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Attractors and Commutation Sets in Hénon-like Diffeomorphisms ∗

Wissame Selmani and Ilham Djellit

abstract: In this work we display Hénon-like attractors that emerge and appear
in diffeomorphisms generated by embedding of one-dimensional endomorphisms.We
show the properties of basin of attraction, and identify various types of attractors
and commutation sets which are associated with these diffeomorphisms. Numerically
presented scenarii of the creation and destruction of these attractors via bifurcations
are illustrated.

Key Words:Attractors, Commutation sets, Heteroclinic and homoclinic bi-
furcations.
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1. Introduction

Hénon map is considered as the simplest diffeomorphism possessing important
properties that contributed greatly to our understanding of complex and chaotic
dynamics. We study a diffeomorphism in dependence of four parameters, and
which can be considered as a purely artificial model coming from the embedding
of a one-dimensional noninvertible map into a two-dimensional invertible one with
constant Jacobian.

The dynamics involves various transitions by bifurcations. In this respect, it
can be compared with classical examples such as the generalized Hénon maps.
On the one hand, our study concerns a noninvertible map embedded into the
invertible one and local bifurcations. On the other hand, we have to deal with
global bifurcations of observable sets, such as crises of attractors or metamorphoses
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of basin boundaries, which are the most easily detected and probably the most often
described in scientific literature.

There has been growing interest for homoclinic and heteroclinic phenomena,
they have been the most studied objects in dynamical systems. From the quali-
tative point of view homoclinic phenomena are of interest because they represent
a possible source for complex dynamics. It has been recognized that connecting
orbits and their bifurcations play an important role in the qualitative theory of dy-
namical systems. Strong effort has gone into describing the different bifurcations
that can occur in terms of genericity and into determining the different types of
behavior in systems undergoing homoclinic and heteroclinic bifurcations.

A very influential work is used here, concerning the importance of commutation
sets done by Mira and Gracio who have developed the fascinating role of these sets
to delimit chaotic attractors (see [3]). Here the dynamical features are explored
by numerical methods. Also, in several cases we find interesting dynamical objects
predicted by the theory and global phenomena in the parameter plane. This kind
of scanning has been made for giving a first idea about bifurcation organization.

Let’s start with ”the generalized logistic map ” in dimension 1, the system
presents a population evolution model, which generalizes the logistic models that
are proportional to the beta densities with the shape parameters p and q, such that
p, q > 1, and the growth rate r.

The complex dynamical behavior of these models is studied in the plane (r, p)
using explicit methods when the parameter r increases. Anticipating the future
evolution of population’s dynamics is one of the most important issue in several
domains, such as biological, ecological, social or economical sciences.

Rocha and al. in [4] introduced some basic concepts and results on probability
density functions. They showed that the sequence

fr,2,2(x) = rx(1 − x)

is proportional to Beta density Beta(2, 2) for x ∈ [0, 1] and r > 0 . This sequence
is a simplified population model. For a small initial condition, that’s mean a low
population, the growth rate in years n is exponential. For a large initial condition,
the population is more important for the same space and the same food, so it will
be increase.

Also they have studied the complex dynamical behavior of some models of the
main following form

fr,p,q(x) = rx(p−1)(1− x)(q−1)

which are proportional to Beta(p, q) densities, where the variable x ∈ [0, 1] and
the parameters p, q > 1.
In the particular case of q = 2, these models are typically used to study of whales
population and forest fires. The parameter p measures the difficulty of the mating
process.

They have considered an extension of the function Beta and the density Beta to
approach the dynamical system of Verhulst, which symbolizes the study of the birth
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and death processes of a population of one species, represented for p ∈ N − {1, 2}
by the map:

N(tn+1) = r∗N(tn)
p−1

(

1− N(tn)

K

)

Considering that xn = N(tn)
K

and r = r∗Kp−2, we obtained:

xn+1 = rxp−1
n (1− xn)

In other way, Verhulst in [7] has considered N(tn) the number of individuals
at time tn, N(tn) ≥ 0 with, N(tn+1) = f(N(tn)) where f determined by the birth
and death rates in the population. We put f(0) = 0, N(tn+1) > N(tn) if N(tn)
is small and N(tn+1) < N(tn) if N(tn) is large because of natural bounds on the
amount of available space and food. We present a simple model

N(tn+1) = N(tn) + rN(tn)−
r

k
N(tn)

2 (1.1)

r is the growth coefficient and k a positive constant. We introduce some basic
rescaling xn = rN(tn)/(k(1 + r)) and a = 1 + r the equation (1.1) becomes

xn+1 = axn(1− xn). (1.2)

The equation (1.2) is called the quadratic equation, logistic equation or Verhulst
equation.

This paper is devoted to present a numerical investigation of a two-dimensional
diffeomorphism on the dynamical properties of its basins of attractions, regular
and chaotic attractors, the bifurcation structures and the mechanisms that assure
chaotic dynamics by extending works. We focuse on the topological structure of
trajectories around eventual cycles and fixed points and to illustrate its phase-
parameter portraits.

2. Endomorphisms depending of two parameters (r, p)

In this section we provide a few overviews of the analysis of the family of
endomorphisms fr,p : [0, 1] → [0, 1] depending of two parameters p ∈ N − {1, 2}
and r > 0, and defined by:

fr,p(x) = rxp−1(1− x) (2.1)

p and r are chosen such that , p ∈]1, pM ] and r ∈]0, r(pM )], with pM and r(pM )
correspond to the maxima values of p and r.

Let c be a critical point of fr,p which satisfies the following conditions:

• f′r,p(c) = 0 and f′′r,p(c) < 0 meaning that fr,p is strictly increasing in [0, c[ and
strictly decreasing in ]c, 1];
and f′r,p(x) 6= 0, ∀x 6= c,;
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• f0,p(c) = 0 and fr(pM),p(c) = 1; with c = p−1
p

;

• fr,p(0) = fr,p(1) = 0;

Singer in [6] used the concept of negative Schwartzian derivative to discuss the
existence of stable periodic orbits.The Schwarz derivative of fr,p(x) is

S(fr,p(x)) =
f′′′r,p(x)

f′r,p(x)
− 3

2

(

f′′r,p(x)

f′r,p(x)

)2

< 0 ; ∀x ∈]0, 1[−{c}

Singer concluded that a function f which is C1 -unimodal and for which S(f(x)) < 0
for all x ∈]0, 1[−{c} has at most one stable periodic orbit plus possibly a stable
fixed point in the interval [0, 1].

Thereby fr,pof the interval [0, 1] into itself is C1 -unimodal if it is continuous;
fr,p(c) = 1; fr,p is strictly decreasing on [0, c] and strictly increasing on [c, 1]; and

fr,p is once continuously differentiable with f′r,p(x) 6= 0 when x 6= c.

The maximum value of the parameter p is pM = 20, it is the largest value for
which we consider that the model can be realistic. The value r(pM ) is the value
of the parameter r corresponding to the full shift for p = pM . We consider that
1 < p ≤ pM = 20 and 0 < r ≤ 53.001. For any fixed value p > 1, if r = 0, then
there is no curves.

For example, we can verify that unimodal maps fr,p have the fixed point x∗ = 0
for r > 0 and p > 1. However, for p = 1.1 and p = 1.5, we can verify that these
maps have another positive fixed point besides 0. For p ∈ [2, pM ] and r > 6.721,
there are the fixed point zero and two other fixed points (cf. Figure 1).

Figure 1: The fixed points for different values of (r, p) according to [1].
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Rocha and al. in [1,5] have shown that there exists a relation between the
parameters p, q and c such that for all r ∈]r1, r2[, we can assure the existence of a
unique attractor for x ∈ [0; 1] with

r1 =
xf

2−p

1− xf

r2 =
2p2 − p2 − 4p+ 2p+ 1

p3cp(1− c)2

then xf is the only one positive fixed point, c = p−1
p

is the critical point of order 0.

2.1. Embedding of one-dimensional noninvertible map into a two-dimensional
invertible map

Let T be a two-dimensional Hénon-like map:

T :

{

x′ = fr,p(x) + y
y′ = bx

(2.2)

The endomorphism fr,p = rxp−1(1 − x) is embedding into the diffeomorphism
T with b 6= 0, and jacobian is J = −b. For a family of recurrence (2.2), the
continuously passing of properties, for b = 0 to b 6= 0 and b sufficiently small, is
obtained in the sense that we find identical cycles associated with the structures
of bifurcation as in [3,4]. Figure 2 presents information on stability region for the
fixed point (blue domain), and the existence region for attracting cycles of order k
exists (k ≤ 14) . The black regions (k = 15) correspond to chaotic behavior.

Figure 2: Scanning for p = 3, q = 2, r ∈ [−2, 3.5], b ∈ [−1, 1.5].

At once b is not small enough, an attractor type fixed point appears and coex-
ists with a cycle of order two.
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2.2. bidimensional map depending of three parameters (r, p, q)

In this part, we consider three parameters (r, p, q). The system Tb will be:

Tb :

{

x′ = rxp−1(1− x)q−1 + y
y′ = bx

(2.3)

Taking into account [3], Mira describes some properties of the two-dimensional
invertible systems Tb that can be expressed as

Tb :

{

x′ = fr,p,q(x) + y
y′ = bx

(2.4)

associated with noninvertible one-dimensional maps T0 such that when the pa-
rameter b is equal to the critical value, i.e.: b = 0 then T0 : x′ = fr,p,q(x). These
properties are also about the stable and the instable fixed points and the concept of
commutation set in invertible maps which are useful for interpreting such problems
and fundamental in the definition of bifurcations leading to important modification
of attractors and their basins of attraction.
Recall that a closed and invariant set A, is called an attracting set if some neigh-
borhood U of A exists such that T (U) ⊂ U , and T n(x) → A as n → ∞, ∀x ∈ U .

The set D = ∪n≥0T
−n(U) is the total basin (or simply: basin of attraction, or

influence domain) of the attracting set A. In general, several types of attractors,
e.g. fixed points, invariant closed curves, chaotic attractors, may coexist in the
same mapping. This non-uniqueness also indicates that the routes to chaos depend
on initial conditions and are therefore non-unique and depend on the values of the
parameters. The basins of attraction D, defining the initial conditions leading to
a certain attractor, may be a complex set.

Definition 2.1. [3] Let T be a continuous noninvertible map x′ = Tx, dimx = n.
The critical set of rank-one, said CS, is the geometrical locus of points x having
at least two coincident preimages. The critical set CSi of rank-(i+1), i > 0, is the
rank-i image of the set CS0 ≡ CS.

Definition 2.2. Let S be a saddle fixed point and U a neighborhood of S. The
local unstable set Wu

loc(S) of S ∈ U is given by:

Wu
loc(S) = {x ∈ U : x−k ∈ T−k(x) → S, x−k ∈ U, ∀k}

and the global unstable set Wu(S) of S is given by:

Wu(S) = ∪k≥0T
−k[Wu

loc(S)].

The local stable set W s
loc(S) of S ∈ U is given by:

W s
loc(S) = {x ∈ U : xk ∈ T k(x) → S, xk ∈ U, ∀k},

and the global stable set W s(S) of S is given by:W s(S) = ∪k≥0T
k[W s

loc(S)].
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Definition 2.3. The point Q is said to be homoclinic to the nonattracting fixed
point S (or homoclinic point of S) if Q ∈ Wu(S) ∩W s(S).

Let M be another nonattracting fixed point. A point Q ∈ U(S) is said hetero-
clinic from S to M , if T k(Q) → M , when k increases, and Q belongs to the local
unstable set Wu

loc(S).

Definition 2.4. [3] We define the commutation sets Ei as

E0 = {the linex = c such that f ′
r,p(c) = 0}.

and

Ei = Tb(Ei−1), ∀i ≥ 1.

Figure 3: Basin of attraction for p = 3, q = 2, r = 0.8, b = 0.9

Figure 4: Existence of two attractors for p = 3, q = 2, r = 0.6, b = 0.9
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Figures 3, 4 represent two attraction basins associated with two attractors for
q = 2 and p = 3 in the phase space. In Figure 3, The red basin is associated with
the fixed point and the green one is associated with the 2 -cycle represented by C1

and C2 points, q1 and q2 are two saddle points such that q2 is on the boundary
of the attraction basin of the attractive fixed point and q1 is inside of the 2-cycle
attraction basin.

3. Bifurcations and complexity

First, we consider the one-dimensional maps T0 : x′ = f r,p,q(x), and we study
their dynamics. The complexity described by the family of fr,p,q(x) is analyzed in
terms of the parameter r > 0, and the shape parameters p > 1 and q > 1, related
with growth-retardation phenomena.

This family is subject to spontaneous existence which can be guaranteed for
the value of the growth parameter

r1 = x2−p
f (1− xf )

1−q, with p, q > 1

where xf is the only positive fixed point (for more details see [5]). With r2, we have
a set of globally stable fixed points where the population growth remains stable,
r2 is given by

r2 =
p2q − p2 − 2pq + 2p+ q − 1

(p+ q − 2)3cp(1 − c)q
, with p, q > 1

where c = p−1
p+q−2 is the critical point. Globally, the iterates of the map fr,p,q(c)

are always attracted to the positive fixed point sufficiently near of the attractive
point, designated by stability region 1, where r satisfies r1 < r < r2.

Otherwise for the values of the parameter r such that r2 < r < r3, the stability
of the region 2 is characterized by the beginning of period-doubling. The value r3
satisfies this condition

r(cp−1(1 − c)q−1r)p−1(1− cp−1(1− c)q−1r)q−1 = c, with p, q > 1.

For r = r4 we can observe complex dynamical behavior. It is defined by

r4 = c1−p(1 − c)1−q, with p, q > 1

For other values of the parameters p and q, due to certain factors, the population
can take the risk of extinction.

In two-dimensional diffeomorphisms Tb, we consider other tools for analyzing
the complexity and chaotic patterns of behavior. The notion of commutation sets
instead of critical sets helps us to acquire such information about extension and
period-doubling.
We fix p = q = 2, the system (6) is considered in [3], by combining of properties
of Tb and T0

Tb :

{

x′ = rx(1 − x) + y
y′ = bx,

(3.1)
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with fr,2,2(x) = rx(1 − x), 2 < r < 4, 0 < b < 1.

Figure 5: Scanning for p = q = 2, r ∈ [−2, 3.5], b ∈ [−1, 1.5].

The extremum of fr,p,q(x) is obtained for x = 1/2. The first three commutation
sets are : E0 is the line x = 1/2, E1 is the line y = b/2, and E2 is the parabola
x = ry/b− ry2/b2 + b/2. The intersection point P1 = E1 ∩E2 has the coordinates
xP1

= (r/2 + b)/2, yP1
= b/2.

This point can be considered as P1 = Tb(P0), with P0 = E0 ∩ E1, whose its coor-
dinates are xP0

= 1/2, yP0
= b/2.

Let Pn be the intersection points defined as Pn = T n
b (Pn−1) = En ∩ En+1,

n = 1, 2, ..., which give rise to principal E-fold points of En+2 in the neighborhood
of Pn. The other fold points of En+2 resulting from Tb[En+1∩Ek], k = 0, 1, ..., n−1,
are the secondary E-fold points of En+2.

Proposition 3.1. Consider the system (3.1) with b → 0; we have

(a) The commutation sets En, n ≥ 2, are crushed on the axe y = 0, and limn→∞(E2) =
[y = 0,−∞ < x ≤ x(c)] = limn→∞(En).

(b) The principal E-fold points are such that limn→∞(Pn) = cn, cn = T n
b (c) rank-

(n+ 1) critical point (C ≡ C0) de T0 on y = 0.

(c) The secondary fold points on E1 tend toward the rank-one critical point c.

As mentioned in proposition 3.1, commutation sets are of primordial importance
for the study of critical singularities. This method consists to approach attractors
due to principal and secondary fold points (see Figure 6).

The inverse map T−1
b is defined by the relations:

x = y′/b, y = x′ − ry′(1− y′/b)/b (3.2)
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Let E′
0 be the line y = b/2, which is given by J = 0 and by the same method

applied to Tb. The commutation curves are defined by E′
n = T−n

b (E′
0).

Figure 6: The commutation sets Ei, r = 2.2, b = 0.7.

3.1. Invariant manifolds of fixed points

The stable invariant manifold W s(S) constitutes in general the frontier of the
basin of attraction of an associated attractor and the unstable one converges to
this attractor. Contact bifurcations between the attractor and its attraction basin
may correspond to homoclinic or heteroclinic bifurcations. Homoclinic orbits and
heteroclinic orbits are important concepts in the study of bifurcation of structures
and chaos. Many chaotic behaviors of a complex system are related to these kinds of
trajectories in the system. A homoclinic orbit is an orbit that is doubly asymptotic
to a fixed point, or is a closed trajectory asymptotic to itself. A heteroclinic orbit is
a trajectory that connects two fixed points or cycles of saddle type. In this part, we
are interested in the existence or nonexistence of homoclinic orbits and heteroclinic
orbits of this considered system.

The fixed points of (3.1) are q1(x = y = 0) and q2(xq2 = (r + b − 1)/r, yq2 =
bxq2). Both fixed points are saddles for fixed parameters (r, b), and since W s(q1)∩
Wu(q1) = ∅, there is no homoclinic point from q1 (but heteroclinic points from q1
to q2 may exist).

When b → 0, the condition to have q1 and q2 two saddles, is satisfied for 3 < r ≤ 4.

The multipliers S1 and S2 of the saddle point q1 are:

S1(q1) = [r −
√

r2 + 4b]/2, S2(q1) = [r +
√

r2 + 4b]/2



Attractors and Commutation Sets 19

due to 3 < r ≤ 4, 0 < b < 1, q1 a saddle with −1 < S1(q1) < 0, S2(q1) > 1.
The slope of the eigenvector related to Wu(q1) at q1 is s1(q1) = 2b/S2(q1) =
2b/[r +

√
r2 + 4b].

The multipliers of q2 are S1(q2) = [2−2b−r−
√
∆]/2, S2(q2) = [2−2b−r+

√
∆]/2

with ∆ = (r+2b)2+4(1−r−b), q2 a saddle with S1(q2) < −1, 0 < S2(q2) < 1.The
slope of the eigenvector related to Wu(q2) at q2 is : s1(q2) = 2b/S1(q2).

For fixed parameter values, attractors’s basins are illustrated in the phase space.
When there exist several attractors, it is possible to define a global basin, that
means the set of initial conditions giving rise to bounded iterated sequences, inde-
pendently of the fact that they converge to one attractor or another.

We fix b = 0.2, we draw the invariant manifolds of a saddle point which is inside
the basin for r = 2.

Figure 7: Attractor and invariant manifolds r = 2, p = 2, q = 1.5, b = 0.2.

When we investigate the heteroclinic tangency between unstable and instable
manifolds by numerical way, we use saddle points.

Figure 8: Attractors and invariant manifolds r = 5, p = 2.5, q = 3, b = 0.9,x ∈
[0; 1.54], y ∈ [−0.5; 1.23]



20 W. Selmani and I. Djellit

Figure 7 for r = 2 and Figure 8 for r = 5 show how of the stable manifold of q1
and the unstable manifold of q2 intersect and then heteroclinic points appear. In
Figure 9, only the invariant manifolds of saddle points are shown.

Figure 9: Heteroclinic curve of saddle points r = 10, x ∈ [0; 1.8], y ∈ [1; 1.7]

For b = 0.21, we find Hénon attractor that is growing with r , has a contact
with the frontier of its basin and disappears by contact bifurcation, p = 3.5 and
q = 2.5 (see Figure 10).

Figure 10: Strange attractor r = 11.5, p = 3.5, q = 2.5 and b = 0.21.
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Figure 11: Strange attractor r = 5, p = 2.5 and b = 0.084, x ∈ [0; 1], y ∈ [0; 0.12]

In this figure, we prove the abundance of strange attractors in this family around
parameter values close to r = 5, p = 2.5 and b = 0.084. These attractors are similar
to Hénon attractor.

4. Conclusion

After embedding a one-dimensional noninvertible map into a larger system
which becomes invertible, we reviewed and used some analysis techniques as com-
mutation sets and heteroclinic solutions together to detect chaotic behaviors.
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