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abstract: In this article, we investigate several relations between p-I-generator,
p1-I-generator with p-Lindelöf and p1-Lindelöf spaces by using τ i-codense, (i, j)-
meager set, (i, j)-nowhere dense set and perfect mapping of bitopological space.
Various relations between p-compactness, p-Lindelöfness, p1-Lindelöfness, topolog-
ical ideal, (i, j)-meager, (i, j)-Baire space in bitopological space are investigated.
Some properties are studied by using perfect mapping in a product bitopological
space. It is found that bitopological space has many applications in real life.
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1. Introduction, motivation and scopes of bitopological space in other
areas of mathematics and natural science.

Kelly [1] introduced bitopological space via quasi-pseudo metric and systemati-
cally investigated its various important properties. It has drawn direct and indirect
attentions of many point set topologists, fuzzy topologists, engineers, researchers
of medical science, computer scientists, economists etc. for its applications in their
respective areas.

Definition of topological ideal is well known. Topological ideal I and σ-ideal
can be found in Dontchev et al.[2]. Ideal of all nowhere dense sets and ideal of all
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meager sets of an ideal topological space (X, τ, I) are denoted by N and M; respec-
tively. Throughout this paper, no separation axiom is considered unless otherwise
stated.

Kuratowski [3] introduced the notion of local function of A ⊆ X in (X, τ) with
respect to I and τ (briefly A∗). A∗(I) or A∗ = {x ∈ X |U ∩ A /∈ I, x ∈ U for all
U ∈ τ}.

It is well known that cl∗(A) =A∗ ∪ A; defines a Kuratowski closure operator
for a topology τ∗(I) finer than τ .

Throughout this paper, the word “bitopological space” will be denoted by BS.

A cover U of a BS (X, τ1, τ2) is called τ1τ2-open (Swart [4], Definition 4.1) if
U ⊆ τ1 ∪ τ2. If in addition, U contains atleast one non-empty member of τ1 and
atleast one nonempty member of τ2; then it is called pairwise open (see for in-
stance Fletcher et al. [5]). Pairwise compactness was defined by Fletcher et al. [5].
p-compact, p1- compact, p-Lindelöf and p1-Lindelöf were defined by Kilićkman and
Salleh [6]. According to Reilly [7]; (X, τ1, τ2) is pairwise Lindelöf ( resp. pairwise
compact ) if each pairwise open cover has a countable ( resp. finite ) subcover.
Cooke and Reilly [8] investigated relation between semi-compactness and pairwise
compactness in bitopological space.

Kilićkman and Salleh [9-11] also studied various properties of pairwise Lin-
delöfness. Cocompactness, cotopology, (i, j)-Baire space etc. were studied by
Dvalishvili [12].

Frolik [13] introduced weakly Lindelöf space, Willard and Dissanayake [14] in-
troduced almost Lindelöf space in a topological space and their bitopological ver-
sions were studied by Kilićkman and Salleh [9]. In the last two decades, various
developments have been observed in bitopological space. Still a little progress has
been observed in case of generalized closed sets of bitopological space and related
areas. Fuzzy versions of some generalized closed sets and related structures from
both topology and bitopology have been studied ( one may refer to [15-17] ). Fuzzy
version of topological ideal was introduced by Sarkar [18].

Bitopological space and its properties have many useful applications in real
world. In 2010, Salama [19] used lower and upper approximations of Pawlak’s
rough sets; by using a class of generalized closed set of bitopological space for
data reduction of rheumatic fever data sets. Fuzzy topology integrated support
vector machine (FTSVM)-classification method for remotely sensed images based
on standard support vector machine (SVM) was introduced by Zhang et al. [20].
For some recent indirect applications of topology or bitopology as fuzzy versions,
one may refer to [19-21]. Ideal topological space has many applications. Recently
Tripathy and Acharjee [22] introduced a class of generalized closed set in bitopo-
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logical space using topological ideal, two expansion operators and local functions.
The application of this set can be found in market price equilibrium [23]. There
are maximum nine out of eleven strategies; under which expected price of a daily
useful commodity, which is decided by a consumer and price; which is decided by
government; are equal. Other two strategies are special cases. These are useful
from the view point that; no one will have to face poverty in year 2017 if she has
price lists of these commodities for 2016 and 2015. She has freedom to choose her
daily useful commodities; according to her preferences.

One may refer to [41]; for interrelated research works on topology, orderings and
utility theory of mathematical economics. In this paper one may find; how con-
cepts of countability, compactness, normality, Lindelöfness etc. of general topology
and order (i.e. LOTS etc.) have been used for countable representation of utility
function. One may refer to Bosi and Mehta [43]; for their interlink of bitopology
and choice via utility function.

Hence, there is a need to study different types of pairwise compactness, pair-
wise Lindelöfness from the point of view of topological ideal, (i, j)-meager set and
(i, j)-Baire space.

In this paper, we try to give some possible answers of the following questions.

(i) Is there any relation between different forms of pairwise Lindelöfness, (i, j)-
meager set and pairwise Baire space in a bitopological space?

(ii) Is there any relation between different forms of pairwise Lindelöfness and
topological ideal in a bitopological space?

(iii) What are the results related to pairwise Lindelöfness in product bitopology
using Datta’s perfect mapping?

In this paper, we consider two types of pairwise Lindelöfnss. They are p-Lindelöf
due to Kilićkman and Salleh [2] and p1-Lindelöf due to Birsan [24] ( as defined
by Kilićkman and Salleh [2] ). Dvalishvili [25] defined (i, j)-nowhere dense set.
Dontchev et al. [26] studied ideal irresoluteness in topology. Datta [27] defined
perfect map from the view point of bitopology. Researchers have studied Khalim-
sky digital line by considering generalized closed sets in topological space ( [28-30]).
Many topologists are now focusing on ideal and its various consequences. System-
atic study on pairwise Lindelöfness can be found in Salleh and Kilićkman [31].
Throughout this paper; we will consider i, j ∈ {1, 2}, i 6= j

From the above; it is clear that bitopological space has drawn attentions as an
applied branch for research. Many researchers have used bitopological properties
as their tools to solve problems of mechanical engineering, medicine, economics etc.
Hence, the above questions may play significant roles in near future. Often it is
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easy to assume results of bitopology as extensions of results of general topology;
which is it not true in general. This can be understood from the fact that bitopol-
ogy has many definitions of Lindelöfness using only pairwise open sets etc.

Variations of i and j between 1 and 2 often signify different properties in a
bitopological space; which general topology never follows. In [44], Acharjee et al.
answered some open questions and one suitable counterexample.

Lemma 1.1. ([6], Lemma 1) Every pairwise closed subset of a p-Lindelöf bitopo-
logical space is p-Lindelöf.

Lemma 1.2. ([6], Lemma 4) Every pairwise closed subset of a p1-Lindelöf bitopo-
logical space is p1-Lindelöf.

Lemma 1.3. ([44], Theorem 3.1.) Let (X, τ1, τ2) be a contra second countable
bitopological space, then it is p1-Lindelöf.

Lemma 1.4. ([44], Corollary 3.1.) Every pairwise closed subset of a contra second
countable bitopological space is p1-Lindelöf.

2. Some preliminary definitions

Definition 2.1. ([9], Definition 2.7) A BS (X, τ1, τ2) is said to be (i, j)-nearly
Lindelöf (resp. (i, j)-almost Lindelöf, (i, j)-weakly Lindelöf), if every τ i-open cover
{Uα|α ∈ ∆} of X , there exists a countable subcollection {Uαn

|n ∈ N}; such that

X =
⋃

n∈N
τ iintτ jcl(Uαn

) ( resp. X=
⋃

n∈N
τ jcl(Uαn

), X = τ jcl(
⋃

n∈N
Uαn

)).

(X, τ1, τ2) is said to be pairwise nearly Lindelöf, if it is both (i, j)-nearly Lin-
delöf and (j, i)-nearly Lindelöf. Similarly, one can define pairwise almost Lindelöf,
pairwise weakly Lindelöf.

Definition 2.2. ([25], Definition 1.1) A subset A of a BS (X, τ1, τ2) is termed
as (i, j)-nowhere dense, if τ iintτ jcl(A) = ∅. The family of all (i, j)-nowhere dense
subsets of X is denoted by (i, j)-ND(X).

Let I be a topological ideal, then I 6= ∅ and I is said to be codense [2] for a
topological space (X, τ); if and only if I ∩ τ = {∅}. Similarly, one can define τ i-
codense; i ∈ {1, 2} for a BS (X, τ1, τ2). An ideal I is said to be pairwise codense,
if it is both τ1-codense and τ2-codense. We denote ideal of (i, j)-nowhere dense
subsets of BS (X, τ1, τ2) by Ii Nj(X)

Definition 2.3. ([12], Definition 1.6) A subset A of a BS (X, τ1, τ2) is termed as

(i, j)-first category (or (i, j)-meager), if A =
∞⋃

n=1
An; where An ∈ (i, j)-ND(X); for
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every n ∈ N and A is of (i, j)-second category (or (i, j)-non meager), if it is not
of (i, j)-first category. The family of all sets of (i, j)-first category (or (i, j)-second
categories) in X is denoted by (i, j)-CatgI(X)((i, j)-CatgII(X)).

If X ∈ (i, j)-CatgI(X) ( resp. X ∈ (i, j)-CatgII(X)), then it is abbreviated as
X is of (i, j)-CatgI (resp. (i, j)-CatgII).

We denote σ-ideal [2] of (i, j)-meager subsets of a BS (X, τ1, τ2) by σiMj(X).

Now, we define the following definitions.

Definition 2.4. A BS (X, τ1, τ2) is said to be (i, j)-non-nearly Lindelöf (resp.
(i, j)-non-almost Lindelöf, (i, j)-non-weakly Lindelöf), if for every τ i-open cover
{Uα|α ∈ ∆} of X ; there exists a τ j-open countable sub-collection {Uαn

|n ∈ N}

such that X =
⋃

n∈N
τ jintτ icl(Uαn

) ( resp. X=
⋃

n∈N
τ icl(Uαn

), X = τ icl(
⋃

n∈N
Uαn

)).

(X, τ1, τ2) is said to be pairwise non-nearly Lindelöf, if it is both (i, j)-non-
nearly Lindelöf and (j, i)-non-nearly Lindelöf. Similarly, we have pairwise non-
almost Lindelöf, pairwise non-weakly Lindelöf.

Kilićkman and Salleh defined p-Lindelöf ( [6] Definition 6 ) and Birsan defined
p1-Lindelöf ( One may refer to Definition 1 of [6] ).

Definition 2.5. ([44], Definition 3.1) Let (X, τ1, τ2) be a bitopological space, then:

(i) (X, τ1, τ2) is said to be an (i, j)-second countable bitopological space, if
(X, τ i) is second countable with respect to τ j .

(ii) (X, τ1, τ2) is said to be a contra second countable bitopological space, if
it is both (1, 2)-second countable bitopological space and (2, 1)-second countable
bitopological space.

We state the following results those will be used in this paper.

Lemma 2.1. ([6], Theorem 6) If (X, τ1, τ2) is second countable space, then
(X, τ1, τ2) is p-Lindelöf.

Definition 2.6. [7] A bitopological space (X, τ1, τ2) is pairwise compact (resp.
pairwise Lindelöf ), if each pairwise open cover of (X, τ1, τ2) has a finite (resp.
countable) subcover.

Definition 2.7. [46] (X, τ1, τ2) is said to be pairwise countably compact, if every
countable pairwise open cover of (X, τ1, τ2) has a finite subcover.
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Proposition 2.1. [7] In a pairwise Lindelöf space; pairwise countable compactness
is equivalent to pairwise compactness.

Proposition 2.2. [7] Any second countable bitopological space is pairwise Lin-
delöf.

Proposition 2.3. [7] If (X, τ1, τ2) is pairwise Lindelöf and A is a proper subset
of X which is τ1-closed, then A is pairwise Lindelöf and τ2-Lindelöf.

Proposition 2.4. [7] If (X, τ1, τ2) is pairwise Lindelöf and pairwise regular; then
it is pairwise normal.

3. Main results

In this section, we define two new classes in a bitopological space, which gen-
erate p-Lindelöf space and p1-Lindelöf space respectively.

Definition 3.1. A BS (X, τ1, τ2, I) is said to be τ i-I-generator (resp. τ ci -I-
generator); if for every τ i-open cover {Uα|α ∈ ∆} of X , there exists a (resp.

τ j-open) countable sub-collection {Uαn
|n ∈ N}; such that X \

⋃

n∈N
Uαn

∈ I.

(X, τ1, τ2, I) is said to be p-I-generator (resp. p1-I-generator), if it is both τ i-
I-generator (resp. τ ci -I-generator) and τ j-I-generator (resp. τ

c
j-I-generator).

Remark 3.1. From definition of ideal, it is clear that I 6= ∅. If I = {∅}, then
Definition 3.1 reduces to p-Lindelöf (resp. p1-Lindelöf) i.e. p-{∅}-generator⇔ p-
Lindelöf and p1-{∅}-generator⇔ p1-Lindelöf.

From ([2],[26]), we know that a subset S of (X, τ, I) is a topological subspace
with ideal IS={I ∩ S : I ∈ I}.

A subset A of X of (X, τ1, τ2) is said to be pairwise clopen, if it is both τ1-
clopen and τ2-clopen.

Theorem 3.1. (i) Let (X, τ1, τ2, I) be a p-I-generator. If A is a pairwise closed
subset of X , then (A, τ1|A, τ2|A, IA) is also p-IA-generator.

(ii) Let (X, τ1, τ2, I) be a p1-I-generator. If A is a pairwise clopen subset of X ,
then (A, τ1|A, τ2|A, IA) is also p1-IA-generator.

Proof.(i) Let UA = {Uα ∩ A : Uα ∈ τ i, α ∈ ∆} be a τ i|A-open cover of A.
Thus, U = {Uα : α ∈ ∆} ∪ {(X \ A)} is τ i open cover of X . Thus, X has
a countable sub-collection V={Uαn

: Uαn
∈ τ i, n ∈ N} ∪ {(X \ A)} such that

X \ {
⋃

n∈N
Uαn

∪ (X \A)} = R(say)∈ I.
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Then, A ⊆
⋃

n∈N
{Uαn

: n ∈ N} ∪ R. Thus, A =
⋃

n∈N
(Uαn

∩ A) ∪ (R ∩ A). So, we

have A \
⋃

n∈N
{(Uαn

∩ A)} ⊆ (R ∩ A) ∈ IA. Hence, VA = {Uαn
∩ A : n ∈ N} is

satisfying the required condition for p-IA-generator. Hence the proof.

(ii) It can be established following the technique used in establishment of (i).

Remark 3.2. If I = {∅}, then IA = {∅}. Then by Theorem 3.1, A is p-{∅}-
generator and it implies Lemma 1.1 of and vice-versa. Similarly, if A is p1-{∅}-
generator, then it implies Lemma 1.2.

In view of Lemma 2.1 and Remark 3.1, we have the following result.

Corollary 3.1. Every second countable space is p-{∅}-generator.

Theorem 3.2. (i) Let (X, τ1, τ2) be a BS, then X is pairwise weakly Lindelöf if
and only if X is both τ i-IjNi-generator and τ j-IiNj-generator.

(ii) Let (X, τ1, τ2) be a BS, then X is pairwise non-weakly Lindelöf if and only
if X is both τ i-IiNj-generator and τ j-IjNi-generator.

Proof. (i) Necessity.
We have only to show, if X is (i, j)-weakly Lindelöf; then it is τ i-IjNi-generator.

Let us assume, X be (i, j)-weakly Lindelöf and let U = {Uα|α ∈ ∆} be a τ i-
open cover of X . Then by Definition 2.1, there exists a countable sub-collection
{Uαn

|n ∈ N} such that X = τ jcl(
⋃

n∈N
Uαn

). Then, X \
⋃

n∈N
Uαn

∈ IjNi(X). Sim-
ilarly, it can be established for (j, i)-weakly Lindelöf case.

Sufficiency.

We will only prove that if X is τ i-IjNi-generator, then X is (i, j)-weakly Lin-
delöf.

Let U = {Uα|α ∈ ∆} be a τ i-open cover of X , then by Definition 3.1; there

exists a countable sub-collection {Uαn
|n ∈ N} such that X \

⋃

n∈N
Uαn

∈ IjNi(X).

Then, X = τ jcl(
⋃

n∈N
Uαn

). Thus, X is (i, j)-weakly Lindelöf. Similarly, we can
prove for τ j-IiNj-generator case.

(ii) It can be established by following the technique of proof of (i).

Theorem 3.3. (i) A BS (X, τ1, τ2) is pairwise weakly Lindelöf; if and only if
it is both τ i-R-generator and τ j-S-generator for some τ j-codense ideal R and τ i-
codense ideal S.
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(ii) A BS (X, τ1, τ2) is pairwise non-weakly Lindelöf; if and only if it is both τ i-
R-generator and τ j-S-generator for some τ i-codense ideal R and τ j-codense ideal S.

Proof. (i) Necessity.

If (X, τ1, τ2) is pairwise weakly Lindelöf, then by Theorem 3.2(i), X is both
τ i-IjNi-generator and τ j-IiNj-generator. It is easy to verify IjNi(X) ∩τ j = {∅}.
So, IjNi(X) is τ j-codense. Similarly, we can establish the other case.

Sufficiency.

Let R be any τ j-codense ideal and X is τ i-R-generator. Let U = {Uα|α ∈ ∆}
be any τ i-open cover of X . Then, there is a countable subcover {Uαn

|n ∈ N}

such that X \
⋃

n∈N
Uαn

∈ R. Hence, X = τ jcl(
⋃

n∈N
Uαn

). Thus, X is (i, j)-weakly
Lindelöf. Similarly, we can prove for the other case. Thus, X is pairwise weakly
Lindelöf. Hence the proof.

Dvalishvili ([12],[25]) defined (i, j)-Baire space and pairwise Baire space.

In next theorem, we establish the relation between pairwise weakly Lindelöf
space and pairwise σ-ideal generator under certain condition.

Theorem 3.4. Let (X, τ1, τ2) is a pairwise Baire space. Then,

(i) (X, τ1, τ2) is pairwise weakly Lindelöf; if and only if (X, τ1, τ2) is both τ i-
σjMi-generator and τ j-σiMj-generator.

(ii) (X, τ1, τ2) is pairwise non-weakly Lindelöf; if and only if (X, τ1, τ2) is both
τ i-σiMj-generator and τ j-σjMi-generator.

Proof. (i) (X, τ1, τ2) is (i, j)-Baire space and (j, i)-Baire space ⇒ X is (i, j)-
CatgII and (j, i)-CatgII .

(X, τ1, τ2) is (i, j)-Baire space and (j, i)-Baire space ⇔ σiMj(X) is τ i-codense
and σjMi(X) is τ j-codense. Then, the proof follows from Theorem 3.3(i). Hence
the proof.

A BS (X, τ1, τ2) is said to have property *; if τ icl(τ jcl(U)) = τ jcl(U), when-
ever U ⊆ X and i, j ∈ {1, 2}, i 6= j.

We state the following result without proof.

Theorem 3.5.(i) If (X, τ1, τ2) is pairwise almost Lindelöf with property * ; then
it is both τ i-σjMi-generator and τ j-σiMj-generator.
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(ii) If (X, τ1, τ2) is pairwise non-almost Lindelöf with property * ; then it is
both τ i-σiMj-generator and τ j-σjMi-generator.

In view of Theorem 3.4 and Theorem 3.5, we state the following result.

Corollary 3.2. (i) If a BS (X, τ1, τ2) is pairwise almost Lindelöf with property *
and pairwise Baire space, then it is pairwise weakly Lindelöf.

(ii) If a BS (X, τ1, τ2) is pairwise non-almost Lindelöf with property * and pair-
wise Baire space, then it is pairwise non-weakly Lindelöf.

The following result is a consequence of Theorem 3.1 and Theorem 3.2.

Corollary 3.3. (i) If A be a pairwise clopen subset of a pairwise weakly Lindelöf
space (X, τ1, τ2), then (A, τ1|A, τ2|A) is pairwise weakly Lindelöf.

(ii) If A be a pairwise clopen subset of a pairwise non-weakly Lindelöf space
(X, τ1, τ2), then (A, τ1|A, τ2|A) is pairwise non-weakly Lindelöf.

During the preparation of this paper with refer to Kilic̀man and Salleh [6], some
open questions were raised. Some answers of these questions are affirmative and
one counter example is proved by Acharjee et al. in [44]; using interlocking and
nest in a bitopological space. Notions of interlocking and nest can be found in [
45]. The two main questions are stated below.

(i) What type of a countable space in a bitopological space is a p1-Lindelöf
space?

(ii) Does every p1-Lindelöf space imply countable space of (i)?.

Theorem 3.6. Let (X, τ1, τ2) be a contra second countable bitopological space,
then it is p1-{∅}-generator.

Proof. The proof follows from Remark 3.1. and Lemma 1.1.

Theorem 3.7. Every pairwise closed subset of a contra second countable bitopo-
logical space is p1-{∅}-generator.

Proof. It can be proved by Lemma 1.4 and Remark 3.1.

4. Relations of p-I-generator and p1-I-generator with perfect mapping

The following definition of perfect mapping is due to Datta [27].
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Definition 4.1. ([27], Definition 2.1) A mapping f : (X, τ1, τ2) −→ (Y, ψ1, ψ2) is
said to be perfect if,

(i) f is continuous i.e. f is τ1-ψ1-continuous and τ2-ψ2-continuous.

(ii) f is compact i.e. the inverse image of every point of Y is τ1-compact,τ2-
compact and pairwise compact.

(iii) f is closed i.e. the image of every τ1-closed (resp. τ2-closed) subset of X
is ψ1-closed (resp. ψ2-closed) subset of Y .

Let f : (X, τ1, τ2, I) −→ (Y, ψ1, ψ2, J) be a function, then we denote f(I) =
{f(I)|I ∈ I} and f−1(J) = {f−1(J)|J ∈ J}. Hence, f(I) and f−1(J) are ideals of
Y and X respectively.

Theorem 4.1 (i) Let f : (X, τ1, τ2, I) −→ (Y, ψ1, ψ2) be a continuous function and
surjection. If (X, τ1, τ2, I) is p-I-generator, then (Y, ψ1, ψ2) is also p-f(I)-generator.

(ii) Let f : (X, τ1, τ2, I) −→ (Y, ψ1, ψ2) be a continuous function and surjection.
If (X, τ1, τ2, I) is p1-I-generator, then (Y, ψ1, ψ2) is also p1-f(I)-generator.

Proof.(i) It is enough to show, if (X, τ1, τ2, I) is τ i-I-generator, then (Y, ψ1, ψ2) is
also ψi-f(I)-generator.

Let U = {Uα|α ∈ ∆} be any ψi-open cover of Y . Then by Definition 4.1,
V = {f−1(Uα)|α ∈ ∆} is τ i-open cover of X . So, we have a subcollection

{f−1(Uαn
)|n ∈ N} such that X \

⋃

n∈N
f−1(Uαn

) ∈ I. Suppose f−1(Y \
⋃

n∈N
Uαn

) =

I. So, (Y \
⋃

n∈N
Uαn

) = f(I) ∈ f(I) as I ∈ I. Thus, we have the proof

(ii) It can be established following the technique used in establishing part(i).

We state the following result without proof.

Theorem 4.2. Let f : (X, τ1, τ2) −→ (Y, ψ1, ψ2, J) be a perfect, open and surjec-
tive function. Then,

(i) if (Y, ψ1, ψ2, J) is p-J-generator, then (X, τ1, τ2) is p-f
−1(J)-generator.

(ii) if (Y, ψ1, ψ2, J) is p1-J-generator, then (X, τ1, τ2) is p1-f
−1(J)-generator.

Lemma 4.1. If f : (X, τ1, τ2) −→ (Y, ψ1, ψ2, J) be an open function and surjec-
tive. If J is ψi-codense, then f

−1(J) is τ i-codense.

Proof. Let f−1(J) is not τ i-codense. Let f−1(J) ∈ f−1(J) ∩ τ i 6= {∅}. Then,
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f−1(J) ∈ τ i \ {∅}. Due to surjective and open; f(f−1(J)) = J ∈ ψi \ {∅}. This
contradicts the fact that J is ψi-codense. Hence the proof.

Corollary 4.1. Let f : (X, τ1, τ2) −→ (Y, ψ1, ψ2) be a perfect,open and surjective
function. Then,

(i) if (Y, ψ1, ψ2) is p-Lindelöf, then (X, τ1, τ2) is p-Lindelöf .

(ii) if (Y, ψ1, ψ2) is p1-Lindelöf, then (X, τ1, τ2) is p1-Lindelöf .

Proof. (i) (Y, ψ1, ψ2) is p-Lindelöf implies it is p-{∅}-generator. Then, the proof
follows from Theorem 4.2(i) and Remark 3.1.

(ii) Proof follows similar to the case (i)

Applying Theorem 3.3 and Lemma 4.1, one can get the following result.

Corollary 4.2. Let f : (X, τ1, τ2) −→ (Y, ψ1, ψ2) be a perfect, open and surjective
function.

(i) If (Y, ψ1, ψ2) is pairwise weakly Lindelöf, then (X, τ1, τ2) is pairwise weakly
Lindelöf .

(ii) If (Y, ψ1, ψ2) is pairwise non-weakly Lindelöf, then (X, τ1, τ2) is pairwise
non-weakly Lindelöf .

5. On product bitopology

It is well known, every continuous mapping between p-compact spaces is p-
compact in bitopological space. One may refer to Datta ([27], page no: 124)

Theorem 5.1. (i) If (X, τ1, τ2, I) is p-I-generator and (Y, ψ1, ψ2) is p-compact,
then (X × Y, τ1 × ψ1, τ2 × ψ2) is p-π

−1(I)-generator; where π : X × Y −→ X is a
projection map.

(ii) If (X, τ1, τ2, I) is p1-I-generator and (Y, ψ1, ψ2) is p-compact, then (X ×
Y, τ1 ×ψ1, τ2 × ψ2) is p1-π

−1(I)-generator; where π : X × Y −→ X is a projection
map.

Proof. The projection map is perfect. Hence, the rest follows from Theorem 4.2.

The following result is a consequence of Theorem 3.3, Lemma 4.1 and Theorem
5.1.
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Corollary 5.1. (i) If (X, τ1, τ2) is pairwise weakly Lindelöf and (Y, ψ1, ψ2) is p-
compact, then (X × Y, τ1 × ψ1, τ2 × ψ2) is pairwise weakly Lindelöf.

(ii) If (X, τ1, τ2) is pairwise non-weakly Lindelöf and (Y, ψ1, ψ2) is p-compact,
then (X × Y, τ1 × ψ1, τ2 × ψ2) is pairwise non-weakly Lindelöf .

Corollary 5.2. (i) If (X, τ1, τ2) is p-Lindelöf and (Y, ψ1, ψ2) is p-compact, then
(X × Y, τ1 × ψ1, τ2 × ψ2) is p-Lindelöf .

(ii) If (X, τ1, τ2) is p1-Lindelöf and (Y, ψ1, ψ2) is p-compact, then (X × Y, τ1 ×
ψ1, τ2 × ψ2) is p1-Lindelöf .

Proof. (i) By Remark 3.1, (X, τ1, τ2) is p-Lindelöf⇔ (X, τ1, τ1) is p-{∅}-generator.
By Theorem 5.1(i), (X × Y, τ1 × ψ1, τ2 × ψ2) is p-{∅}-generator. Hence the proof.

6. Conclusion

In this paper, we have shown that p-Lindelöfness and p1-Lindelöfness can be
derived by defining new classes of sets in bitopological space. We also proved re-
sults related to perfect mapping of bitopological space and used them in the area
of product bitopology. We used perfect mapping to prove various results. One can
follow from literatures of bitopology that; various types of pairwise mappings play
crucial roles to contradict results related to various pairwise concepts. Our idea
may be extended on other types of Lindelöf spaces of a bitopological space. These
methods give short and concrete ways to prove various results in product of Lin-
delöf spaces. We hope, this paper will attract attentions of topologists, economists
and researchers of other branches. The connection between countability and p1-
Lindelöfness or p1-{∅}-generator may help economists to use bitopological space,
Lindelöfness etc. in their respective research areas as one may refer to ([41],[43]),
where authors studied utility functions and various results based on compactness,
Lindelöfness, order and other properties of bitopology and general topology.
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172-217.

14. S. Willard and U.N.B. Dissanayake, The almost Lindelöf degree, Canad. Math. Bull., 27(4)
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