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A Note On Bertrand Curves Of Constant Precession

Münevver Yildirim Yilmaz

abstract: In this paper we define Bertrand curves of constant precession with
a new approach and obtain their characterizations by using a moving alternative
frame.

Key Words:Curves of constant precession, Frenet formula, Bertrand curve.

Contents

1 Preliminaries 76

2 Bertrand Curves of Constant Precession and Their

Characterizations 77

Introduction

Bertrand curve theory is widely studied by many mathematician since it is
firstly introduced by Bertrand for the purpose of answering a question about the
relationship between principal normals of two curves.

The theory is based on the question that for a principal normal of a curve,
whether a second curve that has linear relationship with constant coefficient exist
between curvature and torsion of the first one or not. The pair of this kind curves
called Bertrand mates or conjugate Bertrand curves.

Going back to the drawing board, the Bertrand curve is firstly studied by
Bertrand and from the beginning many mathematician extended the results to
numerous spaces. Izumiya and Takeuchi[1] studied helices and Bertrand curves. In
[2] the authors gave characterizations for Bertrand curves in n dimensional Lorentz
space and obtained some results on this space. By a similar approach in [3] the
authors gave some properties on non null curves for three dimensional Lorentzian
space. Then in [4] the authors characterized Bertrand curves for null ones. Also
we studied on Riemann-Otsuki space and obtained new properties of the curve[5] .
In [6] the authors defined Bertrand curves for 3-dimensional Riemannian manifolds
and found relationships between curvature and torsion of the curve. In addition the
authors studied this type curves for Riemannian space forms with general helices
[7]. This subject is also considered for non-flat spaces such as three dimensional
sphere S3 [8− 9] . There are also many papers on this topic with different aspects
[10− 15] .
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On the other hand Scofield[16] studied on a curve having the property that is
traversed with unit speed, its centrode (Darboux vector field)

W = τT + κB (1)

revolves about a fixed axis with constant angle and speed. The constant precession
curve is characterized by

κ (s) = w sinµ (s) , τ (s) = w cosµ (s) (2)

where w > 0 and µ are constants. Using Darboux vector field in terms alternative
moving frame this vector provides the following conditions

DΛN = N
′

, DΛC = C
′

, DΛW = W
′

(3)

Here
D = gN + fW. (4)

Then we call it C − cons tan t precession curve [17]. In this paper, we focus
on the Bertrand curves of C-constant precession with an alternative moving frame.
We obtain some results and characterizations about curves of this type.

1. Preliminaries

Noting that each unit speed curve has at least four continuos derivatives in
Euclidean 3- space, we can use well known orthogonal unit vector fields T,N,B.
We may take an alternative moving frame along a curve α as follows:

Take the principal normal N and derive it once, we may find a new vector that
is orthogonal to the first one. Let us denote it by C and by vector product we get

W = NΛC. (5)

Hence we compose the moving frame {N,C, NΛC = W}. For the derivative of
this alternative moving frame we have





N
′

(s)

C
′

(s)

W
′

(s)



 =





0 f(s) 0
−f(s) 0 g(s)

0 −g(s) 0









N(s)
C(s)
W (s)



 (6)

where f = κ
√
1 +H2 and g = σf. Here we denote σ = κ2

(κ2+τ2)3/2

(

τ
κ

)
′

which is

also use for characterizing slant helices (See [18]) and H is the harmonic curvature
of the curve hence we may write H = τ

κ
for the curve of this type.

One may also write Darboux vector field in terms of this moving frame as
follows:

D = gN + fW.
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Note that this vector has following properties

DΛN = N ′ DΛC = C′ DΛW = W ′.

Let us consider a new vector field with fixed arbitrary constant δ > 0, µ. Then

λ =
√

δ2 + µ2.

Definition 1.1. Let α : I ⊆ IR → E3 be a unit speed curve in E3 and D be
a Darboux vector in terms of the alternative moving frame {N,C, NΛC = W} .
If Darboux vector revolves about a fixed axis d with a constant angle (〈d ,D〉 =
const.) and constant speed ( ‖D‖ = const.), then α is called a curve of C−cons tan t
precession [17] .
Corollary 1.1. Let α : I ⊆ IR → E3 be a unit speed curve in E3 in terms of the

alternative moving frame {N,C, NΛC = W} . Then α is a curve of C − cons tan t
precession ⇔ the curve α is a C − slant helix. precession [17] .

Theorem 1.1. Let α : I ⊆ IR → E3 be a unit speed curve of C − cons tan t
precession in E3 in terms of the alternative moving frame {N,C, W, f, g} . So the
curvature and the torsion of the curve

κ = (c2 cosµ(s)− c1 sinµ(s) cos(
c1

µ
sinµs− c2

µ
cosµs) (7)

τ = (c2 cosµ(s)− c1 sinµ(s) sin(
c1

µ
sinµs− c2

µ
cosµs), (8)

respectively [17] .

2. Bertrand Curves of Constant Precession and Their

Characterizations

Definition 2.1. Let X (s) and X∗ (s) be regular C−constant precession curves in

E3 with alternative moving frames {N,C, W, f, g} and {N∗, C∗, W ∗, f∗, g∗} .
X (s) and X∗ (s) are called C-Bertrand curves if C (s) and C∗ (s) are linearly

dependent. Also X∗ (s) is a Bertrand mate for X (s) . Thus (X,X∗) is called C-
Bertrand couple.
Theorem 2.1. Let (X,X∗) be a C-Bertrand mate in E3 and X,X∗ are given
(I,X) , (I,X∗) coordinate neighbourhood respectively. Then d (X (s) , X∗ (s)) =
const.

Proof. From Definition 2.1. we may write

X∗ (s) = X (s) + λ (s)C (s) (9)

Let us assume archlength parameter of X ; s and archlength parameter of X∗, s∗

respectively. Then we obtain

C∗ (s) =
dX∗ (s)

ds∗
= X

′

(s) .
ds

ds∗
+ λ′ (s)C (s) + λ (s) (C (s))

′ ds

ds∗
(10)
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ds∗

ds
N∗ (s) = N (s) + λ

′

(s)C (s) + λ (s) (C (s))
′ ds

ds∗
(11)

C
′

(s) = −f(s)N (s) + g (s)W (s) (12)

ds∗

ds
N∗ (s) = N (s) + λ

′

(s)C (s) + λ (s) (−f(s)N (s) + g (s)W (s)) (13)

ds∗

ds
N∗ (s) = N (s) + (−λ (s) f (s)N (s) + λ (s) g (s)W (s))

ds

ds∗
+ λ

′

(s)C (s) (14)

Then using C∗ (s) and C (s) are linearly dependent and from (14) we have

〈N∗ (s) , C(s)〉 = 〈1− λ (s) f (s)N(s), C(s)〉
+λ

′

(s) 〈C(s), C(s)〉 (15)

+λ (s) g(s) 〈W (s), C(s)〉

then we get

λ
′

(s) = 0 (16)

λ (s) = const.

Then
d (X (s) , X∗ (s∗)) = ‖X∗ (s∗)−X (s)‖ = ‖λ‖ = const. (17)

This completes the proof.
Theorem 2.2. Let X and X∗are given (I,X) and (I.X∗) coordinate neighbour-
hoods respectively. X and X∗ are C-Bertrand curves if and only if there exist
non-zero real numbers λ, µ such that

µσf(s) cot θ + λ(s)κ(s)
√

1 +H2 = 1 (18)

for any s ǫ I.

Proof. Let us assume the angle between N∗ (s) and C (s) is θ then we may write

N∗ (s) = cos θN (s) + sin θC (s) (19)

By differentiating both parts we obtain

N
′∗ (s)

ds

ds∗
= cos θN

′

(s) + sin θW
′

(s)

+
d

ds
(cos θ)N (s) +

d

ds
(cos θ)W (s) (20)

Then using Frenet formula and using linear dependency of {C∗ (s) , C (s)} we have
θ = const.

Calculating (20) we have

X∗ (s) = X(s) + λC(s)

(X∗ (s))
′

= X∗ (s)
ds

ds∗
= N (s)− λ (s) (−f (s)N(s) + g (s)W (s)
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N∗ (s)
ds

ds∗
= N (s)− λ (s)P j

i κ1g
i
jv

j
0 (s) + λ (s)P j

i κ2v
i
2 (s)

= [1− λ (s) f(s)]N (s) + λ (s) g(s)W (s)

Then recalling (19) we may write

1− λ (s) f(s)

cos θ
=

λ (s) g(s)

sin θ
λ (s) g(s) cot θ + λ (s) f(s) = 1

Note that f = κ
√
1 +H2, g = σf we can write this equation as follows

λ (s) (σf) (s) cot θ + λ (s)κ(s)
√

1 +H2 = 1

If we write λ cot θ = µ we get

µσf(s) cot θ + λ(s)κ(s)
√

1 +H2 = 1

⇐) This part can be proved similarly.
Theorem 2.3. Let (X,X∗) be a C-Bertrand mate in E3. Then product of
torsions κ and κ∗ at the correspending points of the C-Bertrand curves are constant
where κ and κ∗ are the torsions of the curves X and X∗, respectively. There is a
relation between torsions κ and κ∗ as follows

κκ∗ =
− sin2 θ

λ2 (s)σ2(s)
√

(1 +H∗2) (1 +H2)

Proof. From Theorem 2.2 we may consider

N (s) = cos θN∗ (s) + sin θW ∗ (s)

Arranging (20) for N (s) we may write

1 + λ (s) f∗(s) = cos θ (21)

−λ (s) g∗(s) = sin θ (22)

Recall that f = κ
√
1 +H2, g = σf we arrange the equations above as follows

1 + λ (s)κ∗(s)
√

1 +H∗2 = cos θ

−λ (s)σ∗κ∗(s)
√

1 +H∗2 = sin θ

From (22)

sin2 θ = −λ2 (s)
(

σ2
√

(1 +H∗2) (1 +H2)
)

(23)

κκ∗ =
− sin2 θ

λ2 (s)σ2(s)
√

(1 +H∗2) (1 +H2)

Conclusion 2.1. In classical literature this relation known as Schell’s theorem and

the relation given by (23) equals to constant. As seen above the Schell’s theorem
does not hold for this type of curves.
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