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The Stable Subgroup Graph

Behnaz Tolue

abstract: In this paper we introduce stable subgroup graph associated to the
group G. It is a graph with vertex set all subgroups of G and two distinct subgroups
H1 and H2 are adjacent if StG(H1)∩H2 6= 1 or StG(H2)∩H1 6= 1, where StG(Hi) =
{g ∈ G : Hg

i = Hi}, i = 1, 2. The planarity of the stable subgroup graph of solvable
groups has been discussed. Finally, the induced subgraph of stable subgroup graph
with vertex set whole non-normal subgroups is considered and its planarity is verified
for some certain groups.
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1. Introduction

Algebraic graph theory is part of algebraic methods in applied problems about
graphs. One of the main branches of algebraic graph theory, involving the use of
group theory, and the study of graph invariants. A graph represents the informa-
tion about the relations among nodes which is a very efficient way of describing a
structure.

Recently, mathematicians constructed very interesting graphs which are as-
signed to an algebraic structure by different methods. In this paper we consider a
graph with vertex set of all subgroups of a group so let us name some graphs which
has a connection with the graph that is defined here, for instance subgroup graphs,
subgroup lattice and intersection graphs. The subgroup graph of a group is the
graph whose vertices are the subgroups of the group and two vertices, H1 and H2,
are connected by an edge if and only if H1 ≤ H2 and there is no subgroup K such
that H1 < K < H2 (see [1]). Starr and Turner [11] were the first to study groups G
with planar subgroup graph and classified all planar abelian groups. Also, Schmidt
[9,10], Bohanon and Reid [1] simultaneously classified all finite planar groups.

The intersection graph of a group G is an undirected graph without loops and
multiple edges defined as follows: the vertex set is the set of all proper non-trivial
subgroups of G, and there is an edge between two distinct vertices H and K if and
only if H ∩K 6= {1} where 1 denotes the trivial element of the group G.
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Already, planarity of subgroup graphs, subgroup lattice, intersection graphs are
studied [1,6,9,10,11].

In this paper, we introduced stable subgroup graph ΓG with vertex set all
subgroups of the finite group G and two vertices H1 and H2 join by an edge if
Hx

2 = H2 or Hy
1 = H1, for some non-identity elements x ∈ H1, y ∈ H2. This

graph has a narrow connection with subgroup graphs and intersection graphs. For
instance subgroup graph and intersection graph are induced subgraph of the stable
subgroup graph. The stable subgroup graph is ΓG is connected graph. If the
vertex H intersects Z(G) non-trivially, then has a complete degree in the graph.
We observe that subgroups in the same conjugacy classes have similar properties
in the stable subgroup graph for instance their degrees are equal. It is not hard
to deduce that stable subgroup graph is regular if and only it is a complete graph.
Moreover, the stable subgroup graph of Dedekind groups is a complete graph. We
verify the planarity of stable subgroup graph for abelian groups, p-groups, nilpotent
groups and supersoluble groups directly with out using the planarity of subgroup
graphs or intersection graphs. Moreover, we clarify all soluble groups whose stable
subgroup graphs are planar by the fact that subgroup graph is its induced subgraph.
It is clear that normal subgroups have complete degree by definition of the stable
subgroup graph so we consider the induced subgraph of stable subgroup graph by
omitting its normal subgroups. Let us denote it by ΓG\Ns. It is a connected graph
whenever Z(G) 6= 1. If G is a p-group of order p3, then ΓG\Ns is planar. The
stable non-normal subgroup graph of dihedral groups D8, D12, D16, D18 and D2p

are planar, where p is an odd prime number.
Throughout the paper, graphs are simple and all the notations and terminolo-

gies about the graphs are found in [2,4].

2. Stable subgroup graph

Let us start with the definition of stable subgroup graph associated to the group
G.

Definition 2.1. The stable subgroup graph ΓG is a graph with vertex set all the
subgroups of the group G and two subgroups H1 and H2 are adjacent whenever
Hx

2 = H2 or Hy
1 = H1, for some non-identity elements x ∈ H1, y ∈ H2.

The adjacency condition ofH1 andH2 can be presented by the following equiva-
lent statement. One can use each of them depends on the situation in the argument.
(i) StG(H1) ∩H2 6= 1 or StG(H2) ∩H1 6= 1.

The following three items are equivalent and (i) is deduced from them but not
the converse.
(ii) h2 ∈ CG(H1) or h1 ∈ CG(H2), for some 1 6= hi ∈ Hi, i = 1, 2.
(iii) H1 ⊆ CG(h2) or H2 ⊆ CG(h1), for some 1 6= hi ∈ Hi, i = 1, 2.
(iv) There exists at least a non-identity element in one of the subgroups such that
it commutes with all the elements of the other one.
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Thus a graph whose adjacency condition satisfies (ii),(iii) or (iv) is induced
subgraph of ΓG.

It is clear that G and its trivial subgroup join to all other subgroups. Therefore,
if two non-adjacent subgroups exist, then they join via G or trivial subgroup. Thus
diam(ΓG) ≤ 2 and girth(ΓG) = 3. Moreover, G and its trivial subgroup have the
maximum degrees which implies that ΓG is a regular graph if and only if ΓG is a
complete graph.

Proposition 2.1. If H is a subgroup of G such that intersects the center of G
non-trivially, then H is adjacent to all other subgroups.

Consider the subgroup H of G such that H ≤ Z(G) or 1 6= Z(G) ≤ H , then H
joins to all other subgroups. Assume G is an abelian group. Then ΓG is a complete
graph by Proposition 2.1.

If the intersection of two subgroups is non-trivial, then these two subgroups are
adjacent. Thus intersection graph is induced subgraph of stable subgroup graph.

Let H,K be two subgroups of the G such that they are adjacent in subgroup
graph of G. Then H and K are adjacent in stable subgroup graph of G. This fact
implies that the subgroup graph is an induced subgraph of ΓG.

We denote the conjugacy class subgroup of H in G by clG(H) which is the set
of all subgroups of G conjugate to H . In the following lemma we observe that
subgroups in the same conjugacy class share some similar properties.

Lemma 2.1. If Ht ∈ clG(H) and H ∩ Z(G) = 1, then

(i) Ht intersects Z(G) trivially.

(ii) |StG(H)| = |StG(Ht)|.

(iii) deg(H) = deg(Ht).

Proof: (i) Assume x ∈ Ht ∩ Z(G). As Ht ∈ clG(H) we have x ∈ Hg and x = hg,
for some g ∈ G. By hypothesis we conclude that

x = xg−1

= h ∈ H.

Hence x = 1.
(ii) It is enough to consider the bijection ϕ : StG(H) → StG(Ht) by ϕ(l) = lg.
This map is well-defined because

H lg

t = Hg−1lg
t = Hgg−1lg = H lg = Hg = Ht.

Moreover, if Hk
t = Ht, then kg

−1

stabilize H .
(iii) Let H join K. Then by adjacency condition we have Hx = H or Ky = K,
for some x ∈ K, y ∈ H . If the first case happened, then xg ∈ Kg exists such
that Hxg

t = Ht. Suppose Ky = K, for some y ∈ H . Therefore, yg ∈ Ht and
(Kg)y

g

= Kg. These argument imply that Kg and Ht are adjacent. Hence we can
define a bijection between the set of the neighbors of H and Ht.

✷
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Lemma 2.2. If A and B are two adjacent subgroups which belong to two different
conjugacy classes, then for every Ai ∈ clG(A) there is Bi ∈ clG(B) which join.

Proof: Suppose Ai = Agi , then Ai joins Bj , where Bj = Bgi , gi ∈ G. ✷

Proposition 2.2. If H and K are two adjacent vertices, then K join to all con-
jugates of H by K. The converse holds if K join to at least a conjugate of H by
K.

Proof: Suppose H and K are two adjacent vertices, so by definition of adjacency
in the graph we have Hk = H or Kh = K for some k ∈ K, h ∈ H . If the first case
happened, then k[k′, k]−1 exists in K such that Hk′

joins K, for k′ ∈ K. Assume

Kh = K for some h ∈ H . Therefore, Khk′

= K for hk′

∈ Hk′

, which implies K
and Hk′

are adjacent. By similar computation the second assertion follows. ✷

Proposition 2.3. All normal subgroups of G are of complete degree.

Theorem 2.1. If G is abelian or the direct product of a quaternion group of order
8, an elementary abelian 2-group and an abelian group with all its elements of odd
order, then ΓG is a complete graph.

Proof: Suppose G is a group which is mentioned in the theorem, thus by Theorem
5.3.7 in [8] it is a Dedekind group which means all its subgroups are normal. ✷

If G is a group satisfies Theorem 2.1, then ω(ΓG) and χ(ΓG) are the number of
subgroups of G.

An element a ∈ G is said to be a persistence element if a 6= 1 and a is contained
in all nontrivial subgroups of G. A group G is persistent if it has a persistence
element.

Proposition 2.4. If G is a persistent group, then ΓG is a complete graph.

If G is a finite persistent group, then it is either cyclic or isomorphic to a
generalized quaternion group. An example of infinite persistent group is Zp∞ .

Let us denote the number of conjugacy classes of non-normal subgroups of G
by ν(G). Clearly, ν(G) = 0 if and only if G a is Dedekind group. R. Brandl in [3]
and H. Mousavi in [7] classified finite groups which have respectively just one or
exactly two conjugacy classes of non-normal subgroups. By their main theorems
groups whose associated graphs have at most three kind of degrees are specified.

The group with exactly one and two non-trivial subgroup are Zp2 and Zpq, Zp3

respectively. Therefore one could deduce the following result.

Proposition 2.5. Let G be a cyclic group. Then

(i) If G is of prime order, then ΓG is K2.

(ii) If G is of order p2, then ΓG is K3.

(iii) If G is of order pq or p3, then ΓG is K4.
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Proof: The result follows by the lattice of subgroups of the group G. ✷

Proposition 2.6. Let G be an abelian group. Then ΓG is planar if and only if
G ∼= {1}, Z2 × Z2, Zp, Zp2 , Zp3 or Zpq, where p, q are prime numbers.

Proof: If we consider other abelian groups, then they have more than three non-
trivial subgroups so the graph associated to them is not planar. ✷

Example 2.1. In this example we verify the planarity of some non-abelian groups.

(i) ΓS3
is a planar graph.

(ii) ΓSn
and ΓAn

are not planar graphs, where n ≥ 4. It is clear that ΓA4
is

induced subgraph of ΓAn
while it is induced subgraph of ΓSn

. Consider the
subgroups H1 = 〈(1 2)(3 4)〉, H2 = 〈(1 3)(2 4)〉, H3 = 〈(1 4)(2 3)〉 and
H4 = 〈(1 3)(2 4), (1 2)(3 4)〉 of A4 together with A4 and trivial subgroup
we have K3,3. In Example 3.1 we will observe that after omitting normal
subgroups from the vertices of stable subgroup graph of A4 the new graph is
planar. Moreover, the induced subgraph of stable graph of the simple group A5,
which is obtained after omitting A5 and identity subgroup from the vertices
of ΓA5

is still non-planar.

(iii) Let D2n = 〈a, b : an = b2 = 1, ab = a−1〉 be the dihedral group of size
2n, n ≥ 4. ΓD2n

is not a planar graph. If n is an even number, then the
subgroups 〈a〉, 〈an/2〉, 〈an/2, b〉 and 〈an/2, ab〉 together with D2n and trivial
subgroup form K3,3. By similar argument we can find K3,3 in ΓD2n

, whenever
n is an odd number.

(iv) The graph associated to dicyclic group Q4n = 〈a, x : a2n = 1, an = x2, ax =
a−1〉 is not planar, where n ≥ 2. By the subgroups 〈a〉, 〈ax〉, 〈a2x〉, the center
of the group 〈an〉, trivial subgroup and the group itself we can form K3,3.

Theorem 2.2. Let G be a p-group, for a prime number p. Then ΓG is planar if
and only if G ∼= {1}, Z2 × Z2, Zp, Zp2 , Zp3 .

Proof: Suppose G is a p-group of order pn, and S the set of all subgroups of
order pm. By Sylow theorem, we see Card(S) congruent to 1 modulo p. There is
at least one normal subgroup for every power of p up to the order of the group.
Therefore a lower bound for the total number of normal subgroups of G is n + 1.
Since normal subgroups join to all other subgroups in this graph, all these normal
subgroups form a clique. Assume ΓG is planar. Thus n ≤ 3 and the planarity of
the groups {1}, Z2 × Z2, Zp, Zp2 , Zp3 , (Zp × Zp) ⋊ Zp, Zp2 ⋊ Zp, D8 and Q8

should be checked. By Proposition 2.6 and Example 2.1, it is enough to verify the
planarity of ΓG, where G ∼= (Zp × Zp)⋊Zp, Zp2 ⋊Zp and p is odd prime number.

If G ∼= (Zp × Zp) ⋊ Zp = 〈a, b : ap
2

= bp = 1, ab = a1+p〉, then the subgroups
{〈a〉, 〈b〉, 〈ab〉, Z(G), G, {1}} form K3,3. For G ∼= Zp2 ⋊ Zp = 〈a, b, c : ap = bp =
cp = 1, c = [a, b], ca = ac, cb = bc〉, the subgroups {〈a〉, 〈b〉, 〈ac〉, Z(G), G, {1}}
form K3,3. ✷
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Suppose
∏n

i=1 Gi is direct product of the groups Gi. Obviously, Γ∏m
i=1

Gi
is

isomorphic to an induced subgraph of Γ∏n
i=1

Gi
, where m ≤ n.

Proposition 2.7. If G is a finite nilpotent group, then ΓG is planar if and only if
G ∼= {1}, Z2 × Z2, Zp, Zp2 , Zp3 , and Zpq.

Proof: By the above argument and the fact that every finite nilpotent group is the
direct product of p-groups, the assertion is clear by Proposition 2.6 and Theorem
2.2. ✷

For finite nilpotent group G, ω(ΓG) ≥ n+2, where n is the number of its Sylow
p-subgroups of G.

Theorem 2.3. Let G be a finite supersoluble group. Then ΓG is planar if and only
if G ∼= {1}, Z2 × Z2, Zp, Zp2 , Zp3 , Zpq, S3, where p, q are prime numbers.

Proof: It is clear that ΓG/G′ is isomorphic to an induced subgraph of ΓG. Now
suppose ΓG is planar, so its induced subgraph ΓG/G′ is planar. Since G/G′ is
abelian so by Proposition 2.6 G/G′ ∼= {1}, Z2 × Z2, Zp, Zp2 , Zp3 or Zpq , where
p, q are prime numbers. If G is supersoluble, then G′ is nilpotent. By the fact
that ΓG′ is induced subgraph of ΓG and Preposition 2.7, we deduce that G′ ∼=
{1}, Z2 × Z2, Zp, Zp2 , Zp3 , and Zpq. It is enough to consider the different cases
of G′ in G/G′. In fact G is extension of a certain group by G′. Let us discuss some
of them. Assume G/G′ ∼= Z2 × Z2. If
(i) G′ ∼= Z2 × Z2, therefore G is a 2-group and ΓG is not planar by Theorem 2.2.
(ii) G′ ∼= Zp, then G is a group of order 4p. If p = 2, then ΓG is not planar by
Theorem 2.2. Consider p is a prime number greater than 2. If we denote the number
of its Sylow 2-subgroups by N2, then N2 = 1 or p. For N2 = 1, as intersection of
distinct Sylow p-subgroups is trivial, we have Np = 4, where Np is the number of
Sylow p-subgroups. Since the Sylow 2-subgroup is normal it is adjacent to 3 Sylow
p-subgroups and we have K3,3 by the vertices G and {1}. Moreover, if N2 = p,
then in the worst case 4p = |G| = p(4 − 1) + Npp which implies that Np = 1.
By normality of the Sylow p-subgroup, ΓG contains K3,3. Moreover, if Sylow 2-
subgroups have non-trivial intersection, then we can form K5 by use of intersection
of two Sylow 2-subgroups which has the maximal order.
(iii) Analogously, for G′ ∼= Zp2 , Zp3 we obtain a non-planar ΓG.
(iv) G′ ∼= Zpq, then |G| = 4pq. If p or q are equal to 2, then ΓG is not planar.
Suppose p, q are odd prime numbers. If G is a non-simple group, then it has at
least one non-trivial normal subgroup N . Furthermore, there are x1, x2, x3 ∈ G of
order 2, p and q, respectively. If the cyclic group generated by them is not equal to
N , then K3,3 can be form by the vertices {{1}, G,N, 〈x1〉, 〈x2〉, 〈x3〉}. Otherwise
by the Sylow t-subgroup, ΓG contains K3,3, where t = 2, p or q depends on the
situation. If G is a simple group of order 4pq, then |G| = 60 and every simple
group of order 60 is isomorphic to A5. By Example 2.1, ΓA5

is not planar.
Now, if G/G′ ∼= Zp,Zp2 ,Zp3 , Zpq, then planarity of ΓG can be discussed similarly.
One of the cases which its argument is to some extent different from the previous
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cases is when G/G′ ∼= Zp and G′ ∼= Zq, where p and q are different prime numbers.
If G is extension of a cyclic group of order p by a cyclic group of order q, then
G = 〈a, b|ap = 1, bq = at, bab−1 = ar〉, where bi 6∈ 〈a〉 0 < i < q, rq ≡ 1 and rt ≡ t
(mod p), such a group exists for every choice of integers r, t with these property
(see [5, Theorem 12.9]). By argument about the number of Sylow p-subgroups
and Sylow q-subgroups we deduce that p or q is less or equal than 2. Thus G is a
group of order 2p, which is cyclic or dihedral group of order 2p. Hence, the only
non-abelian group with this structure which its associated graph is planar is S3.
Hence the result is clear. ✷

Recall that a group is planar if its subgroup graph is planar [1].

Proposition 2.8. [1] There are no soluble planar groups whose orders have more
than three distinct prime factors.

Proposition 2.9. Let G be a finite soluble group. Then ΓG is planar if and only
if G ∼= {1}, Z2 × Z2, Zp, Zp2 , Zp3 , Zpq, S3, where p, q are prime numbers.

Proof: Since the subgroup graph is induced subgraph of ΓG, Proposition 2.8 im-
plies that the order of G is divisible by at most three distinct prime numbers. If G
is a nilpotent group, then we discussed about the planarity of ΓG in Proposition
2.7. Therefore, suppose G is non-nilpotent of order pαqβrγ , where p, q and r are
prime numbers and α, β, γ ∈ N ∪ {0}. Since the product of Sylow subgroups is a
Hall subgroup of G, we can find K5 by vertices {{1}, G, Sp, Sq, SpSq} as induced
subgraph of ΓG, where Si is Sylow i-subgroup of G, i = p, q, r. Thus |G| = pαqβ.
As ΓSi

is induced subgraph of ΓG, we conclude that 0 ≤ α, β ≤ 3 by Theorem 2.2.
In the case α or β are greater than 2, ΓG is not planar. Since K5 is the induced
subgraph of ΓG by vertices {{1}, G, SpSq, Si, H}, where Si is Sylow i-subgroup of
G of order iγ and H is the cyclic subgroup of G generated by x ∈ Si, |x| = i, γ ≥ 2
and i = p or q. Hence α, β = 1 or 0 and the assertion follows. ✷

Since every supersoluble group is soluble group, Theorem 2.3 can be deduced
from the Proposition 2.9.

3. Stable non-normal subgroup graph

In general let us denote the induced subgraph of stable subgroup graph of the
group G which is obtained by omitting the set X from the the set of vertices by
ΓV (G)\X . Let us denote the subgraph of stable subgroup subgraph with vertex set
whole non-normal subgroups of G, by ΓG\Ns. In this section, we focus on some
properties of ΓG\Ns.

Proposition 3.1. If G is a group such that Z(G) 6= 1, then diam(ΓG\Ns) = 2 and
girth(ΓG\Ns) = 3.

Proof: SupposeH1, H2 are two non-normal subgroups ofG which are non-adjacent
in ΓG\Ns. We claim that H1Z(G) is a proper subgroup of G, since otherwise
StG(H1) = G and the adjacency of H1 and H2 are deduced, which is a contra-
diction. Therefore H1Z(G) is a vertex which is adjacent to both H1 and H2.
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Thus diam(ΓG\Ns) = 2. Now assume H1 and H2 are two adjacent vertices. If
HiZ(G) 6= G, then both H1 and H2 are adjacent to it, for i = 1 or 2. Let
HiZ(G) = G, for i = 1 and 2. Thus H ∩ StG(Hi) = H for all H < G, i = 1, 2.
This implies that H1, H2 join H and the assertion is clear. ✷

The direct result of the above proposition is that ΓG\Ns is connected if Z(G) 6=
1.

Example 3.1. In this example we observe that if Z(G) = 1, then ΓG\Ns may be
non-connected.

(i) ΓS3\Ns is an empty graph with 3 vertices.

(ii) ΓS4\Ns is a connected graph which is not planar. The vertices

{〈(1 2)〉, 〈(2 4)〉, 〈(1 4)〉, 〈(1 4), (1 4 2)〉, S{1,2,4}, 〈(1 3)(2 4), (1 4)(2 3), (1 2)〉}

form K3,3 as induced subgraph of ΓS4\Ns. Therefore, ΓSn\Ns is not planar
for n ≥ 4.

(iii) ΓA4\Ns is planar. It is a triangle and four non-adjacent vertices. Actually
A4 has 2 conjugacy classes of non-normal subgroups, clA4

(〈(1 2)(3 4)〉) and
clA4

(〈(2 4 3)〉). The first class contains three adjacent subgroups while the
second one has 4 non-adjacent points.

(iv) ΓA5\Ns = ΓV (A5)\{A5,{(1)}} is not planar. Since subgroups {〈(1 2)(3 4)〉, 〈(1 3)
(2 4)〉, 〈(1 4)(2 3)〉, A4, 〈(1 2)(3 4), (1 3)(2 4)〉} form K5 as its subgraph.

Theorem 3.1. If G is a p-group of order p3, then ΓG\Ns is planar.

Proof: By considering Theorems 2.2 and 2.1, ΓG\Ns is planar for Dedekind groups
G ∼= D8, Q8 and abelian groups of order p3. It is enough to discuss about the
planarity of ΓG\Ns, where G ∼= (Zp ×Zp)⋊Zp, Zp2 ⋊Zp which are extra special p-
group. Every subgroup of index p is normal so non-normal subgroups of these two
groups are of order p. The intersection of distinct non-normal subgroups are trivial,
also intersection of them with the center of the group is trivial too. Thus two non-
normal subgroups Hi, Hj are adjacent if StG(Hi) ∩ Hj 6= 1 or StG(Hj) ∩Hi 6= 1.
Therefore |StG(Hi)∩Hj | = p or |StG(Hj)∩Hi| = p, which implies StG(Hi) = Hj or
StG(Hj) = Hi. This shows every non-normal subgroup is adjacent to its stabilizer.
This fact implies that there is no enough distinct vertices to form K3,3 or K5. ✷

In the following results the structure of stable subgroup graph of dihedral group
of order 2n is verified. If D2p is a dihedral group of order 2p, then ΓD2p\Ns is a
graph with p isolated vertices.

Proposition 3.2. Let D2n = 〈a, b|an = b2 = 1, ab = a−1〉 be dihedral group of
order 2n and n > 4 is an odd non-prime integer. Then

(i) The number of vertices of ΓD2n\Ns is σ(n)−1, where σ(n) =
∏r

i=1

(

p
ki+1

i
−1

pi−1

)

,

n = pk1

1 pk2

2 · · · pkr
r and pi are distinct prime numbers.
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(ii) The subgroups 〈aib〉 and 〈ajb〉 are not adjacent, where 0 ≤ i, j ≤ n − 1 and

i 6= j. Moreover, 〈ad, aib〉 join to 〈aib〉, 〈ad+ib〉 and 〈a
n+d+2i

2 b〉 where d is a
divisor of n.

(iii) The subgroups 〈ad, aib〉 join to 〈ad, ajb〉, where 0 ≤ i, j,≤ d−1. Furthermore,
〈ad, aib〉 join to 〈ad

′

, aib〉 but 〈ad, aib〉 and 〈ad
′

, ajb〉 are not adjacent, where
d, d′ are distinct divisor of n.

(iv) By third part 〈ad, arb〉 form a component which may have a connection with
the component 〈ad

′

, ar
′

b〉 by the possible vertices such that r = r′, 0 ≤ r, r′ ≤
d − 1. The number of these components is σ0(n) − 2, where σ0(n) is the
number of the divisors of n.

(v) ΓD2n\Ns is planar if and only if n = 32.

Proof: The subgroups of D2n are 〈ad〉 and 〈ad, arb〉, where d is a divisor of n and
0 ≤ r ≤ d− 1. It is clear that 〈ad〉 are normal subgroups so they are not vertices.
The number of subgroups of the form 〈ad, arb〉 is σ(n) such that one of them is
equal to D2n. Hence (i) follows.
(ii) If 〈aib〉 and 〈ajb〉 are adjacent, then 2j−i ≡ i (mod n). Since n is an odd integer,
we have 2j − 2i = nt, where t is an even number. Moreover 0 ≤ j ≤ n − 1 so the
possible case for t is 2. Thus j − i = n which is impossible. The adjacency of 〈aib〉
and 〈ad, aib〉, follows by the fact that 〈aib〉 is subgroup of 〈ad, aib〉. A computation
imply the rest of the assertion. Third part follows similarly by computation.
(iv) Third part implies that for every divisor d of n we have subgroups 〈ad, arb〉,
where r move on 0 ≤ r ≤ d − 1. All such subgroups are adjacent. Therefore the
number of these components is equal to the number of divisors of n, but when
d = 1 or n such subgroups are D2n or 〈aib〉, where 0 ≤ i ≤ n− 1.
(v) By fourth part we deduce that there are complete components that made of
subgroups 〈ad, arb〉, where 0 ≤ r ≤ d − 1. The component which has the largest
number of vertices is coincides to the greatest d 6= n and number of the vertices
in that component is d. Thus if ΓD2n

is planar, then d ≤ 4 and since n is an odd
number d = 3. Hence the assertion is clear. ✷

〈a3, a2b〉

〈a5b〉〈a2b〉

〈a3, ab〉

〈a4b〉

〈ab〉

〈a3, b〉

〈a3b〉

〈b〉

〈a3, a2b〉

〈a5b〉〈a2b〉 〈a8b〉

〈a3, ab〉

〈a4b〉

〈ab〉

〈a7b〉

〈a3, b〉

〈a3b〉

〈b〉

〈a6b〉

ΓD12\Ns
ΓD18\Ns

Figure 1:
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The proof of the following proposition is very similar to the previous one so we
omit it.

Proposition 3.3. Let D2n be dihedral group of order 2n, n ≥ 4 an even number
and all the notions are the same as the Proposition 3.2. Then

(i) |V (ΓD2n\Ns)| = σ(n)− 3.

(ii) The subgroups 〈aib〉 and 〈ajb〉 are adjacent whenever j = (n/2)+ i, 0 ≤ i, j ≤
n − 1 and i 6= j. Moreover, 〈ad, aib〉 join to 〈aib〉 and 〈ad+ib〉, where d is a
divisor of n.

(iii) The subgroups 〈ad, aib〉 join to 〈ad, ajb〉, where 0 ≤ i, j,≤ d−1. Furthermore,
〈ad, aib〉 join to 〈ad

′

, aib〉 but 〈ad, aib〉 does not join 〈ad
′

, ajb〉, where d, d′ are
distinct divisor of n.

(iv) By third part 〈ad, arb〉 form a component which may have a connection with
the component 〈ad

′

, ar
′

b〉 by the possible vertices such that r = r′, 0 ≤ r, r′ ≤
d− 1.

(v) ΓD2n\Ns is planar if and only if n = 22, 6 or 23.

By the above two proposition we deduce that the stable non-normal subgroup
graph of D8, D12, D16, D18 and D2p are planar, where p is an odd prime number.
As we mentioned ΓA5\Ns is a connected graph which is not planar. Thus ΓAn\Ns

is not planar for n ≥ 5.
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