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Interval Analysis and Optimization Applied to Parameter Estimation

under Uncertainty

J. D. Gallego-Posada and M. E. Puerta-Yepes

abstract: We present a methodology through exemplification to perform param-
eter estimation subject to possible factors of uncertainty. The underlying optimiza-
tion problem is posed in the framework of the theory of interval-valued optimization.
The implementation of numerical procedures required to achieve efficient solutions
implied the use of the ℓ1 norm instead of usual ℓ2 regression. Finally, an implemen-
tation using real data was performed, demonstrating the ability of interval analysis
to encapsulate uncertainty while facing non-trivial parameter estimation problems.
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1. Introduction

The majority of mathematical models developed to represent various problems
depend on sets of parameters whose values are generally determined based on exper-
imental measurements or inferred according to data obtained through observation
of the studied phenomenon.

Given a set of experimental data (inaccurate because of the influence of random-
ness and uncertainty), we would like to estimate the values of those parameters, so
that the model attains an acceptable fitting level to the observed data.

In the usual estimation techniques, a vector of real numbers is obtained (a
single point estimation for each of the parameters involved), which causes that the
probability that the result of the estimation happens to be the actual value of the
parameter is fairly low and, therefore, is very sensitive to perturbations [1].

Nevertheless, the use of interval-valued analysis allows us to provide regions in
which, given a determined confidence level, we can ensure the enclosing of the so-
lution, thus reducing the impact of random disturbances and computational errors
in the final result.

The foundations of interval analysis were established by Moore [1] in his PhD
dissertation. Based on that work and further developments provided by Skelboe
[2], Hansen [3] and Stroem [4], among others, several authors (Ratschek and Voller
[5], Bhurjee and Panda [6]) have studied the potential of interval valued techniques
in the field of optimization. On the other hand, authors like Ichida and Fujii
[7] or Karmakar and Bhunia [8] have developed significant research related to the
implementation of multiobjective techniques including interval valued optimization.
However, there is a lack of efforts in the use of these procedures in the context of
parameter estimation which is one of the principal aims of this research work.

Thus, the uncertainty in those values due to measurement errors, rounding in
calculations, computational representability and even possibly because of a lack
of knowledge of qualitative information associated with those parameters, pose
interval analysis and, particularly, interval-valued optimization as a very useful
tool, leading to the development and establishment of robust techniques when
facing the mentioned difficulties, obtaining more reliable and rigorous results in a
mathematical perspective.

A methodology to perform parameter estimation under any kind of uncertainty
is presented. The underlying optimization problem is posed in the framework of the
theory of interval-valued optimization. Numerical results show that estimations ob-
tained allow us to describe successfully the behaviour of the modelled phenomenons
by enclosing adequately the uncertainty and sensitivity of the model, overcoming
possible difficulties originated in errors generated while measuring or modelling,
even in cases with low information availability.

In particular, the first numerical example allowed us to compare the efficacy
of the optimization algorithms using an adaptation of the ℓ1 norm in the interval
system using the Hausdorff metric, instead of usual ℓ2 regression, related to the
Euclidean metric space. Information related to normed spaces can be found in [9]
and [10].
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This paper is organized as follows. In Section 2 we introduce the main concepts
of interval arithmetic and analysis, in order to present a concise approach to this
theory for the reader. In Section 3, we review some theoretical results related
to interval-valued optimization. Finally, Section 4 presents the numerical results
obtained for theoretical and real applications of interval optimization techniques.

2. Interval Arithmetic and Analysis

With the aim of presenting a self contained article, this section describes in
general terms the notation, arithmetic and analytic components and some theorems
related to interval computation.

Let Kc(R) denote the set of all non-empty, compact and convex subsets of
R. Let A, B ∈ Kc(R) and let ⊙ ∈ {+,−, ·, /} be a binary operation on R, e.g.,
addition, subtraction, multiplication and division.

Let us denote by I the class of all closed and bounded intervals in R. For an
interval A we adopt the notation A =

[
aL, aU

]
, where aL and aU mean the infimum

and supremum of A, respectively. Throughout this paper, upper case non italic-
letters represent intervals and lower case non italic-letters represent real number.
Whenever the context may not be clear, proper comments shall be made.

2.1. Set Operations

Since, intervals are essentially sets of real numbers, it is often useful to define
operations related to their behaviour as sets.

Definition 2.1. Let A and B ∈ I. The intersection of two intervals A and B is
empty if either bU < aL or aU < bL. Otherwise,

A ∩B := {x : x ∈ A ∧ x ∈ B} =
[
max

{
aL, bL

}
,min

{
aU , bU

}]

In particular, intersection plays a key role in interval analysis. If we have two
intervals containing a result of interest, regardless of how they were obtained, then
the intersection, which may be narrower (see Figure 1), also contains the result.
Further set operations between intervals are described in [1] and [11].

Figure 1: Intersection of intervals.
Figure 2: Geometric properties of an interval.
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2.2. Interval Properties

Recalling the notation A =
[
aL, aU

]
, we can describe some of the main proper-

ties of an interval in term of its endpoints, as can be seen in Figure 2.

Definition 2.2. Let A ∈ I. We define the length of A as

l(A) := aU − aL (2.1)

Definition 2.3. Let A ∈ I. The absolute value of A is defined by

|A| := max
{∣∣aL

∣∣ ,
∣∣aU

∣∣} (2.2)

Definition 2.4. Let A ∈ I. The midpoint of A is given by

m(A) :=
aL + aU

2
(2.3)

2.3. Arithmetic Operations

Let A, B ∈ I. Let ⊙ ∈ {+,−, ·, /} be a binary operation on R, e.g., addition,
subtraction, multiplication and division. The operation A⊙B is defined by:

A⊙B := {a⊙ b : a ∈ A, b ∈ B} (2.4)

For instance, for the case of the sum of two intervals, the set A + B can be
explicitly described in terms of the endpoints of such interval:

A+B =
[
aL + bL, aU + bU

]
(2.5)

The Hukuhara difference, ⊖, is a special kind of subtraction between two in-
tervals [12], particularly important for the definition of differentiation of interval-
valued functions.

A⊖B =
[
aL − bL, aU − bU

]
provided aL − bL ≤ aU − bU (2.6)

A complete list of endpoint formulas for the usual arithmetic operations and
more details on the topic of interval computation can be found in [1] and [11].

There is a close relation in the mathematical structure of I and R: for example,
I is commutative and associative under addition and multiplication, the cancella-
tion law for addition holds and there exist identity elements for such operations.
However, we caution that, for A ∈ I, −A is not in general an additive inverse for
A, since

A−A = [aL, aU ] + [−aU ,−aL] =
[
aL − aU , aU − aL

]
= l(A) · [−1, 1] (2.7)

Similarly, it can be proved that A/A = [1, 1] only of l(A) = 0. Therefore,
we do not have additive or multiplicative inverses except for degenerate intervals.
However, we always have the inclusions 0 ∈ A − A and 1 ∈ A/A (see [1]). For
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example, consider the interval A = [1, 3]. It is straightforward to prove that A−A =
[−2, 2] = 2 · [−1, 1] ∋ 0 and A/A = [1/3, 1] ∋ 1.

Because of this lack of inverse elements under addition, I can not constitute a
vector space by itself. However, the work from Radstroem [13] develops the theory
of an extension set via equivalence relations in which a commutative semigroup in
which the law of cancellation holds, as is indeed true in I, can be embedded in a
vector space N where the product λA for λ ≥ 0 coincides with the one given on I.

This allows us to ensure the existence of the family Im, which represents the
set of m-dimensional vectors with entries in I, as well as the natural extension to
sets of interval-valued matrices.

2.4. Interval Analysis

In order to build an analytical structure on I it is fundamental to define the
notion of a metric between intervals. Hausdorff [14] proposed a metric between
subsets X and Y of a metric space E, given by:

dH(X,Y ) = max

{
sup
x∈X

inf
y∈Y

‖x− y‖, sup
y∈Y

inf
x∈X

‖x− y‖

}
(2.8)

where ‖·‖ is the distance defined on the metric space (E, ‖·‖).

In particular, the Hausdorff norm induces a metric for the interval system that
can be expressed in terms of the midpoints of the selected intervals A = [aL, aU ],
B = [bL, bU ], as follows:

dH(A,B) = max
{
|aL − bL|, |aU − bU |

}
(2.9)

Given the metric space (I, dH(·)), it is possible to define the usual notions of
convergence and limit in this space.

Definition 2.5. Let {An} and A ∈ I. We say that the sequence of intervals {An}
converges to A, denoted by limn→∞ An = A, if, for every ǫ > 0, there exists N ∈ N,
such that, for n ≥ N , we have dH(An, A) < ǫ.

Lemma 2.6. Convergence in I can be reduced to the usual convergence in R, that
is,

lim
n→∞

An = A if and only if aLn → aL ∧ aUn → aU (2.10)

2.4.1. Interval-valued Functions.

Definition 2.7. The function f : R
n → I defined on an Euclidean space R

n

is called an interval-valued function. This function can also be written as f(x) =
[fL(x), fU (x)], where fL and fU are real-valued functions defined on R

n and satisfy
fL(x) ≤ fU (x) for every x ∈ R

n.

This definition of interval-valued functions allows us to handle a wide range
of situations in which we can describe a function of this nature in terms of two
real valued functions, but also we could present a function whose parameters are
intervals in I.
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Definition 2.8. For c ∈ R
n, we write limx→c f(x) = A if, for every ǫ > 0, there

exists δ > 0 such that, for ‖x− c‖ < δ, we have dH(f(x), A) < ǫ. In this case, we
say A is the limit of f when x tends to c.

Theorem 2.9. Let f be an interval-valued function defined on R
n and A =

[aL, aU ] ∈ I. Then limx→c f(x) = A if and only if limx→c f
L(x) = aL and limx→c f

U (x) =
aU .

Definition 2.10. Let f be an interval-valued function defined on R
n. We say that

f is continuous at c ∈ R
n if limx→c f(x) = f(c).

Further information regarding interval-valued functions, their properties, and
proofs of related theorems can be found in [15].

3. Karush-Kuhn-Tucker Optimality Conditions

3.1. Order Relations

Since, in the context of optimization its is necessary to compare the images of
interval-valued functions to be minimized (maximized), a corresponding group of
partial order relations can be defined for intervals. These relations are illustrated
in Figures 3 - 5.

Definition 3.1. Let A = [aL, aU ] and B = [bL, bU ] ∈ I. It is possible to express A
as a function of its centre and width, as A = 〈m(A), w(A)〉.

• A �LU B if and only if aL ≤ bL and aU ≤ bU

• A �UC B if and only if aU ≤ bU and m(A) ≤ m(B)

• A �CW B if and only if m(A) ≤ m(B) and w(A) ≤ w(B)

Figure 3: Order relation — �LU . Figure 4: Order relation — �UC .

In the minimization case, the �CW order is particularly interesting because it
allows us to obtain the interval with the minimum midpoint and also the smaller
width, which in this case can be seen as the variance or uncertainty in the mea-
surement or evaluation of the function.
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Figure 5: Order relation — �CW .

3.2. Differentiability

Differentiation is one of the key concepts in optimization. because the qualities
of the derivatives of a function provide very relevant information related to minima
and extrema values of this function.

The extension of differentiability to interval-valued function is based on the
Hukuhara difference presented in Section 2.3 and, under certain conditions, keeps
a very strong relation to usual real-valued functions derivatives, establishing a
connection between Definitions 3.2 and 3.3.

Definition 3.2. Let X be an open set in R. An interval-valued function f : X → I

with f(x) = [fL(x), fU (x)] is called weakly differentiable at x0 ∈ X if the real valued
functions fL and fU are differentiable at x0 (in the usual sense).

Definition 3.3. Let X be an open set in R. We say f : X → I is H-differentiable
(strongly differentiable) at x0 ∈ X if there exists A(x0) ∈ I such that

lim
h→0+

f(x0 + h)⊖ f(x0)

h
and lim

h→0+

f(x0)⊖ f(x0 − h)

h
(3.1)

both exist and are equal at A(x0). Then A(x0) is the H-derivative of f at x0.

The following theorem presents the conditions in which a function is (or not)
H-differentiable at a point.

Theorem 3.4. (Wu [15]) Let X be an open set in R and f : X → I an interval-
valued function defined on X. Suppose that f is weakly differentiable at x0 ∈ X

with derivatives (fL)′(x0) = âL(x0) and (fU )′(x0) = âU (x0). Then,

1. If fL(x0 + h) − fL(x0) ≤ fU (x0 + h) − fU (x0) and fL(x0) − fL(x0 − h) ≤
fU (x0) − fU (x0 − h) for every h > 0, then f is H-differentiable at x0 with
H-derivative A(x0) = [âL(x0), â

U (x0)].

2. If âU (x0) > âL(x0), then f is H-non-differentiable at x0.
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3.3. KKT Optimality Conditions

In optimization, the Karush-Kuhn-Tucker (KKT) conditions are first order nec-
essary conditions for a solution in non-linear programming to be optimal, provided
that some regularity conditions are satisfied [16]. The conditions derived in [15]
allow us to determine the optimality of a feasible solution of an interval valued
optimization problem.

Definition 3.5. Let f(x) = [fL(x), fU (x)] be an interval-valued function defined
on a convex set X ⊆ R

n. We say that f is LU-convex at x∗ ∈ X if

f(λx∗ + (1− λ)x) ≺LU λf(x∗) + (1− λ)f(x) (3.2)

for each λ ∈ (0, 1) and each x ∈ X. It is possible to define UC-convexity in a
similar fashion.

Remark 3.6. Let X be a convex subset of Rn and f be an interval-valued function
defined on X. The function f is LU-convex at x∗ ∈ X if and only if fL and fU

are convex (in the usual sense) at x∗ ∈ X.

Definition 3.7. Let x∗ be a feasible solution, i.e., x∗ ∈ X. We say that x∗ is a
type-I solution [type-II solution] of an interval-valued optimization problem if there
exists no x ∈ X such that f(x) ≺LU f(x∗) [or f(x) ≺CW f(x∗)].

Theorem 3.8. (Wu [15]) Consider the interval valued optimization problem
(IVOP) given by

min f(x) = [fL(x1, ..., xn), f
U (x1, ..., xn)] = [fL(x), fU (x)]

subject to gi(x) ≤ 0

where the real-valued constraint functions gi : R
n → R are convex on R

n for
i = 1, ...,m.

Suppose that the interval-valued objective function f : Rn → I is LU-convex
and weakly continuously differentiable at x∗ ∈ R

n. If there exist (Lagrange) mul-
tipliers 0 < λL, λU ∈ R and 0 ≤ µi ∈ R, i = 1, ...,m, such that

1. λL∇fL(x∗) + λU∇fU (x∗) +
∑m

i=1 µi∇gi(x
∗) = 0 and

2. µigi(x
∗) = 0 for all i = 1, ...,m

then x∗ is a type-I and type-II, i.e. optimal under the selected order relation,
solution of (IVOP) problem.

4. Parameter Estimation using Interval-Valued Optimization

4.1. Generalized Polynomial Fitting

Let ci = [cLi , c
U
i ] ∈ I for i ∈ N. We say p(x) is an interval-valued polynomial if

it can be expressed in the form

p(x) =
n∑

i=0

ci · x
i =

n∑

i=0

[cLi , c
U
i ] · x

i (4.1)
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Consider a set of observations yi = [yLi , y
U
i ] ∈ I for i ∈ {1, ...,m}. We can model

this phenomenon using a n degree polynomial in a matrix form as follows:



y1
...
ym


 =




1 x1 x21 · · · xn1
1 x2 x22 · · · xn2
...

...
...

. . .
...

1 xm x2m · · · xnm






c0
...
cn


+



ε0
...
εm


 (4.2)

Y = VC+ E (4.3)

where V is called the Vandermonde matrix and each εi in the matrix E is a ran-
dom error which accounts for the uncertainty in the measurements of the studied
phenomenon.

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

-50

0

50

100

150

200

Figure 6: Interval-valued polynomial graphic.

A polynomial of degree 9 with random valued interval coefficients (see Table
1) was generated and a random sample, corresponding to the purple intervals, was
extracted, see Figure 6. In this case some of the purple sample intervals lie outside
the gray area enclosed by the theoretical model due to the influence of the error
matrix E, which was synthetically generated using a normal distribution with µ = 0
and σ2 = 4. With this information, the goal was to estimate the original values of
the coefficients that generated this behaviour.

As it is usual in parameter estimation, and even more in polynomial fitting,
because of its desirable computational speed and simplicity, our first attempt to
achieve that goal was to perform an ordinary least square (OLS) estimation, in
which the coefficients of a real-valued polynomial given real observations can be
estimated by:

Y = VC ⇒ Ĉ =
(
VTV

)−1
VTY (4.4)
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This result can be obtain by minimizing the ℓ2 norm of the residuals between
the midpoints of fitted model and the real measurements.

min
m∑

i=1

[m(yi)−m(ŷi)]
2 (4.5)

where {yi} is the set of m interval observations and {ŷi} are the corresponding
estimations.

Nevertheless this results provides good results in term of an unbiased estimation
of the midpoints of the coefficients of the polynomial, there can exist very high
overestimations in the length of the interval (see Figure 7 and Table 2) thus not
allowing the identification of the real sensitivity of each parameter in the model.

In Figure 7, the red bars represent the real values of the parameters, while
the gray bars illustrate the value of the estimated coefficient. A good estimation
should, of course, show little discrepancies between the gray and red bars for ev-
ery coefficient, achieving an enclosure of the parameter, thus being unbiased in
midpoint and length.

With the aim of reducing the mentioned difficulties, an heuristic differential
evolution algorithm was implemented. Differential Evolution (DE) was developed
originally by Price [17] while trying to solve a Chebychev polynomial fitting prob-
lem proposed by Storn. A complete description of DE can be found in [17].

The fundamental idea behind DE is the generation of vector through linear
combinations of elements in the current population. Then, given an individual in
the population, this element is compared with the trial vector generated via linear
combination and, if the trial element has a better performance in terms of the
objective function to be minimized (maximized), a crossing in the components of
the original vector is made under a defined probability level.
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Figure 7: Parameter estimation with
OLS
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Figure 8: Parameter estimation with
DE

The estimations obtained using the heuristic search are presented in Figure 8
and Table 3. There is an improvement in the quality of the estimation according
to the magnitude of the estimations in relation with the real values of the param-
eters. In most of the estimations there is an almost unbiased estimation in the
midpoint of the intervals. However, some of the coefficients are underestimated or
overestimated in the length of the interval, as can be seen in coefficients 7 and 8.
Additionally, given the nature of the heuristic, the quality of the estimations is not
very uniform and in some cases, the search does not converge to adequate values
of the parameters.

As another alternative, we used the software implementation cvx for convex
optimization developed in [18] [19]. To avoid the overestimation of the interval
length, the metric induced in I by the ℓ1 norm was used to measure the residuals,
which can be expressed in terms of the Hausdorff distance in I. In this way the
optimization problem can be stated as min

∑m

i=1 dH (yi, ŷi).

Given the definition of this metric, at an optimal point we can ensure an unbi-
ased estimation of both endpoints, which is equivalent to a lack of midpoint-length
bias.

The results of this methodology are presented in Figure 9. As can be seen, the
estimations agree successfully with the real values of the parameters, with errors
of magnitude 10−7 in relation to the theoretical endpoints. Thus, allowing us to
model closely the observed behaviour using an interval-valued polynomial model
and enclosing the possible uncertainty in the problem.
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Figure 9: Parameter estimation with CVX

4.2. Weierstrass Function

In order to evaluate the feasibility of an estimation of the parameters of a model
using real data, the employed techniques were tested using data sampled from a
Weierstrass function. This function is a typical example of a a pathological real-
valued function on the real line, which is continuous everywhere but differentiable
nowhere. For a more extensive descrpition of this function refer to [20]. The
Weierstrass function is given by

f(x) =

∞∑

n=0

an cos (bnπx) a (4.6)

where 0 < a < 1, b is a positive integer, and ab > 1 + 3
2π.

In this case, the objective was to extract information about the value of the
coefficient a, in this case treated as an interval, based on a set of measurements for
x ∈ [0, 1], using the ℓ1 induced metric in I to define the optimization problem, as
shown previously. To favour the clarity of the graphic, the estimated behaviour of
the model and a subset of the measurements is presented in the interval [0, 0.125].
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Figure 10: Weierstrass function example

As can be seen in Figure 10, the estimated coefficient for this model is able to
handle the chaotic and noisy behaviour of this function, and also the extreme sen-
sitivity that exists in this parameter, which generates changes of a large magnitude
and form of the images of the function when small changes are applied to the value
of a, for whom the estimation was remarkably exact.

4.3. Fourier Series Applied to the Modelling of Spectral Power Densities

Using hydrophones, measurements of the spectral power density of the sound
signals generated by vessels were performed in order to develop a characterization
of such crafts. In total 36 measurements were performed, however 12 of those were
discarded due to factors that generated changes in behaviour of the spectrum,
for example, changes in the speed of the boat and its engines. The 24 accepted
measurements are presented in Figure 11, where the horizontal axis represents the
frequency in Hz and the vertical axis the spectral power density in dB/Hz. Because
of confidentiality issues, the source of this data cannot be specified.
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Figure 11: Real measurements - Level as a function of frequency

In order to describe this behaviour a Fourier series model was proposed. A
Fourier series is a way to represent a wave-like function as the sum of simple sine
waves, decomposing the signal into the sum of a (possibly infinite) set of simple
oscillating functions, namely sines and cosines, as follows:

f(x) = a0 +

n∑

i=1

ai cos (iwx) + bi sin (iwx) (4.7)

where a0 models a constant (intercept) term in the data, w is the fundamental
frequency of the signal, n is the number of terms (harmonics) in the series. In this
case, several order models were estimated, however, an 8 order model followed the
trends observed in the measurements in a much more adequate way, especially in
the initial and final parts of the data.

Based on the complete set of measurements, the upper and lower bounds in
each instant were extracted and, with this (reduced) information, the coefficients
for the model of each of the bounding trajectories were estimated, obtaining the
fits shown in Figures 12 and 13 (see Tables 4 and 5).
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Figure 12: Fitted model lower bound.
Figure 13: Fitted model upper
bound.

Using these estimations an interval-valued function was proposed to enclose
the volatility of the measurements using Fourier series to describe the lower and
upper functions, i.e. f : R → I, given by f(x) =

[
fL(x), fU (x)

]
, where each of the

bounding functions are chosen to be a finite Fourier approximation, as:

fL(x) = α0 +

n∑

i=1

αi cos (iωx) + βi sin (iωx) (4.8)

fU (x) = γ0 +

n∑

i=1

γi cos (iψx) + ζi sin (iψx) (4.9)

An interval-valued plot generated from this model is presented in Figure 14.
As can be seen in Figure 11, in which the black bold line represent the estimated
bounding functions of the model, who is able to describe a significant proportion
of the variance present in the measurements performed.

Note that each of the bounds of the enclosing function f is modeled indepen-
dently using maximum and minimum points of the data at each time. For this
reason, obtaining a good fit in both of those functions will ensure that the function
f is well defined since, clearly, a good model for the lowest point in every instant,
fL, is less than or equal to a good model for the upper bound in the data. This
observation can be verified, for the obtained fits in this specific example, in Figure
14.
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Figure 14: Interval-valued plot of the estimated Fourier series model.

It is remarkable that the effectively used information was related only to the
maximum-minimum measurements in every instant. Therefore, the quality of the
estimations obtained could have been equally as good as the presented in a situation
of scarce available information. It is also possible to perceive a reduction in noise
of the signals provided by the model, which is important in order to approximate
the local behaviour of the phenomenon.

5. Appendix

Coefficient Value Coefficient Value

c0 (−4.0415, 6.6759) c5 (3.2578, 6.1518)
c1 (29.4955, 33.6173) c6 (−27.7293, 30.2541)
c2 (0.36381, 2.7498) c7 (4.8299, 8.9211)
c3 (−5.3253, 8.8534) c8 (1.0149, 3.0738)
c4 (1.291, 4.0224) c9 (68.954, 86.7395)

Table 1: Real polynomial coefficients
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Coefficient Value

c0 (-21.9271, 19.2478)
c1 (-2882.2689, 2913.0202)
c2 (-81734.2095, 87554.183)
c3 (-970404.0843, 880261.214)
c4 (-4997631.4596, 5068341.5591)
c5 (-17759695.5981, 13574291.5864)
c6 (-30263778.232, 25020096.2806)
c7 (-33523805.6398, 25561011.9142)
c8 (-16390133.7837, 16674222.5095)
c9 (-4037860.2794, 3758595.2745)

Table 2: OLS estimated parameters

Coefficient Value Coefficient Value

c0 (-4.0415, 6.6759) c5 (3.2578, 6.1518)
c1 (29.4955, 33.6173) c6 (-27.7293, 30.2541)
c2 (0.36381, 2.7498) c7 (4.8299, 8.9211)
c3 (-5.3253, 8.8534) c8 (1.0149, 3.0738)
c4 (1.291, 4.0224) c9 (68.954, 86.7395)

Table 3: Differential Evolution estimated parameters

Coefficient Value 95% CI

α0 -25660 (-3.37 x 104, -1.762 x 104)
α1 -6358 (-6855, -5860)
β1 46990 (3.207 x 104, 6.19 x 104)
α2 36360 (2.447 x 104, 4.824 x 104)
β2 9969 (9196, 1.074 x 104)
α3 9866 (9114, 1.062 x 104)
β3 -23510 (-3.158 x 104, -1.544 x 104)
α4 -12530 (-1.713 x 104, -7938)
β4 -7187 (-7717, -6658)
α5 -3964 (-4238, -3690)
β5 5379 (3242, 7516)
α6 1778 (1006, 2551)
β6 1619 (1520, 1719)
α7 452.70 (430.5, 475)
β7 -413.90 (-611.1, -216.7)
α8 -52.94 (-80.43, -25.44)
β8 -68.12 (-70.27, -65.97)
ω 1.4230 x 10−4 (1.399 x 10−4, 1.448 x 10−4)

Table 4: Fourier series - fL estimated parameters
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Coefficient Value 95% Confidence Interval

γ0 -3.32 x 108 (-1.009 x 109, 3.454 x 108)
γ1 3.51 x 108 (-4.199 x 108, 1.121 x 109)
ζ1 4.86 x 108 (-4.634 x 108, 1.436 x 109)
γ2 1.39 x 108 (-4.566 x 107, 3.235 x 108)
ζ2 -4.17 x 108 (-1.295 x 109, 4.601 x 108)
γ3 -2.48 x 108 (-7.175 x 108, 2.222 x 108)
ζ3 7.76 x 107 (-1.644 x 108, 3.196 x 108)
γ4 9.68 x 107 (-1.284 x 108, 3.22 x 108)
ζ4 7.23 x 107 (-2.597 x 107, 1.705 x 108)
γ5 6.43 x 105 (-2.299 x 107, 2.428 x 107)
ζ5 -4.29 x 107 (-1.268 x 108, 4.091 x 107)
γ6 -9.00 x 106 (-2.172 x 107, 3.72 x 106)
ζ6 6.32 x 106 (-1.193 x 107, 2.456 x 107)
γ7 1.72 x 106 (-1.928 x 106, 5.36 x 106)
ζ7 5.90 x 105 (2.81 x 105, 8.98 x 105)
γ8 -4.27 x 104 (-2.472 x 105, 1.618 x 105)
ζ8 -1.39 x 105 (-3.48 x 105, 6.95 x 104)
ψ 8.174 x 10−5 (7.176 x 10−5, 9.172 x 10−5)

Table 5: Fourier series - fU estimated parameters

.
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