefore we can state the following:

Proposition 3.1. For a Sasakian manifold M admitting Schouten-van Kampen
connection ∇̄
(i) The curvature tensor R̄ of ∇̄ is given by (3.5),
(ii) The Ricci tensor S̄ of ∇̄ is given by (3.7),
(iii) The scalar curvature r̄ of ∇̄ is given by (3.8),
(iv) R̄(X,Y )Z = −R̄(Y,X)Z,
(v) R̄(X,Y )Z + R̄(Y, Z)X + R̄(Z,X)Y = 0,
(vi) The Ricci tensor S̄ is symmetric.

Now suppose that the Sasakian manifold is Ricci flat with respect to the Schouten-
van Kampen connection. Then from (3.7) we get

S(Y, Z) = −g(Y, Z) + (2n+ 1)η(X)η(Y ).

This leads to the following:

Theorem 3.2. The manifold M2n+1 is Ricci flat with respect to the Schouten-van
Kampen connection if and only if M2n+1 is an η-Einstein manifold.
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4. Locally symmetreic Sasakian manifolds with respect to the

Schouten-van Kampen connection

In this section, we consider locally symmetric Sasakian manifolds with respect
to the Schouten-van Kampen connection ∇̄. We have the following theorem:

Theorem 4.1. Let M be a locally symmetric Sasakian manifold with respect to the
Schouten-van Kampen connection ∇̄. Then the manifold is an η-Einstein manifold
with respect to the Schouten-van Kampen connection.

Proof: Let M be a locally symmetric Sasakian manifold with respect to the
Schouten-van Kampen connection ∇̄. Then (∇̄XR)(Y, Z)W = 0. So by a suit-
able contraction of this equation, we have

(∇̄X S̄)(Z,W ) = ∇̄X S̄(Z,W )− S̄(∇̄XZ,W )− S̄(Z, ∇̄XW ) = 0.

Taking W = ξ in the above equation yields

∇̄X S̄(Z, ξ)− S̄(∇̄XZ, ξ)− S̄(Z, ∇̄Xξ) = 0. (4.1)

Using (3.3) and (3.7) in the (4.1) we obtain

S̄(Z, φX) = 0. (4.2)

Using (3.7) in (4.2) we get

S(φX, Y ) = −g(φX, Y ). (4.3)

Putting X = φX and using (2.1) in (4.3) we have

S(X,Y )− η(X)S(ξ, Y ) = −g(X,Y ) + η(X)η(Y ). (4.4)

Using (2.8) in (4.4) we obtain

S(X,Y ) = −g(X,Y ) + (2n+ 1)η(X)η(Y ).

This completes the proof. ✷

5. φ-sectional curvature of Sasakian manifolds admitting Schouten-van

Kampen connection

A plane section in M is called a φ-section if there exists a unit vector X in M

orthogonal to ξ such that {X,φX} is an orthonomal basis of the plane section. Then
the sectional curvature K(X,φX) = g(R(X,φX)φX,X) is called a φ-sectional
curvature [1].
Putting Y = Z = φX and W = X in (3.6) we get

g(R̄(X,φX)φX,X) = g(R(X,φX)φX,X)− g(φX, φ2X)g(φX,X)

+g(X,φ2X)g(φ2X,X)− η(Y )η(Z)g(X,W )

+η(X)η(Z)g(Y,W ). (5.1)
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With the help of (2.1) and (5.1) we obtain

g(R̄(X,φX)φX,X) = g(R(X,φX)φX,X) + [g(X,X)]2.

Thus we can state the following:

Theorem 5.1. If the φ-sectional curvature of a Sasakian manifold is a constant
c with respect to the Levi-Civita connection, then the φ-sectional curvature of the
manifold with respect to the Schouten-van Kampen connection is (c+ 1).

6. Locally φ-Ricci symmetry

E. Boeckx, P. Buecken and L. Vanhecke [16] introduced the notion of φ-symme-
try. In 2008, De and Sarkar [17] studied φ-Ricci symmetric Sasakian manifolds.
Recently Ghosh [26] studied φ-Ricci symmetric almost Kenmotsu manifolds with
nullity distribution. A Sasakian manifold M2n+1 is said to be φ-Ricci symmetric
if the Ricci operator satisfies φ2((∇XQ)Y ) = 0 for all vector fields X,Y in M and
S(X,Y ) = g(QX, Y ). If X,Y are orthogonal to ξ, then the manifold is said to be
locally φ-Ricci symmetric. From (3.7) we can write

Q̄Y = QY + Y − (2n+ 1)η(Y )ξ. (6.1)

Now we have

(∇̄XQ̄)Y = ∇̄XQ̄Y − Q̄(∇̄XY ). (6.2)

Using (3.1) and (6.1) in (6.2) the we get

(∇̄XQ̄)Y = ∇̄XQY + ∇̄XY − (2n+ 1)(∇Xη(Y ))ξ − (2n+ 1)η(Y )∇̄Xξ

−Q̄(∇XY )− η(Y )Q̄(φX)− g(X,φY )Q̄ξ. (6.3)

Again using (2.6), (3.1) and (6.1) in (6.3) we get

(∇̄XQ̄)Y = ∇̄XQY − (2n+ 1)((∇Xη)(Y ))ξ + η(QY )φX − g(φX, φY )ξ

+g(X,φY )ξ − η(Y )Q(φX). (6.4)

Considering X,Y, Z orthogonal to ξ and using (2.1), (3.1) from equation (6.4) it
follows that

φ2(∇̄XQ̄)(Y ) = φ2(∇XQ)(Y ).

Thus we have the following:

Theorem 6.1. In a Sasakian manifold locally φ-Ricci symmetry with respect to the
Schouten-van Kampen connection and the Levi-Civita connection are equivalent.
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7. ξ-Concircularly flat and φ-Concircularly flat Sasakian manifolds

with respect to the Schouten Van-Kampen connection

In this section we study ξ-Concircularly flat Sasakian manifolds and φ-Concircu-
larly flat Sasakian manifolds admitting Schouten-van Kampen connection. Using
(1.1) and (3.1) we obtain

Z̄(X,Y )Z = R(X,Y )Z −
r

2n(2n+ 1)
[g(Y, Z)X − g(X,Z)Y ]− g(Y, φZ)φX

+g(X,φZ)φY − η(Y )η(Z)X + η(X)η(Z)Y. (7.1)

Putting Z = ξ , the above equation yields

Z̄(X,Y )ξ =
r

2n(2n+ 1)
R(X,Y )ξ.

This leads to the following:

Theorem 7.1. A Sasakian manifold admitting Schouten-van Kampen connection
is ξ-concircularly flat if and only if the scalar curvature of the manifold vanishes.

From (1.1) it follows that

g(Z̄(φX, φY )φZ, φW ) = g(R̄(φX, φY )φZ, φW )

−
r̄

2n(2n+ 1)
[g(φY, φZ)g(φX, φW )

−g(φX, φZ)g(φY, φW )]. (7.2)

Suppose
g(Z̄(φX, φY )φZ, φW ) = 0.

Then from (7.2),

0 = g(R̄(φX, φY )φZ, φW )−
r̄

2n(2n+ 1)
[g(φY, φZ)g(φX, φW )

−g(φX, φZ)g(φY, φW )]. (7.3)

Let {e1, e2, e3, ..., e2n, ξ} be a local orthonormal basis of the tangent space at a point
of the manifold M , then {φe1, φe2, φe3, ..., φe2n, ξ} is also a local orthonormal basis
of the manifold. Putting X = W = ei in (7.3) and summing over i = 1 to 2n. We
obtain

0 =
2n∑

i=1

g(R̄(φX, φY )φZ, φW )−
r̄

2n(2n+ 1)

2n∑

i=1

[g(φY, φZ)g(φX, φW )

−g(φX, φZ)g(φY, φW )].

From the above equation it follows that,

S̄(φY, φZ)−
r̄(2n− 1)

2n(2n+ 1)
g(φY, φZ) = 0. (7.4)
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Using (3.7) in (7.4) yields

S(Y, Z) = −(1−
r(2n− 1)

2n(2n+ 1)
)g(Y, Z)

+[(1 + 2n)−
r(2n− 1)

2n(2n+ 1)
]η(Y )η(Z). (7.5)

Conversely let if S be of the form (7.5), then obviously

g(Z̄(φX, φY )φZ, φW ) = 0.

Thus we can state:

Theorem 7.2. A Sasakian manifold admitting Schouten-van Kampen connection
is φ-concircularly flat if and only if the manifold is an η-Einstein manifold with
respect to the Levi-Civita connection.

8. Ricci solitons

Suppose the Sasakian manifold admits Ricci solitons with respect to the con-
nection ∇̄. Then

(£V g + 2S̄ + 2λg)(X,Y ) = 0,

which implies that

g(∇̄Xξ, Y ) + g(X, ∇̄Y ξ) + 2S̄(X,Y ) + 2λg(X,Y ) = 0. (8.1)

Using (3.3) in (8.1) yields

S̄(X,Y ) + λg(X,Y ) = 0. (8.2)

Again using (3.7) in (8.2) we have

S(X,Y ) + g(Y, Z)− (2n+ 1)η(Y )η(Z) + λg(Y, Z) = 0. (8.3)

Putting X = Y = ei in (8.3), where {e1, e2, e3, ..., e2n+1} is a local orthonormal
basis of the tangent space at a point of the manifold M and taking summation over
i, 1 6 i 6 (2n+ 1) we have

λ = −
r

(2n+ 1)
.

Putting λ = − r
(2n+1) in (8.3) we get

S(X,Y ) = (
2r

2n+ 1
− 1)g(X,Y ) + (2n+ 1)η(X)η(Y ).

Thus we have the following:

Theorem 8.1. If a Sasakian manifold admits Ricci soliton with respect to the
Schouten-van Kampen connection then the manifold is an η-Einstein manifold and
the Ricci soliton is shrinking, steady or expanding according as r > 0, r = 0 or
r < 0.
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9. Example of a 5-dimensional Sasakian manifold admitting

Schouten-van Kampen connection

Consider the 5-dimensional manifoldM = {(x, y, z, u, v) ∈ R
5}, where (x, y, z, u, v)

are the standard coordinates in R
5.

We choose the vector fields
e1 = 2(y ∂

∂z
− ∂

∂x
), e2 = 2 ∂

∂y
, e3 = −2 ∂

∂z
, e4 = 2(v ∂

∂z
− ∂

∂u
), e5 = −2 ∂

∂v
,

which are linearly independent at each point of M .
Let g be the Riemannian metric defined by g(ei, ej) = 0, i 6= j, i, j = 1, 2, 3, 4, 5
and
g(e1, e1) = g(e2, e2) = g(e3, e3) = g(e4, e4) = g(e5, e5) = 1.
Let η be the 1-form defined by η(Z) = g(Z, e3), for any Z ∈ χ(M), where χ(M) is
the set of all differentiable vector fields on M .
Let φ be the (1, 1)-tensor field defined by
φe1 = e2, φe2 = −e1, φe3 = 0, φe4 = −e5, φe5 = e4.
Using the linearity of φ and g, we have
η(e3) = 1, φ2Z = −Z + η(Z)e5 and g(φZ, φU) = g(Z,U) − η(Z)η(U), for any
U,Z ∈ χ(M). Thus, for e3 = ξ, M(φ, ξ, η, g) defines an almost contact metric
manifold.
Also we have
[e1, e2] = 2e3, [e4, e5] = −2e3 and [ei, ej] = 0 for others i, j.
The Levi-Civita connection ∇ of the metric tensor g is given by Koszul’s formula
which is given by

2g(∇XY, Z) = Xg(Y, Z) + Y g(X,Z)− Zg(X,Y )

−g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ]). (9.1)

Taking e3 = ξ and using Koszul’s formula we get the following
∇e1e1 = 0,∇e1e2 = e3,∇e1e3 = −e2,∇e1e4 = 0,∇e1e5 = 0,
∇e2e1 = −e3,∇e2e2 = 0,∇e2e3 = e1,∇e2e4 = 0,∇e2e5 = 0,
∇e3e1 = −e2,∇e3e2 = e1,∇e3e3 = 0,∇e3e4 = e5,∇e3e5 = −e4,
∇e4e1 = 0,∇e4e2 = 0,∇e4e3 = e5,∇e4e4 = 0,∇e4e5 = −e3,
∇e5e1 = ∇e5e2 = 0,∇e5e3 = −e4,∇e5e4 = −e3,∇e5e5 = 0.
From the above results we see that (φ, ξ, η, g) structure satisfies the formula

(∇Xφ)Y = g(X,Y )ξ − η(Y )X,

where η(e3) = 1. Hence M(φ, ξ, η, g) is a 5-dimensional Sasakian manifold.
Using the above relation in (3.2), we obtain
∇̄e1e1 = 0, ∇̄e1e2 = e3, ∇̄e1e3 = ∇̄e1e4 = ∇̄e1e5 = 0,
∇̄e2e1 = ∇̄e2e2 = ∇̄e2e3 = ∇̄e2e4 = ∇̄e2e5 = 0,
∇̄e3e1 = −e2, ∇̄e3e2 = e1, ∇̄e3e3 = ∇̄e3e4 = 0, ∇̄e3e5 = −e4,
∇̄e4e1 = ∇̄e4e2 = ∇̄e4e3 = ∇̄e4e4 = ∇̄e4e5 = 0,
∇̄e5e1 = ∇̄e5e2 = ∇̄e5e3 = ∇̄e5e4 = ∇̄e5e5 = 0.
By the above results, we can easily obtain the non-vanishing components of the
curvature tensor with respect to the Levi-Civita connection are as follows:
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R(e1, e2)e1 = 3e2, R(e1, e3)e1 = −e3, R(e2, e4)e1 = e5, R(e2, e5)e1 = −e4,
R(e4, e5)e1 = −2e2, R(e1, e2)e2 = −3e1, R(e1, e4)e2 = −e5, R(e1, e5)e2 = e4,
R(e2, e3)e2 = −e3, R(e4, e5)e2 = 2e1, R(e1, e3)e3 = e1, R(e2, e3)e1 = −e3,
R(e3, e4)e3 = −e4, R(e3, e4)e4 = e3, R(e2, e5)e4 = e1, R(e4, e5)e4 = 2e5,
R(e1, e2)e5 = −2e4, R(e1, e4)e5 = e2, R(e2, e4)e5 = −e1, R(e3, e5)e5 = e3,
R(e4, e5)e5 = −e4.
Now the component of the curvature tensor with respect to the Schouten-van Kam-
pen connection are as follows:
R̄(e1, e2)e1 = 2e2, R̄(e1, e2)e2 = −2e1, R̄(e1, e2)e4 = −2e5,
R̄(e1, e2)e5 = 2e4, R̄(e1, e3)e1 = −e3, R̄(e4, e5)e5 = −2e4,
R̄(e2, e3)e3 = e2.

With the help of the above results we get the Ricci tensor are as follows:
S(e1, e1) = −2, S(e2, e2) = −3, S(e3, e3) = 4, S(e4, e4) = 0, S(e5, e5) = −1, and
S̄(e1, e1) = −1, S̄(e2, e2) = −2, S̄(e3, e3) = 0, S̄(e4, e4) = 1, S̄(e5, e5) = 0.

Therefore r =
∑5

i=1 S(ei, ei) = −2 and r̄ =
∑5

i=1 S̄(ei, ei) = −2. Hence Proposi-
tion (3.1) is verified.
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19. De, U. C., Gazi, A. K., Özgur, C., On almost pseudo symmetries of Sasakian manifolds,
Math. Pannon., 19, 81-88, (2008).

20. Hasegawa, I., Mihai, I., Contact CR-warped product submanifolds in Sasakian manifolds,
Geom. Dedicata, 102, 143-150, (2003).

21. Mihai, I., Certain submanifolds of a Sasakian manifolds. Geometry and topology of subman-
ifolds, VIII (Brussels, 1995/Nordfjordeid,1995), 265-268, World Sci. Publ. River Edge, NJ,
1996.

22. Martelli, D., Sparks, J. and Yau, S. T., Sasaki Einstein manifolds and volume minimisation,
Commun. Math. Phys., 280, 611-673, (2007).

23. Hamilton, R. S., The Ricci flow on surfaces, Contemp. Math., 71, (1988).

24. Ivey, T., Ricci solitons on compact 3-manifolds, Different. Geom. Appl., 3, 301-307, (1993).

25. Chow, B., Knopf, D., The Ricci flow: An introduction, Math. Surv. and Monogr., 110, (2004).

26. Ghosh, G., On a semisymmetric non-metric connection in an almost Kenmotsu manifold
with nullity distribution, Ser. Math. Inform. , 31, 245-257, (2016).

27. Kuhnel, W., Conformal transformations between Einstein spaces, conformal geometry (Bonn,
1985/1986), 105-146, ASpects Math., E12, Vieweg, Braunschweig, (1988).

28. Yano, K., Concircular geometry I. Concircular transformations, Proc. Imp. Acad. Tokyo, 16,
195-200, (1940).

29. Yano, K., Bochner, S., Curvature and Betti numbers, Annals of mathematics studies, 32
Princeton University Press, (1953).
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