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abstract: In the present paper, we are concerned by weighted Arnoldi like meth-
ods for solving large and sparse linear systems that have different right-hand sides
but have the same coefficient matrix. We first give detailed descriptions of the
weighted Gram-Schmidt process and of a Ruhe variant of the weighted block Arnoldi
algorithm. We also establish some theoretical results that links the iterates of the
weighted block Arnoldi process to those of the non weighted one. Then, to acceler-
ate the convergence of the classical restarted block and seed GMRES methods, we
introduce the weighted restarted block and seed GMRES methods. Numerical ex-
periments are reported at the end of this work in order to compare the performance
and show the effectiveness of the proposed methods.
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1. Introduction

In this paper, we are interested in solving multiple linear systems that have the
same coefficient matrix and which have the form

AX = B, (1.1)

where A is a non-symmetric real square matrix of size n and B := [b(1), . . . , b(s)],
X := [x(1), . . . , x(s)] are n× s real rectangular matrices, such that the block right-
hand side B is full rank and s ≪ n.

Block linear systems of kind (1.1) are encountered in many problems of sci-
entific computing and engineering applications. Such block equations are posed,
for example, in wave scattering problems, time-dependent incompressible Navier-
Stokes equations in computational fluid dynamics, structural mechanics computa-
tions based on finite element analysis and in many other areas [18]. When the
coefficient matrix A is a large and sparse, several iterative methods have been de-
veloped during the last three decades [2,5,8,11,16,21,22]. Generally, the iterative
methods described in the literature are projection methods on some Krylov sub-
space and can be divided into three classes methods.

Block solvers are the first popular algorithms that were used for solving the lin-
ear system (1.1). Generally, block Krylov methods are more efficient when they are
applied to relatively dense linear systems and combined with some preconditioning
techniques [9]. In this first class, one can cite the block conjugate gradient (Bl-
CG) for symmetric definite matrices, the block Bi-conjugate Gradient (Bl-BCG)
and the block Bi-Conjugate Gradient stabilized (Bl-BiCGSTAB) methods [4,16].
Other popular methods can be enumerated like the block-quasi-minimal residual
(Bl-QMR) algorithm [5,14], the block-generalized minimum residual (Bl-GMRES)
algorithm [20,22]. In practice, the block methods require a deflation procedure to
detect and delete linearly or almost linearly dependent vectors in the block Krylov
subspaces generated during the iterations [15,17].

The seed methods form another family that can be applied to the solution of
multiple linear systems. The first works in this class appeared in [21], [13] and [2],
respectively. These first methods were based on the Conjugate Gradient algorithm.
In seed methods, we have to choose one right-hand system as a seed system and
use the corresponding Krylov subspace as a projection subspace for the remaining
right-hand systems. After solving the seed system, a better initial guess for the re-
maining systems is obtained. This procedure is repeated with another seed system
until all the systems are solved. Improvements of seed techniques were also applied
to the GMRES method and the obtained seed GMRES (SGMRES) method was
compared with block and classical solvers in [19]. Note that the efficiency of seed
methods depends on how closely related the right-hand sides are [1,2].

Matrix Krylov subspace methods -also called global methods- can be seen as
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an alternative to block Krylov methods. These class of methods is particularly
suitable for sparse multiple linear systems [8,9,11,12]. The principal difference be-
tween classical single Krylov solvers and global methods appears in the different
processes that are used for constructing the Krylov basis. More precisely, and for
example, the global Arnoldi process uses the Frobenius scalar product instead of
the euclidean scalar product used in the classical Arnoldi process. Moreover, it
was proved in [9] that solving a block linear system of the form (1.1) with a global
method is equivalent to applying the corresponding classical method to the lin-
ear system (I ⊗ A) vecX = vecB, where C ⊗ D := (ci,j D) ∈ R

mp×n q for every

C ∈ R
m×n and D ∈ R

p×q and vecB := [b(1)
T
, b(2)

T
, . . . , b(s)

T
]T ∈ R

n s.

In this work, we focus mainly on weighted Arnoldi like methods. We recall that
the weighting technique, initially introduced in [3] for single linear systems and re-
cently investigated in [7], was applied to the block case in [10]. As the description
of the weighted block Arnoldi process given in [10] is brief, we give in this work a
detailed description of a Ruhe variant of the weighted block Arnoldi process. Then,
we introduce the restarted weighted block GMRES method in a similar fashion to
that of GMRES(m). The numerical experiments we have conducted show that the
convergence of the weighted Bl-GMRES method may be affected by the occurrence
of a linear dependency between the columns of the Krylov matrix. This led us to
apply the weighting technique to the seed GMRES algorithm and to propose the
weighted seed GMRES method as an improvement of the classical seed GMRES
algorithm.

The remainder of this work is organized as follows. In section 2, we began with
a detailed description of the weighted Gram-Schmidt process which is used to build
a sequence of D orthonormal vectors where D is a diagonal matrix with positive
entries. Then, in the second part of section 2, we introduce a Ruhe variant of the
weighted block Arnoldi process. Section 2 is ended by establishing some theoretical
results that links the iterates of the weighted block Arnoldi process to those of the
non weighted one. These results generalize to the block case the results obtained
in [3] for the case of a single linear system. In section 3, we first describe the
weighted block GMRES. The derivation of the weighted seed GMRES method is
also given in section 3. Section 4 is devoted to some numerical examples that show
and compare the effectiveness of the new proposed methods.

Throughout this paper, the following notations are used. The zero and identity
matrices are denoted 0n×m ∈ R

n×m, (0n, if n = m) and In ∈ R
n respectively. The

Frobenius inner product of two matrices X, Y ∈ R
n×s is defined by < X, Y >F :=

tr(XT Y ) where XT is the transpose matrix of X and tr(Z) denotes the trace
of the square matrix Z. The associated norm is the Frobenius norm denoted by
‖X‖F :=

√
tr(XT X). Moreover, if D ∈ R

n×n is a symmetric and positive definite
matrix, then

X⊥DY ⇐⇒ XT DY = 0s
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and the D-inner product of x, y ∈ R
n and of X, Y are respectively defined by

< x, y >D:= xT Dy and < X, Y >D:= tr(XT DY ).

We also define the D-norm of X by

‖X‖D := ‖D 1

2 X‖F =
√
tr(XT DX),

which is associated to the D-inner product < X, Y >D.

2. The weighted Gram-Schmidt and weighted block Arnoldi processes

Let D ∈ R
n×n be a positive diagonal matrix whose diagonal entries are

d1, d2, . . . , dn, i.e.,

D := diag(d), where d := [d1, . . . , dn]
T ∈ R

n, and di > 0 for all i = 1, . . . , n.

Let also v be a n-dimensional real vector and Km(A, v) = span{v,A v, . . . , Am−1 v}
the corresponding Krylov subspace. We recall that, based on the modified Gram-
Schmidt procedure, the weighted Arnoldi process constructs a D-orthonormal basis
of Km(A, v), see [3] for instance. Thus, before deriving the weighted block Arnoldi
process, we have to describe a Gram-Schmidt procedure for building a set of D-
orthonormal vectors.

2.1. The weighted Gram-Schmidt process

Given Ã = [ã1, ã2, . . . , ãp] ∈ R
n×p, the weighted Gram-Schmidt process (here after

denoted by W-GS) applied to Ã is described by Algorithm 1.

Algorithm 1: The weighted Gram-Schmidt process (wQR factorization)

1. r1,1 = ‖ã1‖D; q̃1 = ã1

r1,1
;

2. For j = 2, . . . , p
3. q̃ = ãi;
4. For i = 1, . . . , j − 1
5. ri,j =< ãj , q̃ >D;
6. q̃ = q̃ − ri,j q̃i;
7. end For
8. rj,j =‖ q̃ ‖D;
9. If rj,j = 0
10. stop;
11. else

12. q̃j =
q̃

rj,j
;

13. end If
14. end For.
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If the matrix Ã is full rank, then it is easy to verify that p iterations of Algorithm
1 can be carried out without encountering any breakdown. Moreover, the W-GS
computes an n×p D-orthonormal matrix Q̃ = [q̃1, . . . , q̃p] with respect to the inner
product 〈., .〉D and a p× p upper triangular matrix R = (ri,j), such that

Ã = Q̃R, and Q̃T D Q̃ = Ip.

In the rest of this paper we refer to the above decomposition as the wQR factor-
ization of the matrix Ã and we use the Matlab like notation [Q̃, R] = wQR(Ã).

2.2. The weighted block Arnoldi process

Let V ∈ R
n×s and Km(A, V ) := colspan{V,AV, . . . , Am−1 V } the corresponding

block Krylov subspace which is spanned by all the columns of n×ms Krylov matrix(
V, AV, . . . , Am−1 V

)
. In order to construct a D orthonormal basis of Km(A, V ),

we have to generalize the results obtained in [3] to the block case. This task will be
achieved by first introducing a Ruhe variant of the weighted block Arnoldi process
which is described by Algorithm 2.

Algorithm 2: The weighted block Arnoldi process (Ruhe’s variant)

1. [Ṽ (s),Γ] = wQR(V );
2. For k = 1, . . . ,m s
3. w̃ = A ṽk;
4. for j = 1, . . . , k + s− 1

5. h̃j,k =< ṽj , w̃ >D;

6. w̃ = w̃ − h̃j,k ṽj ;
7. end for

8. h̃k+s,k = ‖w̃‖D; ṽk+s = w̃/h̃k+s,k;
9. end For.

We observe that the particular case s = 1 coincides with the classical weighted
Arnoldi process [3]. For i ≥ s, we denote by Ṽ (i) the n× i matrix whose columns

are ṽ1, . . . , ṽi and by H̃(i) the (i+ s)× i matrix whose non-zero entries are the h̃j,k

defined in lines 5 and 8 of Algorithm 2. Then assuming exact arithmetic, the above
process gives Ṽ (i) and H̃(i) that satisfy

A Ṽ (i) = Ṽ (i+s) H̃(i)

and that every vector ṽk+s (k = 1, . . . ,m s) satisfies

h̃k+s,k ṽk+s = A ṽk −
k+s−1∑

j=1

h̃j,k ṽj , and ṽk+s ⊥D ṽ1, . . . , ṽk+s−1.
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Now, let Ṽk := [ṽ(k−1)s+1, . . . , ṽks] ∈ R
n×s, Ṽk :=

[
Ṽ1, . . . , Ṽk

]
∈ R

n×ks for k =

1, . . . ,m and suppose that ms iterations of Algorithm 2 are performed with exact
arithmetic and without any breakdown. Then, we also have following relation

A Ṽm = Ṽm+1 H̃m, (2.1)

= Ṽm H̃m + Ṽm+1 H̃m+1,mET
m, (2.2)

where H̃m, H̃m are respectively the (m + 1)s × ms and ms × ms block upper
Hessenberg matrices whose non-zero block entries are H̃i,j := (h̃l,q) ∈ R

s×s with
l = (i − 1)s + 1, . . . , is, q = (j − 1)s+ 1, . . . , js and Em := (0s, . . . , 0s, Is)

T is the
ms × s rectangular matrix whose m-th block element is Is the identity matrix of
size s.
Note also that, the obtained block column matrix Ṽm is D orthonormal, which
means that

Ṽ
T
mD Ṽm = Ims. (2.3)

Pre-multiplying (2.1) and (2.2) respectively by Ṽ
T
m+1D and Ṽ

T
mD, we get

Ṽ
T
m+1 DA Ṽm = H̃m and Ṽ

T
m DA Ṽm = H̃m. (2.4)

Before ending this subsection, we note that the numerical tests we have conducted
suggest that the weighted Block Arnoldi process can suffer from a loss of linear
independence between the vectors of the Krylov matrix Ṽm. This problem can be
corrected by a similar deflation procedure to those proposed in [15] and references
therein.

2.3. Theoretical results

Now, let us establish some relations between the bases and matrices generated by
the classical block Arnoldi and the weighted block Arnoldi processes. The results
that are given in this part are generalizations of those given in [3]. In the sequel, we
suppose that ms iterations of the two processes are applied to the pair (A, V ). The
Krylov basis and the upper block Hessenberg matrix that are given by applying
ms iterations of the Ruhe variant of the classical Arnoldi process are denoted by
Vm and Hm respectively. Those obtained after ms iterations of Algorithm 2 are

still denoted by Ṽm and H̃m.

Proposition 2.1. Assume that we do not have any breakdown before ms iterations

in the classical and in the weighted versions of the block Arnoldi process. Then,

there exists an ms×ms upper triangular matrix Um such that

Ṽm = Vm Um. (2.5)

Moreover, we have

U
−1
m = Ṽ

T
m DVm (2.6)

and

H̃m = U
−1
m+1 Hm Um. (2.7)
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Proof: The proof of this result is obtained analogously to that of Proposition 1 in
[3]. ✷

Now, since Um+1 is an invertible upper triangular matrix, we can partition
Um+1 and its inverse as following

Um+1 =

[
Um Um+1

0s×ms Um+1,m+1

]
, U

−1
m+1 =

[
U

−1
m Gm+1

0s×ms Gm+1,m+1

]
, (2.8)

where Um+1, Gm+1 ∈ R
ms×s are formed by the last s columns and the first ms

rows of Um+1 and U
−1
m+1 respectively, Um+1,m+1, Gm+1,m+1 ∈ R

s×s are formed by

the last s rows and last s columns of Um+1 and U
−1
m+1 respectively.

The following result gives two other relations that are satisfied by the Hessen-
berg matrices Hm and H̃m.

Proposition 2.2. Under the same assumptions as in Proposition 2.1, we have

H̃m = U
−1
m HmUm +Gm+1 Hm+1,m Um,mET

m, (2.9)

Hm = Um H̃m U
−1
m + Um+1 Gm+1,m+1Hm+1,m ET

m. (2.10)

Proof: The proof of this result is obtained analogously to that of Proposition 2 in
[3]. ✷

3. Solving multiple linear systems with weighted Arnoldi based

methods

In this section, we will introduce two methods for solving linear systems with
several right-hand sides of the form (1.1). The first one belongs to the block Krylov
subspace family methods and is based on the use of the weighted block Arnoldi
process. The second method is a seed Krylov method and is based on the use of
the weighted Arnoldi process.

3.1. The weighted block GMRES method

The derivation of the weighted block GMRES (in short WBl-GMRES) method is
similar to that of the classical unweighted block GMRES method (in short Bl-
GMRES). More precisely, given an initial guess X0 ∈ R

n×s, the WBl-GMRES
computes successive iterates Xk, k = 1, 2, . . . , such that

Xk := X0 + Ṽk Zk, (3.1)

where Ṽk is the D-orthonormal basis constructed by the weighted Block Arnoldi
process (Algorithm 2), and the matrix Zk ∈ R

ks×s satisfies the minimizing norm
condition

Zk = argmin ‖Rk‖D = arg min
Z∈Rks×s

‖R0 −A Ṽk Z‖D, where Rk := B − AXk.
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Using (3.1) and the formula (2.2) where the index m is replaced by k, we can
rewrite the k-th residual as

Rk = Ṽk+1(E1 H̃1,0 − H̃k Zk), (3.2)

where E1 = (Is, 0s, . . . , 0s)
T ∈ R

(k+1)×s and H̃1,0 ∈ R
s×s is the upper triangular

matrix obtained when computing the wQR decomposition of R0, i.e.,

R0 = Ṽ1 H̃1,0 and such that Ṽ T
1 DṼ1 = I.

Note that we can check that

‖Rk‖D = ‖E1H̃1,0 − H̃k Zk‖F
and then Zk is the solution of the ks× s least-squares problem

min
Z∈Rks×s

‖E1 H̃1,0 − H̃k Z‖F . (3.3)

Note that since WBl-GMRES uses the weighted block Arnoldi process, its com-
putational cost and required memory increase with each iteration. To overcome
these problems, an alternative is to restart WBl-GMRES after m iterations, taking
the last computed residual as the next initial residual. This strategy is called the
restarted WBl-GMRES and denoted by WBl-GMRES(m).

We also point out that the use ofD-inner product instead of the Euclidean scalar
product in the block GMRES method does nothing to improve the convergence of
the latter. However and as shown by Essai in [3] the use of a D-inner product
that change at each cycle of the restarted WBl-GMRES method often improves
the convergence.

Next, we describe the restarted WBl-GMRES method.

Algorithm 3: Restarted weighted Block GMRES method (WBl-GMRES(m)).

1. Choose X0 ∈ R
n×s; a tolerance ε; a positive integer m;

2. Compute R0 = B −AX0; [Ṽ1, H̃1,0] =
wQR(R0);

3. Define a diagonal matrix D with a positive diagonal.

4. Apply Algorithm 2 to (A,R0) to compute Ṽm+1 and H̃m;
5. Determine Zm the solution of the least-squares problem

min
Z∈Rms×s

‖E1H̃1,0 − H̃m Z‖F
6. Compute the approximate solution Xm = X0 + Ṽm Zm;
7. Compute Rm = B −AXm;
8. If ‖Rm‖F < ε
9. Stop;
10. else

11. X0 = Xm; R0 = Rm; [Ṽ1, H1,0] =
wQR(R0);

12. end If
13. Define a (new) positive matrix D; and go to 4.
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Regarding the choice of weighting matrix D, we do not yet know if there is, the-
oretically, an optimal matrix. However we propose in the sequel four choices that
were made heuristically. We note that these choices generalize the choice given by
Essai in [3] for the case s = 1 and that the coefficients of the matrix D are given
as function of R0 the residual obtained at the end of each cycle of the previous
algorithm. We also note that the choices given below are different from the one
proposed in [10].

Let us write R0 as

R0 = [r
(1)
0 , r

(2)
0 , . . . , r

(s)
0 ] = (ri,j0 )i=1,...,nj=1,...,s

and the weighting matrix D as

D = diag(d) = diag([d1, d2, . . . , dn]) where d = [d1, d2, . . . , dn]
T ∈ R

n.

We propose four choices which are

• Choice 1 : di :=

√
n s

‖R0‖F

s∏

j=1

|ri,j0 |.

• Choice 2 : di :=

√
n s

‖R0‖F
|ri,k0 | where k is such that ‖r(k)0 ‖2 = max

j=1,...,s
‖r(j)0 ‖2.

• Choice 3 : di :=

√
n s

‖R0‖F

s∑

j=1

|ri,j0 |.

• Choice 4 : di :=

√
n s

‖R0‖F
|ri,k0 | where k is such that |ri,k0 | = max

j=1,...,s
|ri,j0 |.

3.2. The weighted seed GMRES method

Before introducing the weighted seed GMRES algorithm, we recall that the com-
putational costs of block methods rapidly increase with s the number of right-hand
sides in (1.1), and so the block methods lose their advantage. Moreover, in many
practical and real applications, the right-hand sides are not arbitrary and have
something in common or are very close. In this case, an alternative to block meth-
ods is the use of seed projection techniques for solving (1.1).

The idea used in the seed Krylov methods is to select a single “seed” system and
some Krylov method as a generator of approximations for multiple right-hand sides
[2,19,21]. In the Krylov seed algorithm a single Krylov subspace -corresponding
to the seed system- is generated, then the residuals of the non-seed systems are
projected orthogonally onto this generated Krylov subspace in order to get the
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approximate solutions. The whole process is repeated with an other seed system
until all the systems are solved.

Seed techniques were first proposed for symmetric and positive definite systems
by Smith et al [21]. In [2], the authors show that a better convergence behaviour of
the seed CG process when compared to the classical CG process. For unsymmetric
systems, a seed GMRES method was proposed in [19] and a Morgan’s Krylov
subspace method augmented with eigenvectors was presented in [6].

The weighted seed GMRES method starts by choosing the first seed system
Ax(σ) = b(σ) where σ is such that

‖r(σ)0 ‖2 = max
k=1,...,s

‖r(k)0 ‖2, and r
(k)
0 := b −Ax

(k)
0 .

Then, this seed system is solved using the weighted GMRES algorithm which com-
putes Ṽ σ

m a D-orthonormal matrix of the Krylov subspace

Kσ
m = span{r(σ)0 , . . . , Am−1 r

(σ)
0 } and the upper Hessenberg matrix H̃m such that

A Ṽ σ
m = Ṽ σ

m+1 H̃m.

Then, at each restart of the current solve, the initial guesses x
(i)
0 , for i = 1, . . . , s

and i 6= σ are updated by minimizing the D-norm of the residuals r
(i)
0 = b(i)−Ax

(i)
0

of the other systems on the current basis Ṽ σ
m+1. More precisely, we look for initial

guesses x̂
(i)
0 such that

x̂
(i)
0 := x

(i)
0 + Ṽ σ

m d(i), where d(i) = arg min
d∈Rm

‖b(i) −A (x
(i)
0 + Ṽ σ

m d)‖D.

Moreover, since

‖b(i) −A (x
(i)
0 + Ṽ σ

m d)‖2D = ‖r(i)0 −A Ṽ σ
m d‖2D

= ‖(In − Ṽ σ
m+1 (Ṽ

σ
m+1)

T D)r
(i)
0

+Ṽ σ
m+1 (Ṽ

σ
m+1)

T D r
(i)
0 −A Ṽ σ

m d‖2D
= ‖(In − Ṽ σ

m+1 (Ṽ
σ
m+1)

T D)r
(i)
0

+Ṽ σ
m+1

(
(Ṽ σ

m+1)
T D r

(i)
0 − H̃

σ

m d
)
‖2D

= ‖(In − Ṽ σ
m+1 (Ṽ

σ
m+1)

T D)r
(i)
0 ‖2D

+‖Ṽ σ
m+1

(
(Ṽ σ

m+1)
T D r

(i)
0 − H̃

σ

m d
)
‖2D

= ‖(In − Ṽ σ
m+1 (Ṽ

σ
m+1)

T D)r
(i)
0 ‖2D

+‖(Ṽ σ
m+1)

T D r
(i)
0 − H̃

σ

m d‖22,

we finally have to solve at each restart the least squares problem

arg min
d∈Rm

‖(Ṽ σ
m+1)

T D r
(i)
0 − H̃

σ

m d‖2.
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Summarizing the above ideas and following those given in [19], we describe the
weighted seed GMRES method as follows

Algorithm 4: The weighted seed GMRES method (SWGMRES(m)).

1. Choose X0 ∈ R
n×s; a tolerance ε; a positive integer m;

2. Set X = X0; Compute R = B −AX ; % R = [r(1), . . . , r(s)]

3. Determine σ such that ‖r(σ)‖2 = max
i=1,...,s

‖r(i)‖2 and define β = ‖r(σ)‖2;
4. Define a diagonal matrix D with a positive diagonal.
5. For k = 1, 2, . . . , s until all the systems are solved

6. Apply Algorithm 2 to (A, r(σ)) to compute the basis Ṽm+1

and the block upper Hessenberg matrix H̃m;

7. b̂σ = β e1, where e1 = [1, . . . , 0]T ∈ R
(m+1) s;

8. b̂j = Ṽ T
m+1 D r(j), for j = 1, . . . , s and j 6= σ;

9. For j = 1, . . . , s
10. Determine z(j) the solution of the least squares problem

min
z∈Rm

‖b̂j − H̃m z‖2
11. end For

12. Compute X = X + Ṽm Z, where Z = [z(1), . . . , z(s)];
13. Compute R = B −AX ;
14. For i = 1, . . . , s
15. If ‖r(i) := b(i) −Ax(i)‖2 < ε

16. X := [x(1), . . . , x(i−1), x(i+1), . . . , x(s)];
17. B := [b(1), . . . , b(i−1), b(i+1), . . . , b(s)];
18. s = s− 1;
19. End If
20. End for

21. Determine σ such that ‖r(σ)‖2 = max
i=1,...,s

‖r(i)‖2 and define β = ‖r(σ)‖2;
22. Define a (new) positive matrix D.
23. end For.

4. Numerical experiments

In this section, we examine three numerical examples in order to compare the
weighted Arnoldi based methods with their non weighted corresponding versions.

All of the reported experiments were performed on a 32-bit CORE I7 processor
at 2.10 GHz and 6164 MBytes of RAM. The algorithms were coded in Matlab
version 8.0.0.783 (R2012b).

For all the methods, the starting guess was taken to be zero and the right-
hand side B is such that B = AE where E is an n× s random matrix with entries
uniformly distributed in the interval [0 1]. The stopping criterion used for the block
methods was ‖Rk‖F /‖R0‖F ≤ ε = 10−10 while in the seed methods the iterations
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were stopped for the i-th system when ‖r(i)k ‖2/‖r(i)0 ‖2 ≤ ε = 10−10 for i = 1, . . . , s.
Moreover, a maximum of 351 and 351 × s restarts was allowed for the non seed
methods and the seed methods respectively.

Before describing and commenting on various numerical tests, we specify that
all the matrices tested here, except from those of experiment 4, are coming from
the Matrix Market web server1, or from the University of Florida Sparse Matrix

collection2. Note also that the presence of a ⋆ in a table of results signifies that the
maximum allowed number of restarts was reached before convergence.

4.1. Experiment 1

We recall that at the end of subsection 3.1, we proposed four choices for the weight-
ing matrix D. Thus, to compare these choices, we report in Fig 1 and Table 1 the
results obtained by the restarted Bl-GMRES(m) -denoted in this first numerical
example by BG- and the restarted WBl-GMRES(m) -denoted in this experiment
by WBG-i. Note that i = 1, 2, 3 or 4 and stands for the i-th choice of the weighting
matrix D.
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Figure 1: Comparison of the residual norm of the weighting Bl-GMRES methods
with the classical Bl-GMRES method. The matrices tests are : A=add32 with
m = 5 and s = 10, A=fidap037 with m = 10 and s = 10, A=rdb3200l with
m = 10 and s = 20 and A=memplus with m = 40 and s = 6.

1 http://math.nist.gov/MatrixMarket/
2 https://www.cise.ufl.edu/research/sparse/matrices/
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The plots given in Figure 1 show the evolution of the norm of the residual
according to the number of restarts. As the WBG-1 has not converged for the ma-
trices A=rdb3200l and A=memplus, the corresponding curves were not plotted.

Table 1: Results obtained for Bl-GMRES (denoted by BG) and WBl-GMRES
(denoted by WBG-i) with different choices of the weighting matrix D.

s = 4 s = 8 s = 10
A it cpu it cpu it cpu

WBG-1 114 1.794 ⋆ ⋆ ⋆ ⋆
add20 WBG-2 114 1.762 124 6.723 133 11.092
n = 2395 WBG-3 121 2.246 128 7.254 142 12.215
m = 10 WBG-4 116 2.074 135 7.878 130 11.388

BG 338 4.118 345 14.570 346 22.807

WBG-1 17 0.733 ⋆ ⋆ ⋆ ⋆
Chem97ZtZ WBG-2 16 0.608 15 2.090 13 2.932

n = 2541 WBG-3 16 0.717 14 2.199 14 3.478
m = 10 WBG-4 16 0.624 15 2.527 13 3.276

BG 22 0.826 18 2.324 17 3.478

WBG-1 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
raefsky5 WBG-2 13 6.271 10 19.251 ⋆ ⋆
n = 6316 WBG-3 11 5.382 11 20.670 10 29.141
m = 30 WBG-4 13 6.988 11 20.436 24 68.687

BG 16 6.318 23 37.643 23 58.703

WBG-1 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
rajat13 WBG-2 11 9.890 5 17.472 5 270.35
n = 7598 WBG-3 13 11.404 5 17.035 6 324.17
m = 40 WBG-4 19 12.415 5 17.737 7 378.15

BG 236 186.660 20 80.372 6 284.39

In view of the results listed in Table 1 and of the plots given in Figure 1, we
find that the choice 2, 3 or 4 give better results than those given by the choice
1. Specifically, we noticed that when the first choice is made, the column vectors
of the matrix Ṽ (i) built by the Arnoldi process become numerically dependent as
the number of iterations increases. This dependence leads to obtain deficient least
squares problems. The numerical results reported in Table 1 also indicate that the
CPU time obtained with the choice 2 are relatively better than those obtained with
choices 3 or 4.

In addition, analysis of the results of this first numerical example clearly shows
that the weighting strategy succeeds in improving convergence. Indeed, the num-
ber of iterations and the CPU time needed for convergence of the WBl-GMRES
methods are better compared to those needed by the Bl-GMRES method.
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4.2. Experiment 2

In this set of experiments, we give the results obtained when comparing the classical
restarted Bl-GMRES(m), the restarted WBl-GMRES(m) described by Algorithm
3 and where the chosen weighting matrix D is the one given in the choice 2 and
the WSGMRES(m) described by Algorithm 4.

Table 2: Results obtained for experiment 2 when comparing the performances of
the restarted WBl-GMRES, restarted weighted seed GMRES (WSGMRES) and
the classical restarted block GMRES (Bl-GMRES) methods.

s = 5 s = 10
A Algorithm iter cpu iter cpu

rdb3200l WBl-GMRES 114 7.410 130 32.308
n = 3200 WS-GMRES 528 3.744 1063 5.725

m = 10 Bl-GMRES 142 7.753 144 32.292

pde2961 WBl-GMRES 59 4.274 71 16.942
n = 2261 WS-GMRES 199 1.076 353 1.435

m = 10 Bl-GMRES 67 3.797 65 14.180

memplus WBl-GMRES 45 103.970 43 378.180
n = 17758 WS-GMRES 270 30.405 711 84.459

m = 40 Bl-GMRES 85 165.690 72 532.770

Comparing the results coming from this second set of numerical testing, we
notice that this time, there is not really a superiority of the weighted block GMRES
method compared to the unweighted one. However, it is clear that the restarted
weighted seed GMRES method works best and outperforms the two other methods.

4.3. Experiment 3

To compare the performance of the proposed methods when they are combined with
a preconditioning strategy, we report in Table 3 the results obtained when compar-
ing the preconditioned restarted block GMRES (denoted here by PBl-GMRES(m)),
the preconditioned WBl-GMRES method (denoted here by PWBl-GMRES(m))
and the preconditioned WSGMRES method (denoted here by PWSGMRES(m)).
As in the previous experiment, the chosen weighting matrix D is the one given in
the choice 2. In all this set of experiments, we used the ILU(0) preconditioning
[18].

Once again, the various results obtained in the numerical tests of the third
experiment show that the CPU time required for the convergence of the PWS-
GMRES method is much better compared to those provided at the end of the
convergence of the PWBl-GMRES and the PBl-GMRES methods.
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Table 3: Results obtained for experiment 3 when comparing the performances of
PWBl-GMRES, PWS-GMRES and PBl-GMRES methods.

s = 5 s = 10 s = 20
Algorithm A iter cpu iter cpu iter cpu

utm3060 PWBl-GMRES ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
n = 3060 PWS-GMRES 474 7.472 1032 6.754 2055 15.272

m = 10 PBl-GMRES ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

c-38 PWBl-GMRES 49 58.641 44 69.670 33 202.49
n = 8127 PWS-GMRES 265 22.527 531 16.209 983 32.932

m = 20 PBl-GMRES 73 71.542 72 102.41 49 261.99

poisson3Da PWBl-GMRES 12 3.088 10 7.488 7 18.049
n = 13514 PWS-GMRES 62 2.308 123 5.132 263 13.260

m = 10 PBl-GMRES 12 2.901 11 7.238 8 17.268

airfoil 2d PWBl-GMRES 11 8.205 8 6.037 5 13.135
n = 14214 PWS-GMRES 49 4.664 99 3.619 202 8.455

m = 10 PBl-GMRES 12 7.690 8 5.116 6 13.432

4.4. Experiment 4

In this last experiment, we want to illustrate the effectiveness of the weighted
seed GMRES (WS-GMRES) method when the right-hand sides are close. The test
matrix A is obtained from the centred finite difference discretization of the operator

L(u) = ∆u − (x2 + y2)
∂u

∂x
− (x2 − y2)

∂u

∂y
− ex+y u

on the unit square [0, 1]× [0, 1] with homogeneous Dirichlet boundary conditions.
The dimension of the matrix A is n = n2

0 where n0 is the number of inner grid
points in each direction. The right-hand side B = (Bi,j) is such that

Bi,j = sin(
1

2
+

2 π

n
(i + j − 2)).

So the i-th column b(i) of the right-hand side B is obtained by shifting the compo-
nents of the column b(i−1) by one position and the first component is replaced by
the last one (see [2] for a detailed explanation of this choice). Again and as in the
previous experiment, the chosen weighting matrix D is the one given in the choice
2. Different values of n0, m and s are used and the obtained results are reported
in Table 4.
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Table 4: Results obtained for experiment 4 when comparing the performances of
WBl-GMRES, WS-GMRES, Bl-GMRES and S-GMRES methods.

s = 5 s = 10 s = 20
Algorithm A iter cpu iter cpu iter cpu

n0 = 100 WBl-GMRES 339 35.109 342 133.66 ⋆ ⋆
n = 10000 WS-GMRES 586 3.859 594 5.046 609 8.562

m = 10 Bl-GMRES ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
S-GMRES 1114 8.437 1718 16.281 2430 33.219

n0 = 100 WBl-GMRES 89 32.109 94 129.63 99 526.91
n = 10000 WS-GMRES 157 2.625 159 2.781 163 3.859

m = 20 Bl-GMRES 100 28.594 97 107.00 95 403.86
S-GMRES 282 5.390 472 9.890 686 17.313

n0 = 150 WS-GMRES ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
n = 22500 WS-GMRES 1268 18.063 1300 26.125 1330 40.234

m = 10 Bl-GMRES ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
S-GMRES ⋆ ⋆ ⋆ ⋆ 5045 155.41

n0 = 150 WBl-GMRES 50 134.16 55 582.55 56 2334.8
n = 22500 WS-GMRES 93 9.265 95 10.391 97 12.172

m = 40 Bl-GMRES 56 121.48 56 457.89 52 1637.7
S-GMRES 162 20.219 288 37.688 410 60.438

Since, in this experiment, the right-hand sides are close, near-linear dependence
may arise among the columns of the right-hand side B. In this case, performance
of block methods is poor. We recall that for some similar situations, block methods
may even suffer from a near breakdown problem and to handle this situation, we
have to use a deflation procedure [15,17]. We note also that clearly, the weighted
seed method is very effective. As explained in [2], when the the right-hand sides
share the same information, it usually takes only a few restarts for seed methods
to solve all the systems.

5. Conclusion

In this work, we first described in detail the weighting technique -originally
introduced by Essai in [3]- applied to the block Arnoldi process by Imakura et al
in [10]. We also proposed four choices to set the weighting matrix and which also
allow to generalize the weighting matrix heuristically proposed in [3] and inves-
tigated in [7]. Similarly, we have combined the weighting strategy with the seed
strategy -first introduced by Smith et al [21] and by Joly in [13]- to introduce the
weighted seed GMRES method. The numerical tests we have obtained show that
in some cases the weighting strategy improves the convergence of the block GM-
RES algorithm. However, we noticed a potential loss of linear independence when
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computing the Krylov-Arnoldi basis by the weighted block Arnoldi process. This
issue is the subject of a work in progress. In contrast, we note that the weighted
seed GMRES method does not suffer from a loss of linear independence. Moreover,
it gives better results since the CPU time and the iterations number required for
convergence are largely reduced compared to those of the weighted block GMRES
and to those of the classical block GMRES algorithms.
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References

1. A. Abdel-Rehim, R. B. Morgan, W. Wilcox, Seed methods for linear equations in lattice qcd
problems with multiple right-hand sides, in Proceedings of Science, vol. Lattice 2008.

2. T. Chan, W. Wang, Analysis of projection methods for solving linear systems with multiple
right-hand sides, SIAM J. Sci. Comput. 18, 1698–1721 (1997).

3. A. Essai, Weighted FOM and GMRES for solving non-symmetric linear systems, Numer.
Algorithms, 18, 277–292 (1998).

4. A. EL Guennouni, K. Jbilou, H. Sadok, A block version of BiCGSTAB for linear systems
with multiple right-hand sides, Elec. Trans. Numer. Anal., 16, 129–142 (2003).

5. R. Freund. M. Malhotra, A block QMR algorithm for non Hermitian systems with multiple
right-hand sides, Linear Algebra Appl., 254, 119–157 (1997).

6. G. D. Gu, A seed method for solving non-symmetric linear systems with multiple right-hand
sides, International Journal of Computer Mathematics, vol. 79(3), 307–326 (2002).

7. G. Guttel, J. Pestana, Some observations on weighted GMRES, Numer. Algorithms 67(4),
733–752 (2014).

8. M. Heyouni, The global Hessenberg and global CMRH methods for linear systems with multiple
right-hand sides, Numer. Algorithms 26, 317–332 (2001).

9. M. Heyouni, A. Essai, Matrix Krylov subspace methods for linear systems with multiple right-
hand sides, Numer. Algorithms 40, 137–156 (2005).

10. A. Imakura, L. Du, H. Tadano, A Weighted Block GMRES method for solving linear systems
with multiple right-hand sides, JSIAM Letters 5, 65–68 (2013).

11. K. Jbilou, A. Messaoudi, H. Sadok, Global FOM and GMRES algorithms for matrix equa-
tions, Appl. Numer. Math. 31, 49–63 (1999).

12. K. Jbilou, H. Sadok, A. Tinzeft, Oblique projection methods for linear systems with multiple
right-hand sides. Elect. Trans. Num. Anal., 20, 119–138 (2005).
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