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Numerical solution of Fractional differential equation by Wavelets and

Hybrid functions
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abstract: In this paper, we introduce methods based on operational matrix of
fractional order integration for solving a typical n-term non-homogeneous fractional
differential equation (FDE). We use Block pulse wavelets matrix of fractional or-
der integration where a fractional derivative is defined in the Caputo sense. Also
we consider Hybrid of Block-pulse functions and shifted Legendre polynomials to
approximate functions. By the use of these methods we translate an FDE to an
algebraic linear equations which can be solved. Methods have been tested by some
numerical examples.
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1. Introduction

In recent decades, the fractional calculus and fractional differential equations
have bean attracted much attention and increasing interest. Fractional differential
equations are generalized from integer order ones, which are achieved by replacing
integer order derivatives by fractional ones. In recent years, studies on application
of the FDE in science has attracted increasing attention [1,2,4,7,17]. For instance,
Bagley and Torvik formulated the motion of a rigid plate immersing in a Newto-
nian fluid [9]. It shows that the use of fractional derivatives for the mathematical
modeling of viscoelastic materials is quite natural [9]. It should be mentioned that
the main reasons for the theoretical development are mainly the wide use of poly-
mers in various fields of engineering [9]. Also in 1991, S. Westerlund suggested
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using fractional derivatives for the description of propagation of plane electromag-
netic waves in an isotropic and homogeneous, lossy dielectric and in the paper on
electrochemically polarizable media, published in 1993, [9]. Caputo suggested the
fractional-order version of the relationship between electric field and electric flux
density [9]. An FDE in time domain can be described as the following for

an(aD
αn

t y(t)) + · · ·+ a1(aD
α1
t y(t)) + a0(aD

α0
t y(t)) = u(t), (1.1)

subject to the initial conditions

y(i)(a) = di, i = 0, ..., n, (1.2)

where ai ∈ R, 0 < α1 < α2 < ... < αn, and aD
αi

t y(t) denotes the caputo fractional
derivative of order αi.
We can see the conditions of existence and uniqueness of solutions to the FDE
in [9]. Moreover several numerical methods have been used to approximate the
solution of fractional differential equations, such as finite difference method [11],
collocation [12] method and other methods [13,5,18].
Any time function can be synthesized completely to a tolerable degree of accuracy
by using set of orthogonal functions. For such accurate representation of a time
function, the orthogonal set should be “complete” [10]. In this paper we will
apply Block-pulse and Hybrid functions based on Block-pulse wavelet and Shifted
Legendre polynomials to approximate the solution of (1.1) under conditions (1.2).
We begin by introducing some necessary definitions and theorems of the fractional
calculus theory and wavelets. In Section 3 the operational matrices of fractional
order integration for Block-pulse wavelets and Hybrid functions are obtained. Also
in Section 4 the proposed methods are applied to several examples. The conclusion
is given at the end.

2. Preliminaries

In this Section, we present some basic definitions and properties of fractional
calculus and wavelets [9,10,6,3].

Definition 2.1. The shifted Legendre polynomials are defined on the interval
[0, 1] and can be determined with the aid of the following recurrence formulae
[13]:

Pi+1(x) =
(2i+ 1)(2x− 1)

i+ 1
Pi(x)−

i

i+ 1
Pi−1(x), i = 1, 2, ...,

where P0(x) = 1 and P1(x) = 2x− 1.

Definition 2.2. The m-set of block-pulse functions on [0, η) is defined as:

bi(t) =

{

1 ; ηi
m

≤ t <
η(i+1)

m
,

0 ; otherwise,

where i = 0, 1, 2, · · · ,m− 1.
The functions bi are disjoint and orthogonal [10].
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Theorem 2.1. A function f(x) ∈ L2([0, T )) may be expanded by the Block-pulse

functions as:

f(x) ≃
m1
∑

i=1

fibi(t) = FTBm(x), (2.1)

where

F =
(

f1 · · · fm ) and Bm(x) =
(

b1(x) · · · bm(x) ).

The Block-pulse coefficients fi are obtained as

fi =
T

h

∫ ih

(i−1)h

f(x)dx. (2.2)

Proof: In [10]. ✷

Now we define the Hybrid functions of Block-Pulse and shifted Legendre poly-
nomials.

Definition 2.3. Hybrid function hyi,j(x) , i = 0, ...m − 1 and j = 0, ..., n− 1
are defined on the interval [0, T ) as

hyi,j(x) =

{

Pj(
m
T
x− i) ; iT

m
≤ x <

(i+1)T
m

,

0 ; otherwise,
(2.3)

where Pj(t) is the jth shifted Legendre polynomials on [0, 1).
Now for approximate the function f(x) we can set [15,16]

f(x) ≃ CTHyn,m(x) (2.4)

where
CT =

(

c0,0 · · · c0,n−1 c(m−1),(n−1) )

and

Hyn,m(x) =
(

hy0,0(x) · · · hy0,n−1(x) · · · hy(m−1),(n−1)(x) )

and ci,j =
<f(x),hyi,j>

<hyi,j ,hyi,j>
where < u(x), v(x) >=

∫ T

0 u(x)v(x)dx.

Definition 2.4. A real function f(x), x ≥ 0 is said to be in space Cµ, µ ∈ R if
there exists a real number p(> µ), such that f(x) = xpf1(x) where f1(x) ∈
[0,∞) , and it is said to be in the space Cm

µ iff fm ∈ Cµ,m ∈ N.

Definition 2.5. The Riemann-Liouville fractional derivative of order α with
respect to the variable x and with the starting point at x = a is

aD
α
t f(x) =

{

1
Γ(1+m−α)

dm+1

dxm+1

∫ x

a
(x− τ )m−αf(τ )dτ ; 0 ≤ m ≤ α < m+ 1,

dm+1

dxm+1 ; α = m+ 1 ∈ N.
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Definition 2.6. The Riemann-Liouville fractional integral of order α is

Iα(f(x)) =a D−α
t f(x) =

1

Γ(α)

∫ x

a

(x− τ )α−1f(τ )dτ , α > 0.

Definition 2.7. The fractional derivative of f(x) by means of Caputo sense is
defined as

aD
α
x f(x) =

1

Γ(n− α)

∫ x

a

(x− τ )n−α−1f (n)(τ )dτ ,

where n− 1 < α ≤ n, n ∈ N, x > 0, f ∈ Cn
−1.

For the Caputo’s derivative we have Dα
t C = 0, C is a constant and

Dα
xx

n =

{

0 ; n ∈ N, n < ⌈α⌉
Γ(n+1)

Γ(n+1−α)x
n ; n ∈ N, n < ⌊α⌋ (2.5)

The relation between the Riemann-Liouville operator and Caputo operator has
given by the following expressions [14]:

aD
α
x I

αf(x) = f(x), (2.6)

IαaD
α
xf(x) = f(x)−

n−1
∑

k=0

f (k)(a+)
(x − a)k

k!
, x > 0. (2.7)

3. Operational Matrix of Fractional Order Integration

In this Section we will introduce operational matrix methods based on Block-
pulse and Hybrid functions of Block-pulse and shifted Legendre polynomials to
numerical solution of fractional order differential equations.

Fractional integration of the block-pulse function vector has given as

(IαBm)(t) = F (α)Bm(t) (3.1)

where F (α) is the Block-pulse operational matrix of the fractional order integration
and [14]

F (α) = (
T

m
)α

1

Γ(α+ 2)















1 ξ1 ξ2 · · · ξm−1

0 1 ξ1 · · · ξm−2

0 0 1 · · · ξm−3
...

...
...

. . .
...

0 0 0 · · · 1















(3.2)

where ξk = (k + 1)α+1 − 2kα+1 + (k + 1)α+1.

Now let Hyn,m ≃ ΦBmn(x) and IαHyn,m(x) = Q(α)Hyn,m(x) then we can
construct operational matrix of fractional order integration for Hybrid functions
as:

Q(α) = ΦF (α)Φ−1. (3.3)

.
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4. Estimation of the error

In this section, we analyze the errors of a function is expanded in terms of
Bluck-pulse or Hybrid functions of Block-Pulse and shifted Legendre polynomials.

Theorem 4.1. Let f(t) be an arbitrary real bounded function, which is square

integrable in the interval [0, 1), and e(t) = f(t)− FTBm(x). Then

‖ e(t) ‖≤ ch. (4.1)

Proof: In [19]. ✷

Let L2[0, T ] be the space of square integrable functions on [0, T ] and
X = Span{hyi,j(x) : i = 0, ...m− 1 and j = 0, ..., n− 1}. It is clear that hyi,j(x),
is at most a function of degree n − 1. Now let f ∈ L2[0, T ]. Since X is a finite
dimensional vector space, f has the unique best approximation out of X such as
p ∈ X , that is

∃p ∈ X ∀q ∈ X : ‖ f − p ‖2 ≤ ‖ f − q ‖2,
where ‖ f ‖2 =< f, f >. Therefore there exist the unique coefficients such that

f(x) ≃ p =

m−1
∑

i=0

n−1
∑

j=0

ci,jhyi,j(x),

where ci,j are defined in Definition 2.3, for more details refer to [20].

Theorem 4.2. Let f ∈ L2[0, T ] is n times continuously differentiable and f (n)(x) <

M on [0, T ]. If
∑m−1

i=0

∑n−1
j=0 ci,jhyi,j(x) = CTHyn,m(x) is the best approximation

of f out of X, then we have

‖ f − CTHyn,m(x) ‖2 ≤ M
√
T 3

√
3n!m

.

Proof: Let fi be the Taylor polynomial of order n−1 for f on [ iT
m
,
(i+1)T

m
), therefore

fi(x) =

n−1
∑

k=0

f(
iT

m
)
(x − iT

m
)k

k!
,

also for each i, theere exist ζi ∈ ( iT
m
,
(i+1)T

m
) such that

|f(x)− fi(x)| ≤ |f (n)(ζi)|
(x − iT

m
)n

n!
. (4.2)

Since CTHyn,m(x), is the best approximation f out of X , fi ∈ X , from above
equation we have

‖ f − CTHyn,m ‖22 =

∫ T

0

|f(x)− CTHyn,m(x)|2dx
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=

m−1
∑

i=0

∫
(i+1)T

m

iT
m

|f(x)− CTHyn,m(x)|2dx

≤
m−1
∑

i=0

∫
(i+1)T

m

iT
m

|f(x)− fi(x)|2dx

≤
m−1
∑

i=0

∫
(i+1)T

m

iT
m

(|f (n)(ζi)|
(x− iT

m
)n

n!
)2dx ≤ M2T 3

3(n!)2m2
.

✷

Theorems 4.2 shows that the error of Hybrid functions of Block-Pulse and
shifted Legendre polynomials reduces to zero very fast as n and m increase.

5. Numerical Examples

In order to show the efficiency of operational matrix of fractional order inte-
gration by Block-pulse and Hybrid functions of Block-pulse and shifted Legendre
polynomials for solving initial value problems as (1.1), we apply it to solve different
types of FDE which exact solutions are known.
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Figure 1: Fig 1.a. shows the comparison of the exact solution with numerical
solution generated by B32(x) and Fig 1.b. present the error generated by B32(x),
for example 4.1
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Figure 2: Fig 2.a. shows exact and numerical solutions for a = 2 , α = 1.5, by
Hy8,3(x) and fig 2.b. represent the absolute error in example 4.2, case 1.
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Figure 3: Numerical solution of example 4.2, case 2, by B32(x) and Hy8,3(x) with
α = 1, 0.9, 0.7.

Example 5.1. Consider the equation

0D
2
xy(x)+30Dxy(x)+20D

q2
x y(x)+ 0D

q1
x y(x)+5y(x) = f(x) ; y(0) = 1, y′(0) = 0,

(5.1)
with

f(x) = 1 + 3x+
2

Γ(3− q2)
x2−q2 +

1

Γ(3− q1)
x2−q1 + 5(1 +

1

2
t2)

when q1 = 0.0159 and q2 = 0.1379, The exact solution of this problem is 1+ 1
2 t

2.
By integrating from both sides of order q2, we have

y(x) + 3I(y(x)) + 2I2−q2(y(x)) + I2−q1(y(x)) + 5I2(y(x))
= I2(f(x)) + 1 + 3I(1) + 2I2−q2(1) + I2−q1(1).

(5.2)
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In this example we use the operational matrix of fractional order integration
with respect to Block-pulse wavelet and Hybrid functions of Block-Pulse and shifted
Legendre polynomials. From Section 3 , we can approximate solution y(x), f(x)
and 1 as follows

y(x) = CT
y W (x)

f(x) = CT
f W (x)

1 = CT
1 W (x).

(5.3)

If we use Block-pulse wavelet then W (x) = Bm(x), if we apply Hybrid functions
of Block-Pulse and shifted Legendre polynomials then we have W (x) = Hyn,m(x).
By substituting above equations in (16) we have

Cy(I+3G+2G(2−q2)+G(2−q1)+5G(2)) = CfG
(2)+C1(I+3G+2G(2−q2)+G(2−q1))

(5.4)
where G(α) = F (α) or Q(α), if we use Bm(x) or Hyn,m(x), respectively. By solving
above algebraic equations by existing methods [8,21], we can fond Cy. Results are
shown in fig .1 for W (x) = B32(x). From Fig. 1.a we can see that the numerical
solution (block-pulse simulation) is coincide with the exact solution in much points.
Also from Fig. 1.b we found that the error ranges between −0.15 and 0.15.

Example 5.2. (Bagley-Torvik equation) Consider the following initial value
problems Bagley-Torvik equation

0D
2
xy(x) + 0D

3
2
x y(x) + y(x) = 1 + x ; y(0) = 1, y′(0) = 1. (5.5)

The exact solution is y(x) = 1+ x, [13]. By taking I2 from boot side of (19) we
have

I2(0D
2
xy(x) + 0D

3
2
x y(x) + y(x)) = I2(1 + x), (5.6)

now from (8), (9) and initial conditions we can see that above equation becomes
to

y(x)− x− 1 + I
1
2 (y(x)) + I

1
2 (−x− 1) + I2(y(x)) = I2(1 + x). (5.7)

which is the integral representation of (5.5).
In this example we use the operational matrix of fractional order integration

with respect to Block-pulse wavelet. By applying theorem 2.1, we can approximate
solution y(x) and 1 + x as follows

y(x) = CT
b Bm(x)

1 + x = CT
1 Bm(x)

, (5.8)

by substituting (22) in (21) and using operational matrices we have

CT
b (Im + F ( 1

2 ) + F (2)) = CT
1 (Im + F ( 1

2 ) + F (2)). (5.9)

From (3.2) we can see that the entries of principal diagonal of upper triangular

matrix Im + F ( 1
2 ) + F (2) are positive and thus the matrix Im + F ( 1

2 ) + F (2) is
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nonsingular. This shows that the algebraic equations (23) have a unique solution
as Cb = C1. But

y(x) = CT
b Bm(x) = CT

1 Bm(x) ≃ 1 + x,

and also theorem 4.1 shows that CT
1 Bm(x) → 1 + x as m → ∞. Therefore the

numerical solution can be regarded as 1 + x, which is the exact solution.

Table 1: Absolute error for α = 1.5, a = 12 for example 4.2, case 1.
x |CbB32(x)− y(x)| |ChyHy8,3(x) − y(x)|
0.2 9.1× 10−3 1.4× 10−3

0.5 8.1× 10−4 7.6× 10−4

0.8 8.6× 10−4 1.2× 10−3

1.1 6.0× 10−4 1.4× 10−4

1.4 5.2× 10−4 5.0× 10−4

1.7 1.5× 10−4 6.6× 10−5

2 5.3× 10−5 1.3× 10−4

2.3 3.2× 10−5 4.8× 10−5

2.6 3.6× 10−6 2.9× 10−5

2.9 1.4× 10−5 1.9× 10−5

Example 5.3. (Relaxation-oscillation Equation)
In this example we consider an FDE appearing in applied problems [9].

0D
α
x y(x) + ay(x) = f(x) , t > 0,

yk(0) = ak , k = 0, 1, · · · , n− 1,
(5.10)

where n − 1 < α ≤ n. For 0 < α ≤ 2 and ak = 0 this equation is called the
Relaxation-oscillation equation.

Case 1. Consider ak = 0 and f(x) ≡ H(x), where H(x) is the Heaviside
function. In this case The analytical solution of [9] is

y(x) =

∫ x

0

G(x − τ)f(τ ), G(x) = xα−1Eα,α(−atα). (5.11)

The integral representation of (5.10) for 1 < α < 2 is

y(x) + aIα(y(x)) = Iα(f(x)), (5.12)

we solve the problem, by applying the Hybrid functions of Block-Pulse and shifted
Legendre polynomials described in the previous Sections on [0, 3) for α = 1.5. The
algebraic equations corresponding to (5.12) are of the form C(I+aG(α)) = CfG

(α)

where G(α) is defined in example 5.1. Fig. 2 shows the numerical results and
absolute error generated by Hybrid functions (Hy8,3(x)) for a = 2 with α = 1.5.
Also the absolute error for a = 12 are shown in Table 1 generated by Block pulse and
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Hybrid functions. From Table 1, we can see that the operational matrix methods
achieve a good approximation with the exact solution.

Case 2. In this case, we consider f(x) = 0, 0 ≤ α ≤ 1 and a0 = 1 , a1 = 0,
the analytical solution is [13]

y(x) =
∞
∑

k=0

(−xα)k

Γ(αk + 1)
, (5.13)

for α = 1 we have from (5.13), y(x) = exp(−x). The exact solution exp(−x), with
α = 1 and numerical solution by Block-pulse wavelets and Hybrid function for
α = 1, 0.9 and 0.7 are shown in Fig. 3 .From Fig 3 we can see that the numerical
solution converges to exp(−x) as α −→ 1. Also The absolute error for α = 1 are
shown in Table 2. Table 2 shows that the Hybrid operational matrix method gives
an efficient numerical solution for α = 1.

Table 2: Absolute error for α = 1, by B32(x) and Hy8,3(x), for example 4.3, case
2.

x |CbB32(x) − e−x| |ChyHy8,3(x) − e−x|
0.2 2.6× 10−2 8.5× 10−4

0.5 9.0× 10−3 3.9× 10−4

0.8 1.6× 10−3 1.1× 10−4

1.1 7.5× 10−3 4.3× 10−5

1.4 1.0× 10−2 1.2× 10−4

1.7 6.2× 10−3 1.6× 10−4

2 2.1× 10−3 1.7× 10−4

2.3 2.5× 10−4 1.6× 10−4

2.6 1.6× 10−3 1.5× 10−4

2.9 2.2× 10−3 1.3× 10−4

6. Conclusion

The fractional differential equations play an important role in physics, chemical
mixing, chaos theory, and biological system as well. The fundamental goal of
this work has been to apply an efficient method for the solution of FDE with
initial values .In this paper we presented the operational matrix of fractional order
integration method to solve FDE with initial values. This method transforms FDE
into algebraic equations. Examples show that the method has been successfully
applied to find the approximate solutions of the FDE with initial values. Figures
and Tables show that this method is extremely effective and practical for this sort
of approximate solutions.
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