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Some Results on Complex Valued Metric Spaces Employing

contractive conditions with Complex Coefficients and its Applications
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abstract: In this paper, we establish coincidence point and common fixed point
theorems involving two pairs of weakly compatible mappings satisfying contraction
condition with complex coefficients are proved in complex valued metric spaces.
The presented theorems generalize, extend and improve many existing results in the
literature.
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1. Introduction with Preliminaries

In 2011, Azam et al.(cf. [2]) and latter Fayyaz et al. (cf. [7]) studied complex
valued metric spaces wherein some fixed point theorems for mappings satisfying
a rational inequality were established. Naturally, this new idea can be utilized
to define complex valued normed spaces and complex valued inner product spaces
which ,in turn, offer a lot of scope for further investigation. Though complex valued
metric spaces form a special class of cone metric spaces, yet this idea is intended
to define rational expressions which are not meaningfull in cone metric spaces and
thus many results of analysis cannot be generalized to cone metric spaces. Indeed
the definition of a cone metric space banks on the underlying Banach space which
is not a division Ring . However , in complex valued metric spaces, we can study
improvements of a host of results of analysis involving divisions.
In this paper we prove coincidence point and common fixed point theorems in-
volving two pairs of weakly compatible mappings satisfying complex inequality in
complex valued metric space.

To begin with, we collect some definitions and basic facts on the complex valued
metric space, which will be needed in the sequel.
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Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order -
on C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).

Consequently, one can infer that z1 - z2 if one of the following conditions is
satisfied:

(i) Re(z1) = Re(z2), Im(z1) < Im(z2),
(ii) Re(z1) < Re(z2), Im(z1) = Im(z2),
(iii) Re(z1) < Re(z2), Im(z1) < Im(z2),
(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).
In particular, we write z1 � z2 if z1 6= z2 and one of (i), (ii), and (iii) is satisfied

and we write z1 ≺ z2 if only (iii) is satisfied. Notice that 0 - z1 � z2 ⇒ |z1| < |z2|,
and z1 - z2, z2 ≺ z3 ⇒ z1 ≺ z3.

Definition 1.1. (cf. [2]) Let X be a nonempty set whereas C be the set of
complex numbers. Suppose that the mapping d : X × X → C, satisfies the
following conditions:

(d1). 0 - d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(d2). d(x, y) = d(y, x) for all x, y ∈ X ;

(d3). d(x, y) - d(x, z) + d(z, y), for all x, y, z ∈ X.

Then d is called a complex valued metric on X , and (X, d) is called a complex
valued metric space.

Example 1.1. (cf. [7]) Let X = C be a set of complex number. Define
d : C× C → C, by

d(z1, z2) = |x1 − x2|+ i|y1 − y2|
where z1 = x1 + iy1 and z2 = x2 + iy2. Then (X, d) is a complex valued metric
space.

Example 1.2. (cf. [8]) Let X = C be a set of complex number. Define
d : C× C → C, by

d(z1, z2) = eik|z1 − z2|
where k ∈ R, z1 = x1 + iy1 and z2 = x2 + iy2. Then (X, d) is a complex valued
metric space.

Definition 1.2. (cf. [2]) Let (X, d) be a complex valued metric space and B ⊆ X

(i) b ∈ B is called an interior point of a set B whenever there is 0 ≺ r ∈ C
such that

N(b, r) ⊆ B

where N(b, r) = {y ∈ X : d(b, y) ≺ r}.
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(ii) A point x ∈ X is called a limit point of B whenever for every 0 ≺ r ∈ C,

N(x, r) ∩ (B\X) 6= ∅.

(iii) A subset A ⊆ X is called open whenever each element of A is an interior
point of A. A subset B ⊆ X is called closed whenever each limit point of B
belongs to B.The family

F = {N(x, r) : x ∈ X, 0 ≺ r}

is a sub-basis for a topology on X. We denote this complex topology by τ c.

Indeed, the topology τc is Hausdorff.

Definition 1.3. (cf. [2]) Let (X, d) be a complex valued metric space and {xn}n≥1

be a sequence in X and x ∈ X. We say that

(i) the sequence{xn}n≥1 converges to x if for every c ∈ C, with 0 ≺ c there is
n0 ∈ N such that for all n > n0, d(xn, x) ≺ c, . We denote this by limn xn = x,

or xn → x, as n → ∞,

(ii) the sequence{xn}n≥1 is Cauchy sequence if for every c ∈ C with 0 ≺ c

there is n0 ∈ N such that for all n > n0, d(xn, xn+m) ≺ c,

(iii) the metric space (X, d) is a complete complex valued metric space If every
Cauchy sequence is convergent.

Definition 1.4. (cf. [5]) Two families of self-mappings {Ti}mi=1 and {Si}ni=1 are
said to be pairwise commuting if:
(i)TiTj = TjTi, i, j ∈ {1, 2, ...m}.
(ii)SiSj = SjSi, i, j ∈ {1, 2, ...n}.
(iii)TiSj = SjTi, i ∈ {1, 2, ...m}, j ∈ {1, 2, ...n}.

Definition 1.5. let S : C → C be a given mapping. we say that S is a non-
decreasing mapping with respect - if for every x, y ∈ C, x - y implies Sx -

Sy.

Definition 1.6. (cf. [1]) let S and T be two self-maps defined on set X. Then S

and T are said to be weakly compatible if they commute at their coincidence
points.
In [2], Azam et al. established the following two lemmas.

Lemma 1.3. (cf. [2]) Let (X, d) be a complex valued metric space and let
{xn} be a sequence in X. Then {xn} converges to x if and only if |d(xn, x)| → 0
as n → ∞.

Lemma 1.4. (cf. [2]) Let (X, d) be a complex valued metric space and let
{xn} be a sequence in X. Then {xn} is a Cauchy sequence if and only if
|d(xn, xn+m)| → 0 as n → ∞.
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2. Main Results

Theorem 2.1. If S, T, I and J are self-mappings defined on complex valued metric
space (X, d) satisfying TX ⊆ IX, SX ⊆ JX and

λd(Sx, T y) - Ad(Ix, Jy) +Bd(Ix, Sx) + Cd(Jy, T y) +Dd(Ix, T y) + Ed(Sx, Jy),
(2.1)

for all x, y ∈ X, where D,E ∈ R+, λ, A,B,C ∈ C+ and 0 ≺ A+B+C+D+E ≺ λ.

If one of SX, TX, IX or JX is a complete subspace of X, then:
(a) {S, I} and {T, J} have a unique point of coincidence in X,

(b) if {S, I} and {T, J} are weakly compatible, then S, T, I and J have a unique
common fixed point in X.

Proof. Let x0 be an arbitrary point in X. Since SX ⊆ JX, we find a point x1

in X such that Sx0 = Jx1. Also, since TX ⊆ IX, we choose a point x2 with
Tx1 = Ix2. Thus in general for the point x2n−2 one find a point x2n−1 such that
Sx2n−2 = Jx2n−1 and then a point x2n with Tx2n−1 = Ix2n for n = 1, 2, · · · .
Repeating such arguments one can construct sequences {xn} and {yn} in X such
that,

y2n−1 = Sx2n−2 = Jx2n−1, y2n = Tx2n−1 = Ix2n, n = 0, 1, 2, · · · . (2.2)

Using inequality 2.1, we have

λd(Sx2n, T x2n+1) - Ad(Ix2n, Jx2n+1) +Bd(Ix2n, Sx2n)

+Cd(Jx2n+1, T y2n+1) +Dd(Ix2n, T x2n+1)

+Ed(Sx2n, Jx2n+1),

or

λd(y2n+1, y2n+2) - Ad(y2n, y2n+1) +Bd(y2n, y2n+1)

+Cd(y2n+1, y2n+2) +Dd(y2n, y2n+2)

+Ed(y2n+1, y2n+1),

and

λd(y2n+1, y2n+2) - Ad(y2n, y2n+1) +Bd(y2n, y2n+1)

+Cd(y2n+1, y2n+2) +Dd(y2n, y2n+2),

since D ∈ R+,

(λ− C −D)(d(y2n+1, y2n+2)) - (A+B +D)(d(y2n, y2n+1)),

therefore,

|λ− C −D||d(y2n+1, y2n+2)| ≤ |A+B +D||d(y2n, y2n+1)|,
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and

|d(y2n+1, y2n+2)| ≤
|A+B +D|
|λ− (C +D)| |d(y2n, y2n+1)|,

|d(y2n+1, y2n+2)| ≤ h1|d(y2n, y2n+1)|, (2.3)

where, h1 = | A+B+D
λ−(C+D) |.

since D,E ∈ R+, λ, A,B,C ∈ C+ and 0 ≺ A + B + C + D + E ≺ λ then h1 =
| A+B+D
λ−(C+D) | < 1.

Again, using inequality 2.1,

λd(Sx2n, T x2n−1) - Ad(Ix2n, Jx2n−1) +Bd(Ix2n, Sx2n)

+Cd(Jx2n−1, T y2n−1) +Dd(Ix2n, T x2n−1)

+Ed(Sx2n, Jx2n−1),

or

λd(y2n+1, y2n) - Ad(y2n, y2n−1) +Bd(y2n, y2n+1)

+Cd(y2n−1, y2n) +Dd(y2n, y2n)

+Ed(y2n+1, y2n−1).

Since E ∈ R+,

(λ − C − E)(d(y2n+1, y2n)) - (A+B + E)(d(y2n, y2n−1)),

therefore,

|d(y2n+1, y2n)| ≤
|A+B + E|
|λ− (C + E)| |d(y2n, y2n−1)|,

and

|d(y2n+1, y2n)| ≤ h2|d(y2n, y2n−1)|, (2.4)

where, h2 = | A+B+E
λ−(C+E) |.

since E ∈ R+, λ, A,B,C ∈ C+ and 0 ≺ A + B + C + D + E ≺ λ then h2 =
| A+B+E
λ−(C+E) | < 1.

Combining 2.3 and 2.4, we have

|d(y2n+1, y2n+2)| ≤ h|d(y2n, y2n−1)|,

where h = h1h2.

Continuing this process, we get

|d(y2n+1, y2n+2)| ≤ hn|d(y1, y2)|. (2.5)
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By using inequality 2.1, we have

λd(y2n+3, y2n+2) = λd(Sx2n+2, T x2n+1)

- Ad(y2n+2, y2n+1) +Bd(y2n+2, y2n+3)

+Cd(y2n+1, y2n+2) +Dd(y2n+2, y2n+2)

+Ed(y2n+3, y2n+1)

= Ad(y2n+2, y2n+1) +Bd(y2n+2, y2n+3)

+Cd(y2n+1, y2n+2) + Ed(y2n+3, y2n+1).

Since E ∈ R+, we get,

λd(y2n+3, y2n+2) - Ad(y2n+2, y2n+1) +Bd(y2n+2, y2n+3)

+Cd(y2n+1, y2n+2) + E(d(y2n+3, y2n+2)

+d(y2n+2, y2n+1)).

and,

(λ − E −B)d(y2n+3, y2n+2) - (A+ C + E)d(y2n+2, y2n+1),

therefore,

d(y2n+3, y2n+2) ≤ |A+ C + E

λ− E −B
|d(y2n+2, y2n+1) = h3d(y2n+2, y2n+1), (2.6)

where h3 = |A+C+E
λ−E−B

|. Combining 2.5 and 2.6, we have

|d(y2n+2, y2n+3)| ≤ hnh3|d(y1, y2)|. (2.7)

From 2.5 and 2.7, we get

|d(yn, yn+1)| ≤
max{1, h3}

h
(
√
h)n|d(y1, y2)|, for n = 2, 3, · · · .

Therefore, for any m > n, we have

|d(yn, ym)| ≤ |d(yn, yn+1)|+ |d(yn+1, yn+2)|
+|d(yn+2, yn+3)|+ · · ·+ |d(ym−1, ym)|

≤ max{1, h3}
h

[(
√
h
n
+
√
h
n+1

+
√
h
n+2

+ · · ·+
√
h
m−1

]|d(y1, y2)|

≤ [

√
h
n

h(1−
√
h)

]max{1, h3}|d(y1, y2)|

since 0 < h < 1, so that

|d(yn, ym)| ≤ [

√
h
n

h(1−
√
h)

]max{1, h3}|d(y1, y2)| → 0 as n → ∞.
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In view of Lemma 1.4, the sequence {yn} is Cauchy sequence in (X, d).Now sup-
pose IX is complete subspace of X ,then the subsequence y2n = Tx2n−1 = Ix2n

converges to some u in IX. That is,

y2n = Ix2n = Tx2n−1 → u as n → ∞. (2.8)

As {yn} is a Cauchy sequence which contains a convergent subsequence {y2n},
therefore the sequence {yn} also converges implying thereby the convergence of
the subsequence {y2n−1} being a subsequence of convergent sequence {yn}. Con-
sequently, we can fined v ∈ X such that

Iv = u. (2.9)

We calim that Sv = u. Using inequality 2.1 and 2.9, we have

λd(Sv, y2n) = d(Sv, Tx2n−1) - Ad(Iv, Jx2n−1) +Bd(Iv, Sv)

+Cd(Jx2n−1, T x2n−1) +Dd(Iv, Tx2n−1)

+Ed(Sv, Jx2n−1)

= Ad(u, y2n−1) +Bd(u, Sv) + Cd(y2n−1, y2n)

+Dd(u, y2n) + Ed(Sv, y2n−1).

Letting n → ∞ in the above inequality, using 2.8, we have

λd(Sv, u) - (B + E)d(Sv, u).

since 0 ≺ B + E ≺ λ, this implies that d(Sv, u) = 0, that is,

Sv = u. (2.10)

Now, combining 2.9 and 2.10, we have

Iv = Sv = u,

that is, u is a point of coincidence of I and S.

Since u = Sv ∈ SX ⊆ JX, there exists w ∈ X such that

u = Jw. (2.11)

We claim that Tw = u. Using inequality 2.1, we have

λd(u, Tw) = λd(Sv, Tw) - Ad(Iv, Jw) +Bd(Iv, Sv)

+Cd(Jw, Tw) +Dd(Iv, Tw)

+Ed(Sv, Jw),

or,

λd(u, Tw) - Cd(u, Tw) +Dd(u, Tw),
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which by using, 0 ≺ C +D ≺ λ, we have d(u, Tw) = 0, that is

u = Tw. (2.12)

Combining 2.11 and 2.12, we have

u = Jw = Tw,

that is, u is a point of coincidence of J, T.
Now, suppose that u′ is another point of coincidence of I and S, that is,

u′ = Iv′ = Sv′,

for some v′ ∈ X. Using inequality 2.1, we have

λd(u′, u) = λd(Sv′, Tw) - Ad(u′, u) +Bd(u′, u′)

+Cd(u, u) +Dd(u′, u)

+Ed(u′, u)

= Ad(u′, u) +Dd(u′, u) + Ed(u′, u)
)

,

which implies (by using 0 ≺ A+D + E ≺ λ) that d(u′, u) = 0, that is, u′ = u.

Now, suppose that u is another point of coincidence of J and T, that is ,

u = Jw′ = Tw′,

for some w′ ∈ X. Using inequality 2.1, we get

λd(u, u) = λd(Sv, Tw′) - Ad(u, u) +Dd(u, u) + Ed(u, u)
)

,

which implies (by using 0 ≺ A + D + E ≺ λ) that d(u, u) = 0, that is, u = u.

Therefore, we proved that u is the unique point of coincidence of {I, S} and {J, T }.
Now, we prove S, T, I and J, have a unique common fixed point.
Since {I, S} and {J, T } are weakly compatible, and u = Iv = Sv = Jw = Tw, we
can write

Su = S(Iv) = I(Sv) = Iu = w1 (say)

and,

Tu = T (Jw) = J(Tw) = Ju = w2 (say).

By using inequality 2.1, we get

λd(w1, w2) = λd(Su, Tu) - Ad(Iu, Ju) +Bd(Iu, Su)

+Cd(Ju, Tu) +Dd(Iu, Tu)

+Ed(Su, Ju)

= Ad(w1, w2) +Dd(w1, w2)

+Ed(w1, w2),
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which implies(by using 0 ≺ A+D + E ≺ λ) that w1 = w2, that is,

Su = Iu = Tu = Ju.

Now, setting x = v and y = u in 2.1, we have

λd(Sv, Tu) - Ad(Iv, Ju) +Bd(Iv, Sv) + Cd(Ju, Tu) +Dd(Iv, Tu)

+Ed(Sv, Ju) = Ad(Sv, Tu) +Dd(Sv, Tu) + Ed(Sv, Tu),

we deduce (by using 0 ≺ A + D + E ≺ λ) that Sv = Tu, that is, u = Tu. This
implies that

u = Su = Iu = Tu = Ju.

Then, u is the unique common fixed point of S, I, J and T. The proofs for the cases
in which SX, JX, or TX is complete are similar, and are omitted. ✷

3. Application

As an application of Theorem 2.1, we prove the following theorem for four finite
families of mappings.

Theorem 3.1. If {Ti}m1 ,{Ji}p1,{Si}l1 and {Ii}n1 are four finite pairwise commuting
finite families of self-mapping defined on a complex valued metric space (X, d) such
that the mappings S,T ,I and J (with T = T1T2...Tm, J = J1J2...Jp, I = I1I2...In
and S = S1S2...Sl) satisfy TX ⊂ IX and SX ⊂ JX and the inequality 2.1.If one
of TX, SX, IX or JX is complete subspace of X, then the component maps of the
four families {Ti}m1 ,{Ji}p1 , {Si}l1 and {Ii}n1 have a unique common fixed point.

Proof. Appealing to componentwise commutativity of various pairs, one immedi-
ately concludes that SI = IS and TJ = JT and hence, obviously both the pairs
(S, I) and (T, J) are weak compatible. Note that all the conditions of Theorem 2.1
(for mappings S, T, I and J) are satisfied ensuring the existence of unique common
fixed point u in X, i.e. Su = Tu = Iu = Ju = u. We are required to show that u
is common fixed point of all the component maps of the families. For this consider

S(Sku) = ((S1S2...Sl)Sk)u = (S1S2...Sl−1)((SlSk)u)

= (S1...Sl−2)(Sl−1Sk(Slu)) = (S1...Sl−2)(SkSl−1(Slu)) = ...

= S1Sk(S2S3S4...Slu) = SkS1(S2S3S4...Slu) = Sk(Su) = Sku

Similarly one can show that

Tku = TkJu = JTku, Tku = TkTu = TTku

Jku = TJku = JJku, Sku = ISku = SSku

Iku = IIku = SIku, Tku = TTku = JTku,

which show that (for every k)Sku, Tku, Iku and Jku are other fixed points of
S, T, I and J .
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By using the uniqueness of common fixed point for S, T, I and J , we can write
Sku = Tku = Iku = Jku = u (for every k) which shows that u is a common fixed
point of the family {Ti}m1 , {Si}l1,{Ii}p1 and {Ji}n1 (for every k). This completes the
proof of the theorem. ✷

By setting S1 = S2 = ... = Sl = G, T1 = T2 = ... = Tm = F, I1 = I2 = ... =
In = Q and J1 = J2 = ... = Jp = R in Theorem 3.1, we derive the following
common fixed point theorem involving iterates of mappings.

Corollary 3.2. If F,R,G and Q are four commuting self-mappings defined on a
complex valued metric space (X, d) satisfying FmX ⊆ QnX,GlX ⊆ RpX and

λd(Glx, Fmy) - Ad(Qnx,Rpy) +Bd(Qnx,Glx)

+Cd(Rpy, Fmy) +Dd(Qnx, Fmy)

+Ed(Glx,Rpy)),

for all x, y ∈ X. If one of GlX,FmX,QnX or RpX is a complete subspace of X,

then G,F,Q and R have a unique common fixed point in X.

Remark 3.3. If S = T and I and J are identity mappings, λ = 1, A = B = 0 and
C 6= 0, in the particular case, when (X, d) is a metric space, we obtain Kannan
fixed point theorem (cf. [6]).

Remark 3.4. If S = T and I and J are identity mappings, A = C = 0, B ∈
C+ and B 6= 0, in the particular case, when (X, d) is a metric space, we obtain
Chatterjia theorem (cf. [3]).

Remark 3.5. If S = T and I and J are identity mappings, A,B,C ∈ R+ and
λ = 1 in the particular case, when (X, d) is a metric space, we obtain Hardy and
Rogers theorem (cf. [4]).
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