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Rotational Hypersurfaces with Lr-Pointwise 1-Type Gauss Map

Akram Mohammadpouri

abstract: In this paper, we study hypersurfaces in E
n+1 which Gauss map G

satisfies the equation LrG = f(G + C) for a smooth function f and a constant
vector C, where Lr is the linearized operator of the (r + 1)th mean curvature of
the hypersurface, i.e., Lr(f) = tr(Pr ◦ ∇

2f) for f ∈ C∞(M), where Pr is the rth
Newton transformation, ∇2f is the Hessian of f , LrG = (LrG1, . . . , LrGn+1), G =
(G1, . . . , Gn+1). We show that a rational hypersurface of revolution in a Euclidean
space E

n+1 has Lr-pointwise 1-type Gauss map of the second kind if and only if it
is a right n-cone.

Key Words: Linearized operators Lr, Lr-pointwise 1-type Gauss map, r-
minimal, Rotational hypersurfaces.
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1. Introduction

An isometrically immersed submanifold x : Mn → E
n+k is said to be of fi-

nite type if x has a finite decomposition as x − x0 =
∑p

i=1 xi, for some posi-
tive integer p < +∞ such that ∆xi = λixi, λi ∈ R, 1 ≤ i ≤ p, x0 is constant,
xi : M

n → E
n+k, 1 ≤ i ≤ p are non-constant smooth maps and ∆ is the Laplace

operator of M , (see the excellent survey of B. Y. Chen [7]). In [8], this defini-
tion was similarly extended to differentiable maps, in particular, to Gauss map of
submanifolds. The notion of finite type Gauss map is especially a useful tool in
the study of submanifolds (cf. [2,3,4,5,9,10,12,13]). If an oriented submanifold M
of a Euclidean space has 1-type Gauss map G, then G satisfies ∆G = λ(G + C)
for a constant λ ∈ R and a constant vector C. In [8], Chen and Piccinni made a
general study on compact submanifolds of Euclidean spaces with finite type Gauss
map, and for hypersurfaces they proved that a compact hypersurface M of En+1

has 1-type Gauss map G if and only if M is a hypersphere in E
n+1.
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As is well known, the Laplace operator of a hypersurfaceM immersed into E
n+1

is an (intrinsic) second-order linear differential operator which arises naturally as
the linearized operator of the first variation of the mean curvature for normal
variations of the hypersurface. From this point of view, the Laplace operator ∆
can be seen as the first one of a sequence of n operators L0 = ∆, L1, . . . , Ln−1,
where Lr stands for the linearized operator of the first variation of the (r + 1)th
mean curvature arising from normal variations of the hypersurface (see [19]). These
operators are given by Lr(f) = tr(Pr ◦∇2f) for any f ∈ C∞(M), where Pr denotes
the rth Newton transformation associated to the second fundamental form of the
hypersurface and ∇2f is the hessian of f (see the next section for details).

From this point of view, as an extension of finite type theory, S.M.B. Kashani
( [11]) introduced the notion of Lr-finite type hypersurface in the Euclidean space,
which has been followed in the author’s doctoral thesis. One can see our results in
the last section of the last chapter of B. Y. Chen’s book ( [6]), second edition.

Recently, in [15] the notion of pointwise 1-type Gauss map for the surfaces of
Euclidean 3-space E

3 was extended in a natural way in terms of the Chen-Yau
operator �. Based on this definition rotational, helicoidal and canal surfaces in E

3

with L1-pointwise 1-type Gauss map were discussed in [16,18]. Motivated by such
an idea, the following definition was given by the author in [17].

Definition 1.1. An oriented hypersurface M of Euclidean space E
n+1 is said to

have Lr-pointwise 1-type Gauss map if its Gauss map satisfies

LrG = f(G+ C) (1.1)

for a smooth function f ∈ C∞(M) and a constant vector C ∈ E
n+1. An Lr-

pointwise 1-type Gauss map is called proper if the function f is non-constant. More
precisely, an Lr-pointwise 1-type Gauss map is said to be of the first kind if (1.1)
is satisfied for C = 0; otherwise, it is said to be of the second kind. Moreover, if
(1.1) is satisfied for a constant function f , then we say that M has-(global) 1-type
Gauss map.

In the same paper, we focused on the hypersurfaces with constant (r + 1)th
mean curvature, constant mean curvature. We obtain some classification and char-
acterization theorems for such hypersurfaces with Lr-pointwise 1-type Gauss map.
Therefore, it seems natural and interesting to propose the following problem.
Open Problem. Classify hypersurfaces in E

n+1 with Lr-1-type Gauss map.
On the other hand, rotational surfaces of Euclidean spaces and pseudo-Euclidean

spaces with pointwise 1-type Gauss map have been studied in several papers [9,
12,14,20]. For example, in [9] the rotational surfaces of E3 with pointwise 1-type
Gauss map have been studied by B.Y. Chen, M. Choi and Y.H. Kim. They proved
that rotational surfaces of Euclidean spaces with pointwise 1-type Gauss map of
the first kind coincide with rotational surfaces with constant mean curvature; and
the right cones are the only rational surfaces of revolution with pointwise 1-type
Gauss map of the second kind. Fortheremore, Dursun in [10] extentend the results
given by B.Y. Chen, M. Choi and Y.H. Kim for surfaces of revolution with point-
wise 1-type Gauss map in E

3 ( [9]) to the hypersurfaces of revolution with pointwise
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1-type Gauss map in E
n+1. He proved that a rational hypersurface of revolution of

Euclidean space E
n+1 has pointwise 1-type Gauss map if and only if it is an open

portion of a hyperplane, a generalized cylinder, or a right n-cone.

In this paper, our aim is to study the hypersurfaces of revolution of a Euclidean
space En+1 in terms of Lr-pointwise 1-type Gauss map of the first and second kind.
We first give some examples of hypersurfaces of revolution with proper Lr-pointwise
1-type Gauss map of the first kind and the second kind, respectively. Then, we
classify rational rotational hypersurfaces of En+1 with Lr-pointwise 1-type Gauss
map which extend the results given in [10] on rational hypersurfaces of revolution
with pointwise 1-type Gauss map to the rational hypersurfaces of revolution with
Lr-pointwise 1-type Gauss map.

2. Preliminaries

In this section, we recall preliminary concepts from [1,17]. Let x :Mn → E
n+1

be an isometrically immersed hypersurface in the Euclidean space, with the Gauss
map G. We denote by ∇0 and ∇ the Levi-Civita connections on E

n+1 and Mn,
respectively. Then, the basic Gauss and Weingarten formulae of the hypersurface
are written as ∇0

XY = ∇XY + < SX, Y > G and SX = −∇0
XG, for all tangent

vector fields X,Y ∈ χ(Mn), where S : χ(Mn) → χ(Mn) is the shape operator (or
Weingarten endomorphism) of Mn with respect to the Gauss map G.

As is well-known, for every point p ∈ Mn, S defines a linear self-adjoint endo-
morphism on the tangent space TpM

n, and its eigenvalues
λ1(p), λ2(p), . . . , λn−1(p), λn(p) are the principal curvatures of the hypersurface.
The characteristic polynomial QS(t) of S is defined by

QS(t) = det(tI − S) = (t− λ1)(t− λ2) . . . (t− λn−1)(t− λn) =
n
∑

k=0

(−1)kakt
n−k,

where ak is given by

ak =
n
∑

i1<···<ik
ij=1

λi1 . . . λik , with a0 = 1.
(2.1)

The rth mean curvature Hr of Mn in E
n+1 is defined by

(

n
r

)

Hr = ar, H0 = 1.
If Hr+1 = 0, then, we say that Mn is a r-minimal hypersurface. The r-th Newton
transformation of Mn is the operator Pr : χ(M

n) → χ(Mn) defined by

Pr =
r
∑

j=0

(−1)j
(

n

r − j

)

Hr−jS
j =

r
∑

j=0

(−1)jar−jS
j .

Equivalently,

P0 = I, Pr =

(

n

r

)

HrI − S ◦ Pr−1.
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Associated to each Newton transformation Pr, we consider the second-order lin-
ear differential operator Lr : C

∞(Mn) → C∞(Mn) given by Lr(f) = tr(Pr ◦∇2f).
Here, ∇2f : χ(Mn) → χ(Mn) denotes the self-adjoint linear operator metrically
equivalent to the Hessian of f and is given by < ∇2f(X), Y >=< ∇X(∇f), Y >

, X, Y ∈ χ(Mn).
Now we state the following lemma from [1], which is useful in the present paper..

Lemma 2.1. Let x :Mn → E
n+1 be a connected orientable hypersurface immersed

into the Euclidean space, with Gauss map G. Then, the Gauss map G ofM satisfies

LrG =

(

n

r + 1

)

∇Hr+1 +

(

n

r + 1

)

(nH1Hr+1 − (n− r − 1)Hr+2)G. (2.2)

Now, from the definition (1.1) and the lemma 2.1, we state the following theorem
which characterize the hypersurfaces of Euclidean spaces with Lr-pointwise 1-type
Gauss map of the first kind.

Theorem 2.1. An oriented hypersurface M in E
n+1 has proper Lr-pointwise 1-

type Gauss map of the first kind if and only if Hr+1 is constant and nH1Hr+1 −
(n− r − 1)Hr+2 is non-constant.

We can have the following corollary on hypersurfaces with Lr-1-type Gauss
map.

Corollary 2.1. All oriented isoparametric hypersurfaces of a Euclidean space En+1

has Lr 1-type Gauss map.

So, hyperplanes, hyperspheres and the generalized cylinder Sn−k ×E
k of En+1

have Lr-1-type Gauss map.
We can also state that:

Theorem 2.2. If an oriented hypersurface M in E
n+1 has proper Lr-pointwise

1-type Gauss map of the second kind, then the (r + 1)th mean curvature of M is
non-constant.

3. Rotational hypersurfaces

Let x1 = ϕ(v), xn+1 = ψ(v) be a curve in the x1xn+1-half plane lying in
halfspace x1 = φ(v) > 0. Rotating this curve around the xn+1-axis we obtain a ro-
tational hypersurface M in E

n+1. Let {η1, . . . , ηn+1} be the standard orthonormal
basis of En+1 and Sn−1(1) be the unit sphere in E

n spanned by {η1, . . . , ηn}. We
can have an orthogonal parametrization of Sn−1(1) ⊂ E

n as

Y1 = cosu1, Y2 = sinu1 cosu2, . . . ,

Yn−1 = sinu1 . . . sinun−2 cosun−1,

Yn = sinu1 . . . sinun−2 sinun−1.

(3.1)

It follows that

x(u1, . . . , un−1, v) = (ϕ(v)Y1, ϕ(v)Y2, . . . , ϕ(v)Yn, ψ(v)), Yi = Yi(u1, . . . , un−1),



Rotational Hypersurfaces with Lr-Pointwise 1-Type Gauss Map 211

is a parametrization of the rotational hypersurface M . Let us put

Y (u1, . . . , un−1) = (Y1(u1, . . . , un−1), . . . , Yn(u1, . . . , un−1), 0), (3.2)

which is the position vector of the sphere Sn−1(1) ⊂ E
n in E

n+1. Then, we can
write

x(u1, . . . , un−1, v) = ϕ(v)Y (u1, . . . , un−1) + ψ(v)ηn+1, (3.3)

where ηn+1 = (0, 0, . . . , 0, 1) is the axis of the rotation. Taking derivative we have
the orthogonal coordinate vector fields on M as

xui
= ϕ(v)Yui

, i = 1, . . . , n− 1, xv = ϕ′(v)Y + ψ′(v)ηn+1. (3.4)

Hence the Gauss map of the hypersurface of revolution is given by

G =
1√
p
(ψ′Y − ϕ′ηn+1), p = ϕ′2 + ψ′2. (3.5)

By straightforward calculation we can have the Weingarten map as

S =

(

− ψ′

ϕ
√
p
In−1 0

0 ψ′ϕ′′−ϕ′ψ′′

p
√
p

)

(3.6)

where In−1 is the (n−1)×(n−1) identity map. Thus the (r+1)th mean curvature
is

(

n

r + 1

)

Hr+1 =(−1)r+1

(

n− 1

r + 1

)

(ψ′)r+1

ϕr+1(
√
p)r+1

+ (−1)r
(

n− 1

r

)

(ψ′)r+1ϕ′′ − (ψ′)rψ′′ϕ′

ϕrp(
√
p)r+1

. (3.7)

Since the (r + 1)th mean curvature Hr+1 is the function of v, using (3.4) we can
have the gradient of Hr+1 as

∇Hr+1 =
H ′
r+1

p
(ϕ′Y + ψ′ηn+1). (3.8)

3.1. Examples of rotational hypersurfaces with Lr-pointwise 1-type Gauss

map

We can have the following examples of rotational hypersurfaces with proper
Lr-pointwise 1-type Gauss map of the first kind and the second kind, respectively.

Example 3.1. Let M be the rotational hypersurface in E
n+1 parameterized by

x(u1, . . . , un−1, v) = vY (u1, . . . , un−1) +

∫

a dv√
vq − a2

ηn+1, v > 0, (3.9)
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where a is nonzero constant, q = 2(n−r−1)
r+1 , ηn+1 = (0, 0, . . . , 0, 1) ∈ E

n+1 and
Y (u1, . . . , un−1) is defined in (3.1). M is the r-minimal hypersurface and the Gauss
map G of M is given by

G =
1

v
q

2

(aY −
√

vq − a2ηn+1),

and hence by using (2.2), LrG satisfies

Ln−1G = 0, LrG =
q

2

(

n

r + 1

)

(−1)rar+2

v(r+2)(1+ q

2 )
G,

which implies that M has proper Lr-pointwise 1-type Gauss map of the first kind
when r 6= n− 1.

Note that, the author in [17] characterized hypersurfaces in E
n+1 with at most

2 distinct principal curvatures that have Ln−1-(global) 1-type Gauss map as fol-
lowing.

Theorem 3.1. An oriented hypersurface M in E
n+1 with at most 2 distinct princi-

pal curvatures has Ln−1-(global) 1-type Gauss map of the first kind if and only if it
is either an n-minimal hypersurface or an open part of a hypersphere, a hyperplane
or a generalized cylinder.

Example 3.2. Consider the right n-cone Ca based on the sphere Sn−1(1) which
is parameterized by

x(u1, . . . , un−1, v) = vY (u1, . . . , un−1) + avηn+1, a ≥ 0,

where ηn+1 = (0, 0, . . . , 0, 1) ∈ E
n+1 and Y (u1, . . . , un−1) is defined in (3.1). Then,

the Gauss map G of Ca is given by

G =
1√

1 + a2
(aY − ηn+1).

Hence by using (2.2), (3.7) and (3.8) for ϕ(v) = v, v > 0 and ψ(v) = av we can
have

LrG = (−1)r
(

n− 1

r + 1

)

r + 1

v(r+2)(
√
1 + a2)

r (G+
1√

1 + a2
ηn+1), r 6= n− 1,

which means that the right n-cone has proper Lr-pointwise 1-type Gauss map of
the second kind.

3.2. Rotational hypersurfaces of rational kind with Lr-pointwise 1-type

Gauss map

Let M be a rotational hypersurfaces in E
n+1 parameterized by taking ϕ(t) =

t, t > 0 and ψ(t) = g(t) in (3.3)

x(u1, . . . , un−1, t) = tY (u1, . . . , un−1) + g(t)ηn+1, (3.10)
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where Y is given by (3.2). The Gauss map G ofM parameterized by (3.10) is given
by

G =
1

√

1 + g′2
(g′Y − ηn+1). (3.11)

When we consider (3.8) for the parametrization (3.10) we obtain from the equa-
tion (2.2)

LrG =
(

tr (S2 ◦ Pr) +
(

n

r + 1

)

H ′
r+1

√

1 + g′2g′

)

G+

(

n

r + 1

)

H ′
r+1

g′
ηn+1, (3.12)

where

tr (S2 ◦ Pr) =
(−1)

r(n−1
r+1

)

g′
r

tr(
√

1 + g′2)
r+2

[(r + 1)g′
2

t2
+ (

r

r + 1
− nr + n− r − 1

n− r − 1
)

g′g′′

t(1 + g′2)

+(
r + 1

n− r − 1
)

g′′
2

(1 + g′2)2

]

(3.13)

and

(

n

r + 1

)

H ′
r+1 =

(−1)
r(n−1
r+1

)

g′
r

tr(
√

1 + g′2)
r+2

[ (r + 1)g′
√

1 + g′2

t2
− (r + 1)g′′

√

1 + g′2

t

+
(r + 1)g′′g′

2

√

1 + g′2t
− r(r + 1)g′′

2
g′

−1

(n− r − 1)
√

1 + g′2(1 + g′2)

− (r + 1)g′′′

(n− r − 1)
√

1 + g′2
− r(r + 1)g′′

(n− r − 1)t
√

1 + g′2

+
(r + 1)2g′′

2
g′

(n− r − 1)
√

1 + g′2(1 + g′2)

+
2(r + 1)g′′2g′

(n− r − 1)
√

1 + g′2(1 + g′2)

]

, (r ≥ 1). (3.14)

Suppose that M has Lr-pointwise 1-type Gauss map of the second kind. Then
(1.1) holds for some function f and some vector C. When the Gauss map is not
Lr-harmonic (i.e. LrG = 0), (1.1), (3.1), (3.11) and (3.12) imply that the first n
components of C must be zero and

tr (S2 ◦ Pr) +
(

n

r + 1

)

H ′
r+1

√

1 + g′2g′
= f

(

n

r + 1

)

H ′
r+1

g′
= cf,

(3.15)
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where C = (0, . . . , 0, c) and f is independent of u1, . . . , un−1.

Suppose thatM is a hypersurface of revolution of polynomial kind, that is, g(t)
is a polynomial in t. Suppose that deg g(t) = m. Eliminating f in (3.15) and,
using (3.13) and (3.14), we get following relation

A(t) = c

√

1 + g′2B(t), (3.16)

where A(t) and B(t) are polynomials in t of degrees (m−1)(r+9) and (m−1)(r+7)
respectively. So the polynomial g(t) that satisfies (3.16) has degree m = 1. So the
parametrization of M reduces to

x(u1, . . . , un−1, t) = tY (u1, . . . , un−1) + (at+ b)ηn+1, a 6= 0,

which is the right n-cone. As a result we have the following.

Theorem 3.2. A rotational hypersurface of polynomial kind in a Euclidean space
E
n+1 has Lr-pointwise 1-type Gauss map of the second kind if and only if it is a

right n-cone.

Let M be a rotational hypersurface of rational kind, that is, g(t) is a rational
function in t. In [9], it was proven that there is no rotational surface of rational
kind, except polynomial kind, with pointwise 1-type Gauss map of the second kind.
Following [9], one can see that the equation (3.15) does not have any rational
solution, except polynomial. Therefore we can state the following.

Theorem 3.3. There do not exist rational hypersurface of revolution, except poly-
nomial kind, in a Euclidean space E

n+1 with Lr-pointwise 1-type Gauss map of the
second kind.

Proof: We consider hypersurfaces of revolution of rational kind. In this case,
the function g(t) of (3.10) and g′(t) are both rational functions in t. If g′(t) is

not a constant, we may put g′(t) = s(t)
q(t) , where s(t) and q(t) are relative prime

polynomials, that is, s(t) and q(t) do not have a common factor of degree greater
than or equal to one. If g′(t) is non-constant, then there exists a polynomial p(t)
satisfying q2(t)+s2(t) = p2(t), where q(t), s(t) and p(t) are relatively prime. Hence,
√

1 + g′2(t) = p(t)
q(t) . SinceM has Lr-pointwise 1-type Gauss map of the second kind.

Then (3.15) holds for some function f and some vector C = (0, . . . , c). Eliminating
f in (3.15) and using (3.13) and (3.14), we get following relation

C(t) =
sr+3(t)p6(t)

q(t)
, (3.17)

where C(t) is a polynomial in t. It follows that sr+3(t)p6(t)
q(t) is a polynomial. This is

a contradiction because p(t), q(t) and s(t) are relative prime. ✷

We finally prove the following theorem:
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Theorem 3.4. A rotational hypersurface of rational kind of Euclidean space E
n+1

has Lr-pointwise 1-type Gauss map if and only if it is an open portion of a hyper-
plane, a generalized cylinder, or a right n-cone.

Proof: Let M be a rotational hypersurface parameterized by (3.3). If ϕ = ϕ0

is constant, then the hypersurface is an open portion of the generalized cylinder
Sn−1(ϕ0)×R. When ϕ is not constant, we can consider the parametrization given
by (3.10) for the rotational hypersurface. The rotational hypersurface has constant
(r + 1)th mean curvature if and only if g = g(t) is a solution of the differential
equation

(

n

r + 1

)

αtr+1(
√

1 + g′2)r+1(1 + g′2)

+ (−1)r
(

n− 1

r + 1

)

g′r+1(1 + g′2) + (−1)r
(

n− 1

r

)

tg′
r
g′′ = 0. (3.18)

for some constant α. If we make the following change of variable: g′ = sinh y, then
(3.18) becomes

(

n

r + 1

)

αtr+1 + (−1)r
(

n− 1

r + 1

)

tanhr+1 y + t(−1)r
(

n− 1

r

)

tanhr y

cosh2 y
y′ = 0, (3.19)

After that we make another change of variable: y = tanh−1 w, we get

y′ =
w′

1− w2
, sinh y =

w√
1− w2

, cosh y =
1√

1− w2
.

Thus, (3.19) becomes

(

n

r + 1

)

αtr+1 + (−1)r
(

n− 1

r + 1

)

wr+1 + t(−1)r
(

n− 1

r

)

wrw′ = 0. (3.20)

Solving (3.20) yields w(t) =
( (−1)r+1αtn+a

tn−r−1

)

1
r+1

for some constant a. Hence

sinh
(

tanh−1
( (−1)r+1αtn + a

tn−r−1

)

1
r+1
)

=
((−1)r+1αtn + a)

1
r+1

√

t
2(n−r−1)

r+1 − ((−1)r+1αtn + a)
2

r+1

.

Therefore g(t) is given by

g(t) =

∫

((−1)r+1αtn + a)
1

r+1

√

t
2(n−r−1)

r+1 − ((−1)r+1αtn + a)
2

r+1

dt+ c1, (3.21)

where a and c1 are constant. If a = α = 0, g is constant. Then, the hypersurface
is an open portion of a hyperplane. If α = 0 and a 6= 0, that is, M is an r-
minimal hypersurface of revolution. When n = r + 1, then M is an open portion



216 A. Mohammadpouri and First Author and Second Author

of a right n-cone. When n 6= r + 1, then (3.21) implies that g(t) can not be
expressed in terms of rational functions. If a = 0 and α 6= 0, then (3.21) gives

g(t) = (−1)r
√

α
−2
r+1 − (−1)r+1t2 + c2. In this case, the hypersurface M is an n-

sphere which is not rational kind. If a, α 6= 0, then (3.21) implies that g(t) can be
expressed in terms of elliptic functions and g(t) is not a rational function of t.

If M is a rational hypersurface of revolution with Lr-pointwise 1-type Gauss
map of the second kind, then M is an open portion of a right n-cone according to
Theorem 3.2 and 3.3.

The converse is followed by Corollary 2.1 and Example 3.2 ✷
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